Matematyka stosowana i metody numeryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka stosowana i metody numeryczne"

Transkrypt

1 Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx = F (b) F () Podstwijąc w miejsce funkcji podcłkowej f(x) wielomin lgebriczny ϕ(x) = f 0 N 0 (x) + f N (x) + + f n N n (x) = f i N i (x) otrzymmy tzw. wzór kwdrturowy. 0. Kwdrtur cłkowni Wzorem kwdrturowym (kwdrturą) nzywmy: I(f) = f(x) dx ϕ(x) dx = f i N i (x) dx = w i f i = S(f) w którym w i = N i (x) dx, i = 0,,,..., n są tzw. współczynnikmi wgowymi (wgmi). Wrtość w i określ wielkość udziłu rzędnej f i f(x i ) w wrtości cłej sumy S(f). W zleżności od sposobu postępowni przy wyborze położeń węzłów interpolcji w przedzile cłkowni kwdrtury dzielimy n dwie grupy:. kwdrtury Newton - Cotes, węzły są rozmieszczone równomiernie w cłym przedzile cłkowni (zmknięte końce). kwdrtury Guss, węzły są rozmieszczone nierównomiernie, tk by zminimlizowć błąd kwdrtury (otwrte końce)

2 0. Kwdrtury Newton - Cotess 0.. Wzór prostokątów Po zstosowniu interpolcji funkcji podcłkowej f(x) z pomocą wielominu ϕ(x) = f(x 0 ) = const. otrzymujemy I(f) = f(x) dx f(x 0 ) dx S(f) = (b ) f(x 0 ) () W zleżności od wyboru położeni węzł x 0 otrzymujemy wzory: ) lewych prostokątów, gdy x 0 = b) środkowych prostokątów, gdy x 0 = ( + b)/ c) prwych prostokątów, gdy x 0 = b 0.. Wzór trpezów Jeśli do interpolcji funkcji f(x) zstosujemy interpolcję z pomocą wielominu liniowego Lgrnge, to otrzymmy wzór kwdrturowy, nzywny wzorem trpezów. I(f) = f(x) dx f 0 L 0 + f L dx = 0..3 Wzór Simpson f() x b b + f(b) x b S(f) = b f() + f(b) () Zstosownie kwdrtowej interpolcji Lgrnge prowdzi do wzoru: f(x) dx f 0 L 0 + f L + f L dx = (x c)(x b) f 0 ( c)( b) + f (x )(x b) (c )(c b) + f (x )(x c) dx (b )(b c) Osttecznie kwdrtur (wzór) Simpson przyjmuje postć: f(x) dx 3 h ( f f + f ) = S(f), h = b Wzór Simpson jest rzędu czwrtego, co ozncz, że jest dokłdny nie tylko dl wielominów stopni drugiego, lecz tkże dl wielominów stopni trzeciego tzn. I(W 3 ) = S(W 3 ) orz I(W 4 ) S(W 4 ) (3)

3 0.3 Kwdrtury Guss Dokłdność kwdrtury możn zwiększyć rezygnując z wrunku równomiernego rozmieszczeni węzłów interpolcji. Wrtości wg orz położeni węzłów cłkowni ustl się tk by kwdrtur cłkowni przybliżon był wzorem dokłdnym dl jednominu możliwie wysokiego stopni. w i x k i = x k dx, k = 0,,,..., n + W prktyce wgi i punkty Guss nie wyzncz się z powyższego wrunku. Są one stblicowne dl rodziny pewnych wielominów ortogonlnych (z wgą) w przedzile <, >. l.p. ξ i, i = 0,..., n w i, i = 0,..., n ξ 0 = 0 w 0 = ξ 0 = +/ 3 w 0 = ξ = / 3 w = 3 ξ 0 = w 0 = 5/9 ξ = 0 w = 8/9 ξ = 0.6 w = 5/9 4 ξ 0 = w 0 = ξ = w = ξ = w = ξ 3 = w 3 = W ogólnym przypdku gdy liczymy cłkę z dowolnego przedziłu (, b), konieczn jest trnsformcj liniow między dnym przedziłem przedziłem <, >, tk by możn było zstosowć dne z tbeli. Wzory n trnsformcję (, b) <, > co dje: ξ = x b b orz wzór kwdrturowy Guss: Przykłd: Obliczyć S(f) = x = + b + b ξ dξ = b dx dx = b dξ f(x) dx = b f(x) dx b ( + b f + b ) ξ dξ ( + b w i f + b ξ i ). (4) f(x) gdy f(x) = 4 x x + dl =.0, b =.0, co ozncz, że h = b =,. Zstosowć dwupunktową metodę Guss (n = ): 3

4 Rozwiąznie: w 0 = w =, ξ 0 = / 3, ξ = / 3 f(x)dx = b b f f(ξ) dξ b ( + b Wyniki dl przedstwinych wzorów: + b w i f(ξ i ) = ) ( + b + f b 3 3 ) = Wrtość dokłdn I(f) = Wzór Postć kwdrtury Wrtość prostokątów: lewych S(f) = h f() = 4 środkowych S(f) = h f( +b) = prwych S(f) = h f(b) = 0 trpezów S(f) = h f() + f(b) = Simpson S(f) = h 3 Guss dl n = S(f) = b 0.4 Wzory złożone (sumcyjne) f() + 4 f(+b ) + f(b) = w i f(ξ i ) = Brdzo skutecznym sposobem podwyższni dokłdności cłkowni numerycznego jest dokonnie podziłu przedziłu, b n podprzedziły j, b j, j =,,..., N przy zchowniu związków: Terz możn zpisć: =, b N = b, b i = i+, i =,,..., N. I(f) = f(x) dx = j j f(x) dx = I (f) + I (f) + + I N (f) (5) Do obliczni kżdego skłdnik I i (f) sumy możn wykorzystć dowolny wzór kwdrturowy Metod lewych, środkowych i prwych prostokątów () f(x j ) = H ( ) f 0 + f + f + + f N (b) f( x j x j ) = H ( ) f 0 + f + f f N N 4

5 gdzie f j j = f ( x j +x j ), j =,,..., N (c) f ( ) x j ) = H (f + f + + f N 0.4. Metod trpezów lub f(x)dx H N ( ) f(x j + f(x j ) = H f 0 + f + f + + f N N f 0 + f j + f N Metod Simpson f(x)dx 3 H ( f 0 + f N ) + 4 ( f + f f N ) + (f + f f N ), przy czym H = (x N x 0 )/N, (N musi być liczbą przystą) Metod Guss gdzie f(x)dx b N X i = x j + x j+ lpc= + x j+ x j w i f(x i ), ξ i. Różniczkownie numeryczne Zdnie różniczkowni numerycznego poleg n obliczeniu wrtości pochodnych k tego rzędu funkcji y = f(x), z pomocą wzorów przybliżonych tzw. wzorów różnicowych. Są to wzory służące do obliczeni pochodnej w węźle i z pomocą znnych wrtości funkcji w innych węzłch, np.: mmy dne wrtości funkcji f(x 0 ), f(x ), f(x ) w równo oddlonych węzłch x 0, x, x, nleży zbudowć wzory różnicowe do obliczeni pierwszej i drugiej pochodnej w węzłch x i, i = 0,,.. Rozwinięcie funkcji w szereg Tylor f(x + h) = f(x) + hf (x) + h f (x) + 6 h3 f (x) + 4 h4 f IV (x) Centrlne wzory różnicowe f = h ( f 0 + f ), f = h (f 0 f + f ) 5

6 .. Ilorz wprzód..3 Ilorz wstecz f 0 = h ( 3 f f f ), f 0 = h (f 0 f + f ) f = h (f 0 4 f + 3 f ), f = h (f 0 f + f ) 6

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm.

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm. Pln wykłdów z Mtemtyki, I 014/015 semestr zimowy 1. Powtórk i widomości wstępne. () Podstwowe funkcje: pierwistki, funkcj potęgow, logrytm. (b) Trygonometri. (c) Dwumin Newton, przystość funkcji.. Rchunek

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Sprawozdanie pracownia z Analizy numerycznej

Sprawozdanie pracownia z Analizy numerycznej Sprwozdnie prcowni z Anlizy numerycznej List nr 3 Zdnie nr 6 Grup p. Pwł Woźnego Jkub Kowlski Nr lbumu: 7 Wrocłw, 7 styczni 8 Spis treści Sformułownie zdni. Sformułownie lgorytmu.............................

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Równania nieliniowe. x i 1

Równania nieliniowe. x i 1 MN 08 Równni nieliniowe Wprowdzenie Podstwowe pytni 1. Pytnie: Czy komputer umie rozwiązywć równni nieliniowe f(x) = 0? Odpowiedź (uczciw): nie. 2. P: To jk on to robi? O: Dokłdnie tk, jk przy cłkowniu

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE)

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) 1. TEORIA PŁYT CIENKOŚCIENNYCH 1 1. 1. TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) Płyt jest to ukłd ogrniczony dwom płszczyznmi o młej krzywiźnie. Odległość między powierzchnimi ogrniczjącymi tę wysokość płyty

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

5. Zadania tekstowe.

5. Zadania tekstowe. 5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA. Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

Samouczek Metody Elementów Skończonych dla studentów Budownictwa

Samouczek Metody Elementów Skończonych dla studentów Budownictwa Grzegorz Dzierżnowski Mrt Sitek Smouczek Metody Elementów Skończonych dl studentów Budownictw Część I Sttyk konstrukcji prętowych OFICYNA WYDAWNICZA POLITECHNIKI WARSZAWSKIEJ WARSZAWA 2012 Preskrypt n

Bardziej szczegółowo

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem. KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego - projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

szkicuje wykresy funkcji: f ( x)

szkicuje wykresy funkcji: f ( x) Wymgni edukcyjne z mtemtyki ls tps Zkres podstwowy Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące oziom Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Badanie regularności w słowach

Badanie regularności w słowach Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,

Bardziej szczegółowo

MAP1142 ANALIZA MATEMATYCZNA 1.1A. Listy zadań

MAP1142 ANALIZA MATEMATYCZNA 1.1A. Listy zadań MAP4 ANALIZA MATEMATYCZNA.A Zdni z listy oznczone gwizdką ) są nieco trudniejsze lbo mją chrkter teoretyczny. Jednk nie wychodzą one poz rmy progrmu kursu. Odpowiedzi do zdń z listy możn zweryfikowć z

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

MATEMATYKA DLA I ROKU BIOCHEMII I BIOTECHNOLOGII

MATEMATYKA DLA I ROKU BIOCHEMII I BIOTECHNOLOGII MATEMATYKA DLA I ROKU BIOCHEMII I BIOTECHNOLOGII PAWEŁ ZAPAŁOWSKI Spis treści Litertur. Pojęci wstępne.. Kwntyfiktory.. Zbiory. Dziłni n zbiorch. Elementy lgebry liniowej 3.. Mcierze. Dziłni n mcierzch

Bardziej szczegółowo

Plan wynikowy z matematyki

Plan wynikowy z matematyki ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych Dz.U.2012.204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych (Dz. U. z dni 22 lutego 2012 r.) N podstwie rt. 22 ust. 2 pkt 1 ustwy

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności. CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.

Bardziej szczegółowo

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba Wybrne zgdnieni z geometrii płszczyzny Dnut Zremb Wstęp Publikcj t powstł z myślą o studentch, którzy chcą zdobyć uprwnieni do nuczni mtemtyki w szkole. Zwier on nieco podstwowych widomości z geometrii

Bardziej szczegółowo

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY

Bardziej szczegółowo

współrzędne wierzchołka A oraz oblicz pole trójkąta ABC. Napisz równanie okręgu opisanego na trójkącie ABC. Zadanie 3. Ciąg ( a

współrzędne wierzchołka A oraz oblicz pole trójkąta ABC. Napisz równanie okręgu opisanego na trójkącie ABC. Zadanie 3. Ciąg ( a STARA MATURA 00 Województwo Śląskie Mtemtyk - rozwiązni zdń. mj 00 Pisemny egzmin dojrzłości obowiązujący w licech ogólnoksztłcących (z wyjątkiem profilu mtemtyczno fizycznego), technikch pięcioletnich

Bardziej szczegółowo

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Rchuek prwdopodobieństw MA5 Wydził Elektroiki, rok kd. 20/2, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 7: Zmiee losowe dwuwymirowe. Rozkłdy łącze, brzegowe. Niezleżość zmieych losowych. Momety. Współczyik

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH SSof Polsk, el. (1) 4843, (61) 414151, info@ssof.pl, www.ssof.pl PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Metoda kropli wosku Renferta

Metoda kropli wosku Renferta Metod kropli wosku Renfert Metod Renfert zwn jest tkże techniką K+B. Jej podstwowym złożeniem jest dążenie do prwidłowego odtworzeni powierzchni żujących zęów ocznych podczs rtykulcji. Celem jest uzysknie

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo