Załącznik nr 3 do PSO z matematyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Załącznik nr 3 do PSO z matematyki"

Transkrypt

1 Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez kżdego uczni. Wymgni n ocenę dostteczną zwierją wymgni z poziomu oceny dopuszczjącej, wzbogcone o typowe problemy o niewielkim stopniu trudności. Wymgni n ocenę dobrą zwierją wymgni n ocenę dopuszczjącą i dostteczną orz dotyczą zgdnień brdziej złożonych i nieco trudniejszych. Wymgni n ocenę brdzo dobrą zwierją wymgni n ocenę dopuszczjącą, dostteczną i dobrą orz dotyczą zgdnień problemowych, trudniejszych, wymgjących umiejętności przetwrzni przyswojonych informcji. Wymgni n ocenę celującą dotyczą zgdnień trudnych, oryginlnych, wykrczjących poz obowiązkowy progrm nuczni. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje liczbę do odpowiedniego zbioru liczb stosuje cechy podzielności liczb rozróżni liczby pierwsze i liczby złożone porównuje liczby wymierne podje przykłd liczby wymiernej zwrtej między dwiem dnymi liczbmi orz przykłdy liczb niewymiernych zzncz n osi liczbowej dną liczbę wymierną przedstwi liczby wymierne w różnych postcich wyzncz przybliżeni liczby rzeczywistej z zdną dokłdnością (również przy użyciu klkultor) orz określ, czy dne przybliżenie jest przybliżeniem z ndmirem, czy z niedomirem wykonuje proste dziłni w zbiorch liczb cłkowitych, wymiernych i rzeczywistych oblicz wrtość pierwistk dowolnego stopni z liczby nieujemnej orz wrtość pierwistk nieprzystego stopni z liczby rzeczywistej wyłącz czynnik przed znk pierwistk włącz czynnik pod znk pierwistk stosując odpowiednie twierdzeni, wykonuje dziłni n pierwistkch tego smego stopni usuw niewymierność z minownik wyrżeni typu stosując wzory skróconego mnożeni, przeksztłc i oblicz wrtości wyrżeń zwierjących pierwistki kwdrtowe wykonuje proste dziłni n potęgch o wykłdnikch cłkowitych przedstwi liczbę w notcji wykłdniczej oblicz procent dnej liczby oblicz, jkim procentem jednej liczby jest drug liczb wyzncz liczbę, gdy dny jest jej procent posługuje się procentmi w rozwiązywniu prostych zdń prktycznych prwidłowo odczytuje informcje przedstwione n digrmch wykonuje dziłni n wyrżenich lgebricznych (w tym: stosuje wzory skróconego mnożeni dotyczące drugiej potęgi)

2 stosuje ogólny zpis liczb nturlnych przystych, nieprzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstwieni liczby nturlnej w postci k + r konstruuje odcinki o długościch niewymiernych usuw niewymierność z minownik wyrżeni typu wykonuje dziłni łączne n liczbch rzeczywistych zmieni ułmek dziesiętny okresowy n ułmek zwykły porównuje pierwistki bez użyci klkultor wykonuje dziłni łączne n potęgch o wykłdnikch cłkowitych wyprowdz i stosuje wzory skróconego mnożeni b 3, 3 b oblicz, o ile procent jedn liczb jest większ (mniejsz) od drugiej rozwiązuje złożone zdni tekstowe, wykorzystując obliczeni procentowe oceni dokłdność zstosownego przybliżeni uzsdni prw dziłń n potęgch o wykłdnikch nturlnych (cłkowitych) przeprowdz dowód nie wprost rozwiązuje zdni o zncznym stopniu trudności dotyczące liczb rzeczywistych 3 2. JĘZYK MATEMATYKI posługuje się pojęcimi: zbiór, podzbiór, zbiór skończony, zbiór nieskończony opisuje symbolicznie zbiory wyzncz iloczyn, sumę orz różnicę zbiorów zzncz n osi liczbowej przedziły liczbowe wyzncz iloczyn, sumę i różnicę przedziłów liczbowych zzncz n osi liczbowej zbiór rozwiązń nierówności liniowej A x R : x 4 x 4, zpisuje zbiory w postci przedziłów liczbowych, np. oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby do rozwiązywni elementrnych równń i nierówności typu x, x wyzncz błąd bezwzględny orz błąd względny przybliżeni zzncz n osi liczbowej zbiory liczb spełnijących ukłd nierówności liniowych z jedną niewidomą wykonuje złożone dziłni n przedziłch liczbowych przeksztłc wyrżeni lgebriczne, korzystjąc z włsności wrtości bezwzględnej wyzncz przedziły liczbowe określone z pomocą wrtości bezwzględnej rozwiązuje zdni o zncznym stopniu trudności dotyczące zbiorów i włsności wrtości bezwzględnej 3. FUNKCJE rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi sposobmi (wzorem, tbelką, wykresem, opisem słownym) poprwnie stosuje pojęci związne z pojęciem funkcji: dziedzin, zbiór wrtości, rgument, wrtość i wykres funkcji odczytuje z wykresu dziedzinę, zbiór wrtości, miejsc zerowe, njmniejszą i njwiększą wrtość funkcji wyzncz dziedzinę funkcji określonej tbelką lub opisem słownym wyzncz dziedzinę funkcji dnej wzorem, wymgjącym jednego złożeni wyzncz miejsc zerowe funkcji dnej wzorem (w prostych przykłdch) 2

3 oblicz wrtość funkcji dl różnych rgumentów n podstwie wzoru funkcji oblicz rgument odpowidjący podnej wrtości funkcji sprwdz lgebricznie położenie punktu o dnych współrzędnych względem wykresu funkcji dnej wzorem wyzncz współrzędne punktów przecięci wykresu funkcji dnej wzorem z osimi ukłdu współrzędnych rysuje w prostych przypdkch wykres funkcji dnej wzorem sporządz wykresy funkcji: y f ( x p), y q, y f ( x p) q, y f( x) n podstwie dnego wykresu funkcji y f (x) odczytuje z wykresu wrtość funkcji dl dnego rgumentu orz rgument dl dnej wrtości funkcji n podstwie wykresu funkcji określ rgumenty, dl których funkcj przyjmuje wrtości dodtnie, ujemne określ n podstwie wykresu przedziły monotoniczności funkcji wskzuje wśród wykresów wykresy funkcji rosnących, mlejących i stłych stosuje funkcje i ich włsności w prostych sytucjch prktycznych rozpoznje i opisuje zleżności funkcyjne w otczjącej ns rzeczywistości przedstwi dną funkcję n różne sposoby określ dziedzinę orz wyzncz miejsc zerowe funkcji dnej wzorem, który wymg kilku złożeń n podstwie wykresu funkcji określ liczbę rozwiązń równni f(x) = m w zleżności od wrtości prmetru m n podstwie wykresu funkcji odczytuje zbiory rozwiązń nierówności: m, m, m, m dl ustlonej wrtości prmetru m odczytuje z wykresów funkcji rozwiązni równń i nierówności typu f(x) = g(x), f(x)<g(x), f(x)>g(x) szkicuje wykres funkcji spełnijącej podne wrunki uzsdni, że funkcj f x nie jest monotoniczn w swojej dziedzinie x rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji 4. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu podje przykłdy funkcji liniowych opisujących sytucje z życi codziennego rysuje wykres funkcji liniowej dnej wzorem oblicz wrtość funkcji liniowej dl dnego rgumentu i odwrotnie wyzncz miejsce zerowe funkcji liniowej interpretuje współczynniki ze wzoru funkcji liniowej wyzncz lgebricznie orz odczytuje z wykresu funkcji liniowej zbiór rgumentów, dl których funkcj przyjmuje wrtości dodtnie (ujemne) odczytuje z wykresu funkcji liniowej jej włsności: dziedzinę, zbiór wrtości, miejsce zerowe, monotoniczność wyzncz wzór funkcji liniowej, której wykres przechodzi przez dne dw punkty wyzncz wzór funkcji liniowej, której wykresem jest dn prost wyzncz współrzędne punktów przecięci wykresu funkcji liniowej z osimi ukłdu współrzędnych sprwdz lgebricznie i grficznie, czy dny punkt nleży do wykresu funkcji liniowej przeksztłc równnie ogólne prostej do postci kierunkowej i odwrotnie sprwdz, czy dne trzy punkty są współliniowe stosuje wrunek równoległości i prostopdłości prostych wyzncz wzór funkcji liniowej, której wykres przechodzi przez dny punkt i jest równoległy do wykresu dnej funkcji liniowej wyzncz wzór funkcji liniowej, której wykres przechodzi przez dny punkt i jest prostopdły do wykresu dnej funkcji liniowej rozstrzyg, czy dny ukłd dwóch równń liniowych jest oznczony, nieoznczony czy sprzeczny rozwiązuje ukłdy równń liniowych z dwiem niewidomymi metodą podstwini i metodą przeciwnych współczynników określ liczbę rozwiązń ukłdu równń liniowych, korzystjąc z jego interpretcji geometrycznej 3

4 sprwdz, dl jkich wrtości prmetru funkcj liniow jest rosnąc, mlejąc, stł rysuje wykres funkcji przedziłmi liniowej i omwi jej włsności oblicz pole figury ogrniczonej wykresmi funkcji liniowych orz osimi ukłdu współrzędnych sprwdz, dl jkich wrtości prmetru dwie proste są równoległe, prostopdłe znjduje współrzędne wierzchołków wielokąt, gdy dne są równni prostych zwierjących jego boki rozwiązuje zdni tekstowe prowdzące do ukłdów równń liniowych z dwiem niewidomymi rozwiązuje lgebricznie ukłd trzech równń liniowych z trzem niewidomymi określ włsności funkcji liniowej w zleżności od wrtości prmetrów występujących w jej wzorze wykorzystuje włsności funkcji liniowej w zdnich dotyczących wielokątów w ukłdzie współrzędnych rozwiązuje grficznie ukłd równń, w którym występuje wrtość bezwzględn rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji liniowej 5. FUNKCJA KWADRATOWA rysuje wykres funkcji 2 x i podje jej włsności sprwdz lgebricznie, czy dny punkt nleży do wykresu dnej funkcji kwdrtowej rysuje wykres funkcji kwdrtowej w postci knonicznej i podje jej włsności ustl wzór funkcji kwdrtowej w postci knonicznej n podstwie informcji o przesunięcich wykresu przeksztłc wzór funkcji kwdrtowej z postci knonicznej do postci ogólnej i odwrotnie oblicz współrzędne wierzchołk prboli znjduje brkujące współczynniki funkcji kwdrtowej, znjąc współrzędne punktów nleżących do jej wykresu rozwiązuje równni kwdrtowe niepełne metodą rozkłdu n czynniki orz stosując wzory skróconego mnożeni wyzncz lgebricznie współrzędne punktów przecięci prboli z osimi ukłdu współrzędnych określ liczbę pierwistków równni kwdrtowego w zleżności od znku wyróżnik rozwiązuje równni kwdrtowe, stosując wzory n pierwistki sprowdz funkcję kwdrtową do postci iloczynowej, o ile możn ją w tej postci zpisć odczytuje miejsc zerowe funkcji kwdrtowej z jej postci iloczynowej rozwiązuje nierówności kwdrtowe wyzncz njmniejszą i njwiększą wrtość funkcji kwdrtowej w podnym przedzile n podstwie wykresu określ liczbę rozwiązń równni f(x) = m w zleżności od prmetru m, gdzie y = f(x) jest funkcją kwdrtową rozwiązuje zdni tekstowe prowdzące do wyznczni wrtości njmniejszej i njwiększej funkcji kwdrtowej rozwiązuje zdni tekstowe prowdzące do równń lub nierówności kwdrtowych znjduje iloczyn, sumę i różnicę zbiorów rozwiązń nierówności kwdrtowych przeksztłc n ogólnych dnych wzór funkcji kwdrtowej z postci ogólnej do postci knonicznej wyprowdz wzory n współrzędne wierzchołk prboli wyprowdz wzory n pierwistki równni kwdrtowego rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji kwdrtowej 4

5 6. PLANIMETRIA cz. rozróżni trójkąty: ostrokątne, prostokątne, rozwrtokątne stosuje twierdzenie o sumie mir kątów w trójkącie sprwdz, czy z trzech odcinków o dnych długościch możn zbudowć trójkąt uzsdni przystwnie trójkątów, wykorzystując cechy przystwni wykorzystuje cechy przystwni trójkątów do rozwiązywni prostych zdń uzsdni podobieństwo trójkątów, wykorzystując cechy podobieństw zpisuje proporcje boków w trójkątch podobnych wykorzystuje podobieństwo trójkątów do rozwiązywni elementrnych zdń sprwdz, czy dne figury są podobne oblicz długości boków figur podobnych posługuje się pojęciem skli do obliczni odległości i powierzchni przedstwionych z pomocą plnu lub mpy stosuje w zdnich twierdzenie o stosunku pól figur podobnych wskzuje w wielokątch odcinki proporcjonlne rozwiązuje proste zdni, wykorzystując twierdzenie Tles stosuje twierdzenie Pitgors wykorzystuje wzory n przekątną kwdrtu i wysokość trójkąt równobocznego oblicz wrtości funkcji trygonometrycznych kąt ostrego w trójkącie prostokątnym, gdy dne są boki tego trójkąt rozwiązuje trójkąty prostokątne podje wrtości funkcji trygonometrycznych kątów 30º, 45º, 60º odczytuje z tblic wrtości funkcji trygonometrycznych dnego kąt ostrego znjduje w tblicch kąt ostry, gdy zn wrtość jego funkcji trygonometrycznej oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny sinus lub cosinus kąt stosuje w zdnich wzór n pole trójkąt: P h orz wzór n pole trójkąt równobocznego o boku : P 4 rozróżni czworokąty: kwdrt, prostokąt, romb, równoległobok, trpez orz zn ich włsności wykorzystuje w zdnich wzory n pol czworokątów wykorzystuje funkcje trygonometryczne do obliczni obwodów i pól podstwowych figur płskich oblicz pole koł o dnym promieniu oblicz długość okręgu o dnym promieniu przeprowdz dowód twierdzeni o sumie mir kątów w trójkącie stosuje cechy przystwni trójkątów do rozwiązywni trudniejszych zdń geometrycznych wykorzystuje podobieństwo trójkątów do rozwiązywni prktycznych problemów wyprowdz wzór n jedynkę trygonometryczną orz pozostłe związki między funkcjmi trygonometrycznymi tego smego kąt przeksztłc wyrżeni trygonometryczne, stosując związki między funkcjmi trygonometrycznymi tego smego kąt oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny tngens lub cotngens kąt stosuje podczs rozwiązywni zdń wzór n pole trójkąt P b sin 2 oblicz długość łuku okręgu i pole wycink koł stosuje twierdzeni o związkch mirowych podczs rozwiązywni zdń, które wymgją przeprowdzeni dowodu rozwiązuje zdni wymgjące uzsdnieni i dowodzeni z zstosowniem twierdzeni Tles i twierdzeni odwrotnego do twierdzeni Tles stosuje włsności podobieństw figur podczs rozwiązywni zdń problemowych orz zdń wymgjących przeprowdzeni dowodu stosuje włsności czworokątów podczs rozwiązywni zdń, które wymgją przeprowdzeni dowodu rozwiązuje zdni o zncznym stopniu trudności dotyczące przystwni i podobieństw figur orz związków mirowych z zstosowniem trygonometrii 5

6 7. WIELOMIANY podje przykłdy wielominów, określ ich stopień i podje wrtości ich współczynników zpisuje wielomin w sposób uporządkowny oblicz wrtość wielominu dl dnego rgumentu sprwdz, czy dny punkt nleży do wykresu dnego wielominu wyzncz sumę, różnicę, iloczyn wielominów i określ ich stopień określ stopień iloczynu wielominów bez wykonywni mnożeni podje współczynnik przy njwyższej potędze orz wyrz wolny iloczynu wielominów bez wykonywni mnożeni wielominów oblicz wrtość wielominu dwóch (trzech) zmiennych dl dnych rgumentów stosuje wzory n kwdrt sumy i różnicy orz wzór n różnicę kwdrtów do wykonywni dziłń n wielominch orz do rozkłdu wielominu n czynniki stosuje wzory n sześcin sumy i różnicy do wykonywni dziłń n wielominch rozkłd wielomin n czynniki, stosując metodę grupowni wyrzów i wyłączni wspólnego czynnik poz nwis rozwiązuje proste równni wielominowe wyzncz współczynniki wielominu, mjąc dne wrunki stosuje wielominy wielu zmiennych w zdnich różnych typów rozkłd wielomin n czynniki możliwie njniższego stopni, tkże z zstosowniem wzorów n sumę i różnicę sześcinów stosuje rozkłd wielominu n czynniki w zdnich różnych typów nlizuje i stosuje metodę podną w przykłdzie, by rozłożyć dny wielomin n czynniki porównuje wielominy rozwiązuje równni wielominowe opisuje z pomocą wielominu objętość lub pole powierzchni bryły orz określ dziedzinę powstłej w ten sposób funkcji rozwiązuje zdni o zncznym stopniu trudności dotyczące wielominów 8. FUNKCJE WYMIERNE wskzuje wielkości odwrotnie proporcjonlne i stosuje tką zleżność do rozwiązywni prostych zdń szkicuje wykres funkcji, gdzie 0 i podje jej włsności (dziedzinę, zbiór wrtości, x przedziły monotoniczności) szkicuje wykresy funkcji q i x i podje ich włsności x p wyzncz symptoty wykresów powyższych funkcji wyzncz dziedzinę prostego wyrżeni wymiernego oblicz wrtość wyrżeni wymiernego dl dnej wrtości zmiennej skrc i rozszerz wyrżeni wymierne w prostych przypdkch wykonuje dziłni n wyrżenich wymiernych w prostych przypdkch i podje odpowiednie złożeni rozwiązuje równni wymierne prowdzące do rozwiązywni równń liniowych wykorzystuje wyrżeni wymierne do rozwiązywni prostych zdń tekstowych rozwiązuje zdni tekstowe, stosując proporcjonlność odwrotną dobier wzór funkcji postci q i x do dnego wykresu i określ jej włsności x p wykonuje dziłni n wyrżenich wymiernych i podje odpowiednie złożeni 6

7 przeksztłc wzory, stosując dziłni n wyrżenich wymiernych rozwiązuje równni wymierne prowdzące do rozwiązywni równń kwdrtowych wykorzystuje wyrżeni wymierne do rozwiązywni trudniejszych zdń tekstowych rozwiązuje zdni o zncznym stopniu trudności dotyczące wyrżeń wymiernych 9. FUNKCJE WYKŁADNICZE I LOGARYTMY oblicz potęgi o wykłdnikch wymiernych zpisuje dną liczbę w postci potęgi o wykłdniku wymiernym zpisuje dną liczbę w postci potęgi o dnej podstwie uprszcz wyrżeni, stosując prw dziłń n potęgch w prostych przypdkch porównuje liczby, korzystjąc z włsności funkcji wykłdniczej wyzncz wzór funkcji wykłdniczej i szkicuje jej wykres, znjąc współrzędne punktu nleżącego do jej wykresu szkicuje wykres funkcji wykłdniczej, stosując przesunięcie wzdłuż osi ukłdu współrzędnych i określ jej włsności oblicz logrytm dnej liczby stosuje równości wynikjące z definicji logrytmu do prostych obliczeń stosuje twierdzeni o logrytmch do obliczni wrtości wyrżeń z logrytmmi w prostych przypdkch uprszcz wyrżeni, stosując prw dziłń n potęgch porównuje liczby przedstwione w postci potęg szkicuje wykresy funkcji wykłdniczej otrzymne w wyniku złożeni dwóch przeksztłceń wykorzystuje włsności funkcji wykłdniczej do rozwiązywni zdń o kontekście prktycznym stosuje w obliczenich wzory n logrytm iloczynu, logrytm ilorzu i logrytm potęgi o wykłdniku nturlnym bd znk logrytmu w zleżności od wrtości liczby logrytmownej i podstwy logrytmu dowodzi twierdzeni o logrytmch rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji wykłdniczej i logrytmów 0. CIĄGI wyzncz kolejne wyrzy ciągu, gdy dnych jest kilk jego początkowych wyrzów wyzncz wyrzy ciągu opisnego słownie szkicuje wykres ciągu wyzncz wzór ogólny ciągu, mjąc dnych kilk jego początkowych wyrzów wyzncz początkowe wyrzy ciągu określonego wzorem ogólnym wskzuje, które wyrzy ciągu przyjmują dną wrtość podje przykłdy ciągów monotonicznych, których wyrzy spełniją dne wrunki mjąc dne kolejne wyrzy ciągu, uzsdni, że dny ciąg nie jest monotoniczny wyzncz wyrz n ciągu określonego wzorem ogólnym podje przykłdy ciągów rytmetycznych wyzncz wyrzy ciągu rytmetycznego, mjąc dne pierwszy wyrz i różnicę wyzncz wzór ogólny ciągu rytmetycznego, mjąc dne dowolne dw jego wyrzy sprwdz, w prostych przypdkch, czy dny ciąg jest rytmetyczny wyzncz wzór ogólny ciągu rytmetycznego, mjąc dw punkty nleżące do jego wykresu oblicz sumę n początkowych wyrzów ciągu rytmetycznego w prostych przypdkch podje przykłdy ciągów geometrycznych wyzncz wyrzy ciągu geometrycznego, mjąc dne pierwszy wyrz i ilorz 7

8 wyzncz wzór ogólny ciągu geometrycznego, mjąc dne dowolne dw jego wyrzy sprwdz, w prostych przypdkch, czy dny ciąg jest geometryczny oblicz sumę n początkowych wyrzów ciągu geometrycznego w prostych przypdkch oblicz wysokość kpitłu przy różnym okresie kpitlizcji oblicz oprocentownie lokty w prostych sytucjch wyzncz wzór ogólny ciągu spełnijącego podne wrunki bd monotoniczność ciągów sprwdz, w trudniejszych przypdkch, czy dny ciąg jest rytmetyczny sprwdz, w trudniejszych przypdkch, czy dny ciąg jest geometryczny stosuje wzory n n-ty wyrz orz sumę n początkowych wyrzów ciągu rytmetycznego i ciągu geometrycznego do rozwiązywni zdń stosuje średnią geometryczną do rozwiązywni zdń określ monotoniczność ciągu geometrycznego rozwiązuje zdni związne z kredytmi, dotyczące okresu oszczędzni i wysokości oprocentowni w trudniejszych przypdkch stosuje włsności ciągu rytmetycznego i geometrycznego do rozwiązywni zdń umieszczonych w kontekście prktycznym rozwiązuje zdni o zncznym stopniu trudności dotyczące ciągów. PLANIMETRIA cz.2 określ wzjemne położenie okręgów, mjąc dne ich promienie orz odległość między środkmi określ, ile punktów wspólnych mją prost i okrąg przy dnych wrunkch oblicz pole figury, stosując zleżności między okręgmi stycznymi w prostych przypdkch rozpoznje kąty wpisne i środkowe w okręgu orz wskzuje łuki, n których są one oprte stosuje, w prostych przypdkch, twierdzenie o kątch środkowym i wpisnym, oprtych n tym smym łuku orz twierdzenie o kącie między styczną cięciwą okręgu oblicz odległość między punktmi w ukłdzie współrzędnych oblicz obwód wielokąt, mjąc dne współrzędne jego wierzchołków wyzncz współrzędne środk odcink, mjąc dne współrzędne jego końców wyzncz środek i promień okręgu, mjąc jego równnie opisuje równniem okrąg o dnym środku i przechodzący przez dny punkt sprwdz, czy punkt nleży do dnego okręgu rozwiązuje zdni dotyczące okręgu wpisnego w trójkąt prostokątny lub równoboczny rozwiązuje zdni dotyczące okręgu opisnego n trójkącie prostokątnym lub równobocznym określ włsności czworokątów i stosuje je do rozwiązywni prostych zdń stosuje włsności stycznej do okręgu do rozwiązywni zdń stosuje twierdzenie o kątch środkowym i wpisnym, oprtych n tym smym łuku orz twierdzenie o kącie między styczną cięciwą okręgu do rozwiązywni zdń stosuje wzory n odległość między punktmi i środek odcink do rozwiązywni zdń dotyczących równoległoboków rozwiązuje zdni związne z okręgiem wpisnym w dowolny trójkąt i opisnym n dowolnym trójkącie stosuje różne wzory n pole trójkąt wykorzystuje równnie okręgu do rozwiązywni zdń stosuje włsności środk okręgu opisnego n trójkącie w zdnich z geometrii nlitycznej stosuje włsności czworokątów wypukłych i definicje orz włsności funkcji trygonometrycznych do rozwiązywni zdń z plnimetrii Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności) orz: rozwiązuje zdni z plnimetrii o zncznym stopniu trudności dowodzi twierdzenie o kątch środkowym i wpisnym, oprtych n tym smym łuku orz wnioski z tego twierdzeni dowodzi twierdzenie o kącie między styczną cięciwą i o cięciwch w okręgu 8

9 2. RACHUNEK PRAWDOPODOBIEŃSTWA stosuje zsdę mnożeni w typowych sytucjch przedstwi drzewo ilustrujące zbiór wyników dnego doświdczeni w prostych sytucjch oblicz liczbę permutcji elementów dnego zbioru w prostych sytucjch stosuje definicję silni oblicz liczbę wricji bez powtórzeń w prostych sytucjch oblicz liczbę wricji z powtórzenimi w prostych sytucjch określ zbiór wszystkich zdrzeń elementrnych dnego doświdczeni określ zbiór zdrzeń elementrnych sprzyjjących dnemu zdrzeniu losowemu określ zdrzeni przeciwne, zdrzeni niemożliwe i zdrzeni pewne stosuje klsyczną definicję prwdopodobieństw do obliczni prwdopodobieństw zdrzeń losowych w prostych, typowych sytucjch podje rozkłd prwdopodobieństw dl rzutów kostką lub monetą oblicz prwdopodobieństwo zdrzeni przeciwnego stosuje twierdzenie o prwdopodobieństwie sumy zdrzeń w prostych sytucjch wykorzystuje kombintorykę do obliczni prwdopodobieństw zdrzeń losowych zpisuje zdrzeni w postci sumy, iloczynu orz różnicy zdrzeń oblicz prwdopodobieństw zdrzeń losowych, stosując klsyczną definicję prwdopodobieństw stosuje twierdzeni o prwdopodobieństwie sumy zdrzeń i różnicy zdrzeń stosuje włsności prwdopodobieństw do obliczni prwdopodobieństw zdrzeń Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące prwdopodobieństw przeprowdz dowody twierdzeń dotyczących prwdopodobieństw zdrzeń 3. STATYSTYKA oblicz średnią rytmetyczną, wyzncz medinę i dominntę oblicz średnią rytmetyczną, wyzncz medinę i dominntę dnych przedstwionych n digrmie w prostych przypdkch oblicz wrincję i odchylenie stndrdowe oblicz średnią wżoną liczb z podnymi wgmi oblicz średnią rytmetyczną, wyzncz medinę i dominntę dnych przedstwionych n digrmie wykorzystuje średnią rytmetyczną, medinę, dominntę i średnią wżoną do rozwiązywni zdń oblicz wrincję i odchylenie stndrdowe zestwu dnych przedstwionych w tbeli interpretuje średnią rytmetyczną, medinę, dominntę i średnią wżoną rozwiązuje zdni o zncznym stopniu trudności dotyczące sttystyki 4. STEREOMETRIA wskzuje w wielościnch proste prostopdłe, równoległe i skośne wskzuje w wielościnch rzut prostokątny dnego odcink określ liczbę ścin, wierzchołków i krwędzi grnistosłupów i ostrosłupów sporządz rysunek wielościnu wrz z oznczenimi oblicz pol powierzchni bocznej i cłkowitej grnistosłupów i ostrosłupów prostych rysuje sitkę grnistosłup lub ostrosłup prostego, mjąc dny jej frgment oblicz długości przekątnych grnistosłupów prostych w prostych przypdkch stosuje definicje i włsności funkcji trygonometrycznych do obliczni pól powierzchni grnistosłupów i ostrosłupów w prostych sytucjch 9

10 oblicz objętości grnistosłupów i ostrosłupów prwidłowych wskzuje kąt między przekątną grnistosłup płszczyzną podstwy tego grnistosłup wskzuje kąt między dnym odcinkiem w ostrosłupie płszczyzną podstwy tego ostrosłup wskzuje kąt między sąsiednimi ścinmi wielościnów rozwiązuje typowe zdni dotyczące kąt między prostą płszczyzną oblicz pol powierzchni i objętości brył obrotowych w prostych sytucjch wyzncz sklę podobieństw brył podobnych przeprowdz wnioskowni dotyczące położeni prostych w przestrzeni stosuje i przeksztłc wzory n pol powierzchni i objętości wielościnów oblicz pol powierzchni i objętości wielościnów z zstosowniem funkcji trygonometrycznych i twierdzeń plnimetrii wyzncz, w trudniejszych przypdkch, kąt między dnym odcinkiem w ostrosłupie płszczyzną podstwy tego ostrosłup rozwiązuje, w trudniejszych przypdkch, zdni z wykorzystniem miry kąt między prostą płszczyzną oblicz mirę kąt dwuściennego między ścinmi wielościnu oblicz pol powierzchni i objętości brył obrotowych z zstosowniem funkcji trygonometrycznych i twierdzeń plnimetrii wykorzystuje podobieństwo brył do rozwiązywni zdń rozwiązuje zdni o zncznym stopniu trudności dotyczące stereometrii przeprowdz dowody twierdzeń dotyczących związków mirowych w wielościnch i bryłch obrotowych 5. POWTÓRZENIE WIADOMOŚCI Wymgni dotyczące powtrznych widomości zostły opisne powyżej. 0

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk 2 Szczegółowe wymgni edukcyjne z mtemtyki w klsie drugiej Zkres podstwowy Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące,

Bardziej szczegółowo

Plan wynikowy z matematyki

Plan wynikowy z matematyki ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni

Bardziej szczegółowo

Plan wynikowy klasa 2. Zakres podstawowy

Plan wynikowy klasa 2. Zakres podstawowy Pln wynikowy kls Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące. SUMY ALGEBRAICZNE 0. Sumy

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Wyróżnione zostły

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III ZAKRES PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA prowdzi proste rozumownie skłdjące się z niewielkiej liczby kroków prowdzi rozumownie z wykorzystniem wzorów

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

MATeMAtyka 1-3 zakres podstawowy

MATeMAtyka 1-3 zakres podstawowy MATeMAtyk 1-3 zkres podstwowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych ( N podstwie przedmiotowego systemy ocenini wrz z określeniem wymgń edukcyjnych oprcownego przez Dorotę Ponczek

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy

Wymagania edukacyjne zakres podstawowy Złącznik nr 3 do PSO z mtemtyki, ZSP Nr 1 w Krośnie. Wymgni edukcyjne zkres podstwowy Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących swego

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

Wymagania na poszczególne oceny dla Technikum

Wymagania na poszczególne oceny dla Technikum Wymgni n poszczególne oceny dl Technikum Cły cykl ksztłceni: od I do IV ocen dopuszczjąc: Przedmiot: MATEMATYKA podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II 1.Sumy lgebriczne Mtemtyk wykz umiejętności wymgnych n poszczególne oceny KLASA II N ocenę dop: 1. Rozpoznwnie jednominów i sum lgebricznych 2. Oblicznie wrtości liczbowych wyrżeń lgebricznych 3. Redukownie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki. Klasa IIC. Rok szkolny 2013/2014. Poziom rozszerzony

Wymagania edukacyjne z matematyki. Klasa IIC. Rok szkolny 2013/2014. Poziom rozszerzony Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące poz

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Klasa pierwsza zakres rozszerzony. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje liczbę do odpowiedniego zbioru

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2 Wymgni egzmincyjne z mtemtyki. ls C. MATeMATyk. Now Er. y są ze sobą ściśle powiązne ( + + R + D + W), stnowiąc ocenę szkolną, i tk: ocenę dopuszczjącą () otrzymuje uczeń, który spełnił wymgni konieczne;

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2017/2018. Kryteria oceny

Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2017/2018. Kryteria oceny Wymgni progrmowe n poszczególne oceny w klsie I A LP, I B LP 07/08 Przygotowne w oprciu o propozycję Wydwnictw Now Er Kryteri oceny Znjomość pojęć, definicji, włsności orz wzorów objętych progrmem nuczni.

Bardziej szczegółowo

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw.

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw. FUNKCJA KWADRATOWA Moduł - dził - Lp Lp temt z.p. z.r. Zkres treści Wykres f() = 1 1 wykres i włsności f() =, gdzie 0 Przesunięcie wykresu f() = wzdłuż osi OX i OY /o wektor/ Postć knoniczn i postć ogóln

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,

Bardziej szczegółowo

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Marian Łuniewski MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Klasa 1 wymagania edukacyjne

Klasa 1 wymagania edukacyjne Klasa wymagania edukacyjne Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej MATeMAtyka wymagania edukacyjne Zakres podstawowy i rozszerzony Autorzy Dorota Ponczek, Karolina Wej Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO Pln wynikowy dostosowny jest do progrmu nuczni mtemtyki w szkole pondgimnzjlnej z zkresu ksztłceni podstwowego PROSTO DO MATURY (progrm nuczni

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i

Bardziej szczegółowo

szkicuje wykresy funkcji: f ( x)

szkicuje wykresy funkcji: f ( x) Wymgni edukcyjne z mtemtyki ls tps Zkres podstwowy Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące oziom Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I NAUCZYCIEL BARBARA PAPUSZKA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I KONTRAKT NAUCZYCIEL UCZEŃ 1. Uczeń zobowiązany jest do bycia przygotowanym na każdą lekcję tj. wymagane jest posiadanie

Bardziej szczegółowo

PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2016/17

PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2016/17 Przedmiot: Mtemtyk Kls: 2 Nuczyciel: Justyn Pwlikowsk Tygodniowy wymir godzin: 4 Progrm nuczni: 378/2/2013/2015 Poziom: podstwowy Zkres mteriłu wrz z przybliżonym rozkłdem terminów prc klsowych, sprwdzinów

Bardziej szczegółowo

WEWNĄTRZSZKOLNE ZASADY OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE

WEWNĄTRZSZKOLNE ZASADY OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE WEWNĄTRZSZKOLNE ZASADY OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Bczyńskiego W WARSZAWIE I. Wewnątrzszkolne Zsdy Ocenini z mtemtyki są zgodne z Wewnątrzszkolnym Oceniniem (WO) w ZESPOLE SZKÓŁ

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

Dział programowy: LICZBY RZECZYWISTE

Dział programowy: LICZBY RZECZYWISTE Ksztłcenie ogólne w zkresie podstwowym Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć edukcyjnych oprcowne n podstwie przedmiotowego

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2012/13

Zakres na egzaminy poprawkowe w r. szk. 2012/13 Zkres n egzminy poprwkowe w r. szk. 2012/13 /nuczyciel M.Ttr/ MATEMATYKA Kls II ZAKRES PODSTAWOWY Dził progrmu I. Plnimetri, cz. 1 Temt 1. Podstwowe pojęci geometryczne 2. Współliniowość punktów. Nierówność

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy. 1.Liczby rzeczywiste

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy. 1.Liczby rzeczywiste Wymgni edukcyjne mtemtyk kls 1 zkres podstwowy 1.Liczby rzeczywiste 1. Podwnie przykłdów liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz rozpoznwnie liczb wymiernych

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu Wymgni edukcyjne n poszczególne oceny Kls II - poziom rozszerzony I okres Plnimetri uzupełnienie z klsy I klsyfikuje trójkąty ze względu n miry ich kątów, stosuje twierdzenie o sumie mir kątów wewnętrznych

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era

Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era Ocena: dopuszczający dostateczny dobry bardzo dobry celujący Funkcja liniowa

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02 Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo