WARTOŚĆ PIENIĄDZA W CZASIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "WARTOŚĆ PIENIĄDZA W CZASIE"

Transkrypt

1 WARTOŚĆ PIENIĄDZA W CZASIE. PODSTAWOWE POJĘCIA Pieiądz, podobie jak ie doba (toway i usługi)) zieia swoją watość w czasie, co jest astępstwe zachodzących w sposób ciągły pocesów gospodaczych. Ziaie oże ulegać watość oiala pieiądza (p. deoiacja) albo jego watość eala (p. depecjacja, apecjacja). Depecjacja spadek siły abywczej pieiądza a skutek iflacji. Apecjacja wzost siły abywczej pieiądza a skutek deflacji. Poieważ w gospodace zazwyczaj występuje zjawisko depecjacji pieiądza ie powiie o być bezczyy, gdyż będzie to ziejszało jego siłę abywczą. ażdy posiadacz pieiądza powiie więc dążyć do jego zaagażowaia w pocesy gospodacze, co powio pzyczyić się do wzostu jego watości w czasie, a pzyajiej do zachowaia jego siły abywczej a dotychczasowy pozioie. Obliczaie watości pieiądza w czasie jest waże z tego powodu, że pieiądz jako ieik watości wszelkich działań gospodaczych, pozwala jedozaczie oceić efekty tej działalości. Podstawowy pojęcie jest w ty pzypadku stopa zwotu, któej ajlepiej zay pzypadkie jest stopa pocetowa. W dalszych ozważaiach będziey posługiwać się ty dugi okeśleie. Podstawowe okeśleia: watość początkowa (watość bieżąca), watość końcowa (watość pzyszła). Różica Z azywaa jest odsetkai.

2 Stopa pocetowa stosuek odsetek do watości początkowej wyażoy w odpowiediej jedostce czasu. Z Gdzie: okes iwestycji w latach. Uwaga! Powyższy wzó jest pawdziwy dla pocetu postego. Okes stopy pocetowej - czyli okes, za któy podao stopę pocetową, p. ocza, półocza, kwatala, iesięcza. W paktyce ajczęściej stopę pocetową podaje się za okesy ocze. Dalej będzie ozaczać oczą oialą stopę pocetową. Obliczaie watości pieiądza w czasie wiąże się ajczęściej z wykoywaie astępujących działań: obliczaie odsetek (opocetowaia lub pocetu), obliczaie watości pzyszłej, obliczaie watości bieżącej (zwae też dyskotowaie), któe jest ateatyczie opeacją odwotą do obliczaia watości pzyszłej. apitalizacja odsetek dopisywaie odsetek do kapitału za okeśloy czas zway okese kapitalizacji. Ze względu a oet dokoywaia kapitalizacji wyóżia się kapitalizację: z dołu odsetki są dopisywae a koiec okesu kapitalizacji, z góy odsetki są dopisywae a początek okesu kapitalizacji. 2

3 W paktyce częściej jest stosowaa kapitalizacja z dołu. Pzypadkie kapitalizacji z góy występujący w paktyce jest dyskoto lub edyskoto weksli. Dalej będzie ozpatywaa wyłączie kapitalizacja z dołu. W zależości od sposobu ustalaia odsetek, czyli ich wpływaia a watość odsetek w kolejych okesach kapitalizacji wyóżia się kapitalizację: postą, w któej odsetki aliczoe za day okes kapitalizacji ie są bae pod uwagę pzy obliczaiu odsetek w kolejy okesie kapitalizacji, złożoą, w któej odsetki aliczoe w day okesie kapitalizacji uwzględiae są pzy obliczaiu odsetek w kolejy okesie kapitalizacji. Ostati podział kapitalizacji a chaakte techiczy i wiąże się z pawidłowy obliczeie watości pzyszłej czy bieżącej. Jeżeli okes stopy pocetowej pokywa się z okese kapitalizacji, to występuje wówczas kapitalizacja zgoda, a jeżeli te okesy się ie pokywają, to występuje kapitalizacja iezgoda (p. stopa pocetowa w skali oku - okes kapitalizacji w iesiącach). Pzed obliczeie watości pieiądza ależy ajpiew ustalić, z któy odzaje kapitalizacji ay do czyieia, a astępie zastosować odpowiedi wzó.

4 2. PROCENT PROSTY Stosoway jest zazwyczaj do obliczaia watości pieiądza w czasie za kótkie okesy, ajczęściej do jedego oku. Pzykłade zastosowaia oże być odsetki od suy wekslowej, dyskoto weksli, opocetowaie od śodków a achukach bieżących itp. Podstawowe wzoy: P Z P ( + ) P + Jeżeli okes stopy pocetowej ie pokywa się z okese kapitalizacji wzoy ależy odpowiedio zodyfikować podstawiając za p.: t/2, jeżeli czas poday jest w iesiącach, t/6, jeżeli czas poday jest w diach. W pzypadku czasu podaego w diach ajczęściej stosuje się zeczywistą lub dokładą liczbę di, chociaż oża spotkać się z uposzczoy sposobe obliczaia zway zasadą ówych iesięcy, w któej każdy iesiąc a di a ok 6. W pzypadku okesu podaego za poocą dwóch dat początkową i końcową, pzy obliczaiu liczby di stosuje się ajczęściej zasadę, że jede z dwóch di gaiczych wlicza się do t, a dugą poija. 4

5 PRZYŁAD: Obliczyć watość pzyszłą oaz odsetki od kwoty 2 zł pzy stopie pocetowej 6,% w skali oku i okesie wyoszący: a) lat, b) 8 iesięcy, c) od styczia do 2 wześia (uwzględiając zeczywistą liczbę di w oku 6 di) d) od styczia do 2 wześia (uwzględiając zasadę ówych iesięcy). Rozwiązaie: a) P Z b) P Z c) 8/2 2 ( + 6,% ) % 7 8/2 8 2 ( + 6,% ) ,% 22 2 t di P Z d) 248/ 6 248/ ,% 26, ,% t+7x+224 P Z 24/ 6 24/ 6 2 6,% , ,% 262,8 6 2,8

6 . PROCENT ZŁOŻONY Obliczeie watości pzyszłej w pzypadku kapitalizacji złożoej wyaga uwzględieia odsetek obliczoych w popzedich okesach kapitalizacji pzy obliczaiu watości odsetek w kolejych okesach kapitalizacji. Moża do tego celu wykozystać wzó pozay pzy pocecie posty, ale obliczeia ależy pzepowadzać dla pojedyczych okesów kapitalizacji, a w kolejych bać pod uwagę watość końcową kapitału z okesu popzediego. Pzykład: Obliczyć watość pzyszłą kwoty zł za lat, jeżeli stopa pocetowa wyosi 6,% w skali oku a kapitalizacja jest złożoa z dołu. Rozwiązaie: 2 4 ( +,6) 6, 6 ( +,6) 26, 26 ( +,6) 9,6 9,6 ( +,6) 2 624, ,77 ( +,6) 82,26 Gdyby występowała kapitalizacja posta watość pzyszła kapitału wyiosłaby P x(+x,6). Różica iędzy watością pzyszłą pzy kapitalizacji złożoej a watością pzyszłą pzy kapitalizacji postej jest wyikie aliczaia w okesach 2,, 4 i odsetek ie tylko od kapitału początkowego, ale także od aosłych odsetek. 6

7 Watość pzyszłą pzy kapitalizacji złożoej z dołu oża obliczyć za poocą wzou: ( ) + Rozwiązaie pzykładu: ( +,6) 82,26 Wzó a watość bieżącą kapitału pzy kapitalizacji złożoej zgodej: ( + ) ( + ) Wzó a obliczeie stopy pocetowej: Pzykład: Pzy jakiej stopie pocetowej kapitał początkowy po latach potoi swoją watość, jeżeli zastosowao odel kapitalizacji złożoej.,247 24,7% 7

8 8 Jeżeli kapitalizacja jest iezgoda, to odpowiedie wzoy będą iały astępującą postać: + + W kapitalizacji iezgodej złożoej waży paaete jest, któy ozacza częstotliwość kapitalizacji dokoywaej w ciągu oku (zakłada się, że ok jest dzieloy a ówe okesy). Jeżeli: 2, to kapitalizacja jest półocza, 4, to kapitalizacja jest kwatala, 2, to kapitalizacja jest iesięcza, 6, to kapitalizacja jest dziea itd.

9 Pzykład: Obliczyć watość pzyszłą kwoty 2zł po latach pzy stopie pocetowej 4,% w skali oku i kapitalizacji złożoej: a) oczej, b) półoczej, c) kwatalej, d) iesięczej. Rozwiązaie: a) ( +,4) 2829, 2 b) 2 2, c) 4 4, d) 2 2, ,6 289, ,2 I większa częstotliwość kapitalizacji złożoej iezgodej (z dołu), ty watość końcowa kapitało (czy odsetek) będzie wyższa pzy pozostałych paaetach bez zia. 9

10 4. EFETYWNA I REALNA STOPA PROCENTOWA Efektywa stopa pocetowa pozwala a poówywaie ze sobą óżych iwestycji o odieych paaetach kapitalizacji złożoej, tz. o óży i. Efektywa stopa pocetowa ocza oiala stopa pocetowa uwzględiająca kapitalizacje dokoywae w ciągu oku. Odpowiada astępującej zależości: ef ( + ef ) + + Pzykład: tóa z poiższych lokat bakowych jest ajkozystiejsza: a) 8,% pzy 2, b) 8,% pzy 6, c) 7,9% pzy 2. Rozwiązaie: a) ef b) ef c) + +,8 2, ,826 8,26%,827 8,27% ef +,79 2 2,89 8,9% Najkozystiejsza jest lokata b), gdyż uzyskała ajwyższą watość efektywej stopy pocetowej.

11 Pzy poówywaiu óżych waiatów lokat pzy kapitalizacji złożoej ie a zaczeia paaet. Jeżeli lokata (iwestycja) jest ajbadziej opłacala dla piewszego oku lub dowolego iego, będzie zawsze ajkozystiejsza. Natoiast pzy poówywaiu iwestycji z kapitalizacją postą i złożoą ależy obliczyć watość pzyszłą dla okeśloego. Dla iego odpowiedź oże być odiea. Wyika to z pzyostu odsetek, któe w pocecie posty pzyastają liiowo, a w pocecie złożoy w postępie geoetyczy. Reala stopa pocetowa jest to stopa efektywa (lub oiala) skoygowaa o iflację. Podstawowy wzó a ealą stopę pocetową pzedstawia się astępująco: e ef i + i Gdzie: i ocza stopa iflacji, ef efektywa stopa pocetowa (ocza). Liczik wzou koyguje dochód o iflację, atoiast iaowik jest idekse koygujący o iflację kapitał początkowy, gdyż także o podlega depecjacji.

12 Pzykład: Obliczyć oczą, ealą stopę pocetową, jeżeli okes iwestycji wyosił lat, a kapitał początkowy w ty okesie zwiększył się czteokotie pzy oczej kapitalizacji złożoej. Iflacja w ty okesie wyiosła w kolejych latach:,2%,,9%,,%,,8% i 4,2%. Rozwiązaie: obliczay oczą, pzeciętą stopę pocetową: 4,9,9% obliczay oczą pzeciętą stopę iflacji kozystając ze wzou a śedią geoetyczą: i (,2)(,9)(,)(,8)(,42),72,72% ocza, eala stopa zwotu wyosi: e,9,72 +,72, ,22% 2

13 . Płatości Pzez płatości ależy ozuieć okeśloą liczbę wpłat (wypłat) dokoywaych w jedakowy odstępie czasu (okesy płatości) w stałej lub óżej wysokości. Płatości ogą być dokoywae: z góy, czyli a początek okesu płatości lub z dołu, czyli a koiec okesu płatości. Watość pzyszłą płatości zgodych, czyli takich, w któych okes stopy pocetowej pokywa się z okese kapitalizacji oaz okese płatości, oblicza się według astępujących wzoów: FVA FVA G D ( + ) A ( + ) ( + ) A Watość bieżącą płatości zgodych oblicza się według astępującego wzou: PVA PVA G D A ( + ) ( + ) A ( + ) ( + ) ( + )

14 ZADANIA: ) Ustalić sta książeczki oszczędościowej po latach, jeżeli dokoao w iej astępujących opeacji fiasowych: a początku wpłacoo 2 zł, po czteech latach wpłacoo zł, po astępy oku wypłacoo zł. Rocza stopa pocetowa wyosi 2% i kapitalizacja jest złożoa ocza z dołu. 2) Wyzaczyć pzyszłą watość kwoty zł po upływie lat, jeżeli podlega oa opocetowaiu wg oczej stopy pocetowej 9% pzy kapitalizacji złożoej z dołu: a) oczej, b) półoczej, c) iesięczej. ) W baku, w któy obowiązuje ocza kapitalizacja złożoa z dołu, kapitał zł utwozył po oku watość 6 zł. Ile zyskałby właściciel kapitału w ciągu kolejych 2 lat, gdyby pzy ie zieioej oczej stopie wpowadzoo kapitalizację kwatalą? 4) Jaka jest ocza stopa pocetowa, jeżeli pzy kwatalej kapitalizacji złożoej z dołu kapitał podwoił swoją watość po latach? ) Bak stosuje astępujące ocze stopy pocetowe dla lokat złotówkowych: Czas lokaty w iesiącach,% 6 6,9% 2,2% Odsetki są dopisywae do kapitału po deklaoway okesie twaia lokaty. Niepodjęcie kapitału po okesie deklaoway jest ówoważe jego wpłacie a astępy taki sa okes. Wybać ajkozystiejszy waiat ulokowaia zł a 2 lata. 6) Jaka jest ocza stopa pocetowa, jeżeli pzy kapitalizacji złożoej iesięczej z dołu z kapitału zł po iesiącach uzyskao watość zł? 7) Po 2 latach i iesiącach kwatalej kapitalizacji złożoej z dołu kwota zł wzosła dwukotie. Jaką watość osiągie ta kwota po kolejy oku? 8) W baku, w któy kapitalizacja jest złożoa z dołu dwuiesięcza, po 4 iesiącach z kwoty zł uzyskao 7 zł. Jaką watość osiągie ta kwota po dalszych 2 latach? 9) Do baku wpłacoo 2 zł. Pzez piewsze lata obowiązywała ocza kapitalizacja złożoa z dołu z oczą stopą pocetową 2%, a pzez astępe 2 lata kwatala kapitalizacja złożoa z dołu z oczą stopą pocetową 9%. Wyzaczyć watość tego kapitału po latach. ) Pzez koleje lata ocza stopa pocetowa pzyjowała watości odpowiedio:,%,,2%, 4,%. Wyzaczyć watość odsetek za okes lat od kwoty zł oaz pzeciętą stopę pocetową, jeżeli bak stosował oczą kapitalizację złożoą z dołu. 4

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE

WARTOŚĆ PIENIĄDZA W CZASIE WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość

Bardziej szczegółowo

MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku.

MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku. MATEMATYA FIASWA Rachuek osetek postych Wykozystyway w okesie kótki o 1 oku Wzó oóly * * t Wzó pzy uwzlęieiu oiesieia czasoweo t * * t * T p. w pzypaku okesu zieeo t * * 360 Zaaie 1 jakiej kwoty otzyao

Bardziej szczegółowo

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 -

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 - Zdyskotowae pzepływy pieięŝe - Pzepływy pieięŝe płatości ozłoŝoe w czasie - Pzepływy występujące w kilku óŝych okesach ie są poówywale z uwagi a zmiaę watość pieiądza w czasie - śeby poówywać pzepływy

Bardziej szczegółowo

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę).

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę). 3 WARTOŚĆ PIENIĄDZA W CZASIE Ziea watość pieiądza w czasie to ieodłączy atybut pieiądza właściwy ie tylko aszy czaso W teoii fiasów, okesowe płatości azywa się stuieie pieiędzy, pzepływe pieiędzy lub z

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P WIADOMOŚCI WSTĘPNE Odsetki powstają w wyiku odjęcia od kwoty teaźiejszej K kwoty początkowej K 0, zate Z = K K 0. Z ekooiczego puktu widzeia właściciel kapitału K 0 otzyuje odsetki jako zapłatę od baku

Bardziej szczegółowo

METODY ILOŚCIOWE Matematyka finansowa wykłady 1-2-3

METODY ILOŚCIOWE Matematyka finansowa wykłady 1-2-3 Dwusemestale studium podyplomowe ANALITYK FINANSOWY METODY ILOŚCIOWE Matematyka fiasowa wykłady --3 d Kzysztof Piotek Kateda Iwestycji Fiasowych i Zaządzaia Ryzykiem Uiwesytet Ekoomiczy we Wocławiu Metody

Bardziej szczegółowo

Wartość pieniądza w czasie (Value of money in time)

Wartość pieniądza w czasie (Value of money in time) WRTOŚĆ PIENIĄDZ W CZSIE FINNSE I ROBERT ŚLEPCZUK Watość pieiądza w czasie (Value of oey i tie - futue value - watość pzyszła, PV - peset value - watość bieżąca, - stopa pocetowa, - ilość kapitalizacji

Bardziej szczegółowo

Spłata długów. Rozliczenia związane z zadłużeniem

Spłata długów. Rozliczenia związane z zadłużeniem płata długów Rozliczeia związae z zadłużeiem Źódła fiasowaia Źódła fiasowaia Kapitał własy wkład właściciela, wpłaty udziałowców, opłaty za akcje, wkład zeczowy, apot. Kapitał obcy kedyty, pożyczki, ie

Bardziej szczegółowo

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Źródła finansowania i ich koszt

Źródła finansowania i ich koszt Źódła fiasowaia i ich koszt Kapitalizacja i dyskoto: k K K0 (1 ) ; 1 ; k 0 k log k0 log 1 efektywa stopa pocetowa; 1 1 Stałe płatości (ety): ef m m ; K o K 1 (1 ) (pzy płatościach częstszych iż ocze) 1

Bardziej szczegółowo

Uniwersytet Technologiczno- Humanistyczny w Radomiu Radom 2013

Uniwersytet Technologiczno- Humanistyczny w Radomiu Radom 2013 Uiwesytet Techologiczo- Huistyczy w Rdoiu Rdo 3 Podstwy tetyki fisowej D Zbigiew Śleszyński ted Bizesu i Fisów Międzyodowych Wydził kooiczy tudi podyploowe OWOCZ UŁUGI BIZOW Teść wykłdu: Powtók z tetyki

Bardziej szczegółowo

Elementy matematyki finansowej

Elementy matematyki finansowej Elmty matmatyki fiasowj RZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Elmty matmatyki fiasowj Wykład: Elmty Matmatyki Fiasowj la Wykładu Tmat: Elmty matmatyki fiasowj Zaczi czasu w oci fktywości iwstycji

Bardziej szczegółowo

Zmiana wartości pieniądza

Zmiana wartości pieniądza Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Definicje i charakteryzacja mierników efektywności finansowych:

Definicje i charakteryzacja mierników efektywności finansowych: Defiicje i chaakteyzacja mieików efektywości fiasowych: Iwestycja fiasowa akład dający iwestoowi możliwości uzyskaia w pzyszłości dodatich pzepływów fiasowych Mieiki efektywości iwestycji fiasowych:. Stopą

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

PROJEKT: GNIAZDO POTOKOWE

PROJEKT: GNIAZDO POTOKOWE POLITEHNIK POZNŃSK WYZIŁ UOWY MSZYN I ZZĄZNI ZZĄZNIE POUKJĄ GUP ZIM-Z3 POJEKT: GNIZO POTOKOWE WYKONWY: 1. TOMSZ PZYMUSIK 2. TOMSZ UTOWSKI POWZĄY: Mg iż. Maiola Ozechowska SPIS TEŚI OZZIŁ 1. Wpowadzeie.

Bardziej szczegółowo

ANALIZA BRYTYJSKIEGO RYNKU RENT HIPOTECZNYCH EQUITY RELEASE ORAZ KALKULACJA ŚWIADCZEŃ DLA POLSKICH ROZWIĄZAŃ Z WYKORZYSTANIEM RACHUNKU RENT ŻYCIOWYCH

ANALIZA BRYTYJSKIEGO RYNKU RENT HIPOTECZNYCH EQUITY RELEASE ORAZ KALKULACJA ŚWIADCZEŃ DLA POLSKICH ROZWIĄZAŃ Z WYKORZYSTANIEM RACHUNKU RENT ŻYCIOWYCH Batosz Lawędziak Uiwesytet Ekoomiczy w Katowicach Wydział Ekoomii Kateda Metod Statystyczo-Matematyczych w Ekoomii batoszlaw@ue.katowice.pl ANALIZA BRYTYJSKIEGO RYNKU RENT HIPOTECZNYCH EQUITY RELEASE ORAZ

Bardziej szczegółowo

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE. uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE 4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Rodzajowy rachunek kosztów Wycena zuŝycia materiałów

Rodzajowy rachunek kosztów Wycena zuŝycia materiałów Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Tradycyjne mierniki ryzyka

Tradycyjne mierniki ryzyka Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Składka ubezpieczeniowa

Składka ubezpieczeniowa Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

n liczba lat m liczba okresów kapitalizacji w ciągu roku ile razy doliczane są odsetki do kwoty kapitału

n liczba lat m liczba okresów kapitalizacji w ciągu roku ile razy doliczane są odsetki do kwoty kapitału pst valu watość biŝąca watość jdostki piięŝj lub pzpływów fiasowych (wpływów lub wydatków, któ zostaą zalizowa/otzya w pzyszłych oksach wyaŝoa w dzisijszj sil abywczj jdostk piięŝych. Watość ta jst ijsza

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Współpraca przedsiębiorstwa z bankiem dr Robert Zajkowski Katedra Bankowości UMCS w Lublinie

Współpraca przedsiębiorstwa z bankiem dr Robert Zajkowski Katedra Bankowości UMCS w Lublinie Współpaca pzedsębostwa z bake d Robet Zajkowsk ateda Bakowośc UMC w Luble www.obet.zajkowsk.ucs.lubl.pl obet.zajkowsk@ucs.lubl.pl Gaść foacj [] osultacje: czwatek :00-4:0 pok. 707 Pzeoszee osoba za osobę

Bardziej szczegółowo

Zarządzanie finansami

Zarządzanie finansami STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ W POZNANIU Zarządzaie fiasami DR LESZEK CZAPIEWSKI - POZNAŃ - WARTOŚĆ PIENIĄDZA W CZASIE Pieiądze posiadają określoą wartość. Wartość w diu dzisiejszym omialej

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE 4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Wartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA *

Wartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA * ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO n 786 Finanse, Rynki Finansowe, Ubezpieczenia n 64/1 (2013) s. 269 278 Watości wybanych pzedsiębiostw góniczych pzy zastosowaniu EVA * Adam Sojda ** Steszczenie:

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

30 Matematyka finansowa i bankowa

30 Matematyka finansowa i bankowa 30 Matematyka fiasowa i bakowa koszty admiistrowaia, koszty koserwacji, koszty utrzymaia techiczego budyku, koszty utrzymaia pomieszczeń wspólych op laty za utrzymaie czystości, eergiȩ elektrycz a i ciepl

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart * A C T A N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014 Toasz Zapart * CZYNNIKI WPŁYWAJĄCE NA WSKAŹNIK SZKODOWOŚCI ZE SZCZEGÓLNYM WZGLĘDNIENIEM BEZPIECZENIA FLOTY POJAZDÓW 1.

Bardziej szczegółowo

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego .Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Trójparametrowe formowanie charakterystyk promieniowania anten inteligentnych w systemach komórkowych trzeciej i czwartej generacji

Trójparametrowe formowanie charakterystyk promieniowania anten inteligentnych w systemach komórkowych trzeciej i czwartej generacji Zakład Zastosowań Techik Łączości lektoiczej (Z ) Tójpaametowe fomowaie chaakteystyk pomieiowaia ate iteligetych w systemach komókowych tzeciej i czwatej geeacji Paca : 35 Waszawa, gudzień 5 Tójpaametowe

Bardziej szczegółowo

o zmianie ustawy o finansach publicznych oraz niektórych innych ustaw.

o zmianie ustawy o finansach publicznych oraz niektórych innych ustaw. SENAT RZECZYPOSPOLITEJ POLSKIEJ VIII KADENCJA Warszawa, dia 12 listopada 2013 r. Druk r 487 MARSZAŁEK SEJMU RZECZYPOSPOLITEJ POLSKIEJ Pa Bogda BORUSEWICZ MARSZAŁEK SENATU RZECZYPOSPOLITEJ POLSKIEJ Zgodie

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Chemiczne metody analizy ilościowej (laboratorium)

Chemiczne metody analizy ilościowej (laboratorium) Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay

Bardziej szczegółowo

O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA. 1. Wstęp

O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA. 1. Wstęp B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2007 Bogusław GUZIK* O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA W klasyczych wariatach etody DEA (p. CCR czy super-efficiecy

Bardziej szczegółowo

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE Edyta Macinkiewicz Kateda Zaządzania, Wydział Oganizacji i Zaządzania Politechniki Łódzkiej e-mail: emac@p.lodz.pl BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA 1. ZAMAWIAJĄCY TALEX S.A., ul. Karpia 27 d, 61 619 Pozań, e mail: cetrumit@talex.pl 2. INFORMACJE OGÓLNE 2.1. Talex S.A. zaprasza do udziału w postępowaiu przetargowym,

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ Nr 573 Ekoomia XXXIX 2001 BŁAŻEJ PRUSAK Katedra Ekoomii i Zarządzaia Przedsiębiorstwem METODY OCENY PROJEKTÓW INWESTYCYJNYCH Celem artykułu jest przedstawieie metod

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Wstęp Celem wykładu jest przedstawienie podstawowych pojęć oraz zaleŝności z zakresu zarządzania finansami w szczególności

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska Prace domowe z matematyki Semestr zimowy 2010/2011 Zoa Zieli«ska-Kolasi«ska 5 pa¹dzierika 2010 Rozdziaª 0 Uwagi Prace domowe ie s obowi zkowe aczkolwiek zach cam gor co do ich robieia i oddawaia mi a kartkach.

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekoomisty Mieriki wzrostu gospodarczego dr Baha Kaliowska-Sufiowicz Uiwersytet Ekoomiczy w Pozaiu 7 marca 2013 r. Ayoe who believes that expotetial growth ca go o for ever i a fiite world

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, techologa oaz modelowae wzostu kyształów Stasław Kukowsk Mchał Leszczyńsk Istytut Wysokch Cśeń PA 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@upess.waw.pl, mke@upess.waw.pl Zbgew

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

Andrzej Pogorzelski Materiały pomocnicze do studiowania przedmiotu FINANSE PRZEDSIEBIORSTWA

Andrzej Pogorzelski Materiały pomocnicze do studiowania przedmiotu FINANSE PRZEDSIEBIORSTWA . CHARAKTERYSTYKA PIENIĄDZA JAKO TWORZYWA FINANSÓW.. Fukcje pieiądza Najwygodiejszym sposobem defiiowaia pieiądza jest wymieieie jego główych, klasyczych fukcji. I tak pieiądz jest: mierikiem wartości

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Istytut Elektroeergetyki, Zakład Elektrowi i Gosodarki Elektroeergetyczej Ekoomika wytwarzaia, rzetwarzaia i uŝytkowaia eergii elektryczej - laboratorium Istrukcja do ćwiczeia t.:

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r.

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia 18 paździerika 2012 r. w sprawie szczegółowego zakresu obowiązków uzyskaia

Bardziej szczegółowo

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice opracował: prof. dr hab. iż. Józef Paska, mgr iż. Pior Marchel POLITECHNIKA WARSZAWSKA Isyu Elekroeergeyki, Zakład Elekrowi i Gospodarki Elekroeergeyczej Ekoomika w elekroechice laboraorium Ćwiczeie r

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo