Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)"

Transkrypt

1 Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay z liczby, Potrafi obliczyć trudiejsze graice związae z e. Cele operacyje: Uczeń Umie w przybliżeiu podać wartość stałej Eulera, Oblicza złożoe graice, Umie przekształcić fukcję wykładiczą a fukcję logarytmiczą, Stosuje pozae wzory w trudiejszych zadaiach, Doskoali umiejętości korzystaia z kalkulatora matematyczego lub tablic matematyczych, Uświadamia sobie istotość czasu i oprocetowaia dla fukcji oszczędzaia. Pozaje dodatkowe wzory przydate przy działaiach a logarytmach. Zasady auczaia: Świadomego i aktywego udziału uczia w procesie auczaia i uczeia się, Przystępości, Wiązaia teorii z praktyką, Systematyczości. Metody pracy: Pogadaka dyskusja, Metoda poszukująca, Ekspoująca iterdyscypliarość matematyki (oraz jej pięko). Formy pracy Praca w zespole klasowym, Praca samodziela. Środki pracy Kartki z zadaiami, Rzutik cyfrowy (ewetuala prezetacja rozwiązań z zał. 2.).

2 Wprowadzeie N: Prosi o przypomieie wzoru a procet składay, defiicję logarytmu, graicy, oraz sam podaje przykłady obliczeia logarytmów i graic. U: Przypomiają wzór, defiicję oraz podają przykłady. N: Pogadaka a temat istotości oszczędzaia, oraz sposobów a powiększeie efektywości oszczędzaia. U: Odpowiadają, dlaczego warto oszczędzać. I jakie są ajpopulariejsze sposoby oszczędzaia. Część główa N: Rozdaje kartki z zadaiami. Zad 1. Paradoks skąpej wdowy. U: Ucziowie starają się samodzielie rozwiązać zapropoowae przez auczyciela zadaie. O ile ie było wcześiej defiicji fukcji e, ależy pomóc ucziom w obliczeiu graicy. N: Dyskutuje z ucziami istotę paradoksu. U: Wyciągają wioski dotyczące paradoksu. Np. Mimo posiadaych ituicji praktyka moco rozmięła się oczekiwaiami. N: Zad 2. Skąpa wdowa kotratakuje. U: U już samodzielie rozwiązują zadaie posiłkując się pomocą auczyciela i rozwiązaiem zad 1. N: Dyskusja sposobu myśleia wdowy. U: Ucziowie wyciągają wioski, p. ituicja, że procet w baku musi być jak ajwiększy jest poprawa. N: Zad. Czyżby wdowa zmądrzała? U: Samodzielie rozwiązują zadaie posiłkując się wcześiejszym rozwiązaiem (jest to zadaie tylko pozorie trudiejsze iż poprzedie). N: Dyskusja sposobu myśleia wdowy. U: Ucziowie wyciągają wioski, p. ilość lat ma zaczący wpływ a wysokość zgromadzoego kapitału. N: Zad 4. Droga do milioa. U: Samodzielie rozwiązują zadaie. N: Dyskusja sposobu myśleia wdowy oraz sposobem rozwiązaia zadaia. Po rozwiązaiu zadaia podaie ciekawostki przez auczyciela. U: Ucziowie wyciągają wioski, p. im wyższy procet tym większy kapitał będziemy uzyskamy, przy zbyt iskich odsetkach założoy cel może stać się bardzo odległy. N: Zad 5. Droga do milioa. U: Samodzielie rozwiązują zadaie. N: Dyskusja sposobu myśleia wdowy oraz sposobem rozwiązaia zadaia. U: Ucziowie wyciągają wioski, p. jeżeli ie mamy możliwości regulacji odsetek, pozostaje am regulacja ilości lat. Im więcej lat będzie działał asz procet składay tym większy będzie asz kapitał.

3 Podsumowaie lekcji. N: Podsumowuje lekcję kładąc szczególy acisk a owo pozae wzory potrzebe do obliczaia graic oraz zastosowaie matematyki do rozwiązywaia problemów stricte ekoomiczych. U: Aktywie uczesticzą w pogadace. Praca domowa W drodze do domu zajść do baku i zapytać się o oprocetowaie a kocie oszczędościowym. Czy przy ieskończeie częstej kapitalizacji uda się z 1500 zł w krócej iż 25 lat uzyskać 750 tys. zł? Porówaj kilka baków. Sprawdź, jakie oprocetowaie było by wystarczające. Udowodij tożsamość z ciekawostki 1 (wskazówka: skorzystaj ze wzoru a zamiaę podstawy logarytmu)

4 Załączik 1 (Karta z zadaiami) Zad 1 (Paradoks skąpej wdowy) Żyła sobie kiedyś pewa bardzo skąpa wdowa z kapitałem początkowym A. Wiedziała oa, że pieiędzy w skarpecie ie przybędzie, więc postaowiła, że odda swoje oszczędości do baku. Ale to ie mógł być zwykły bak! Nie dla chytrej wdowy, która tak dobrze za matematykę. Wdowa pomyślała: skoro zam wzór a procet składay i zależy o tylko od oprocetowaia, ilości lat oraz ilości kapitalizacji oddam do takiego baku, gdzie te zmiee są jak ajwiększe (oprócz ilości lat musi wystarczyć 1 rok). Chodziła, więc od baku do baku szukając odpowiediego miejsca. Zalazła bak, w którym oprocetowaie wyosi 100%. Teraz pozostała kwestia wyegocjowaia częstotliwości kapitalizacji w ciągu jedego roku. Wdowa wyegocjowała ajpierw kapitalizację co pół roku. Następie co kwartał, dalej, co miesiąc, tydzień, dzień, godzię, miutę. Ostateczie jej kapitał kapitalizować się będzie tak często jak często kasjer może wciskać eter. Wdowa wykrzykęła: TERAZ BĘDĘ BOGATA!! Czy wdowa rzeczywiście dobrze zała się a matematyce? Zad 2 (Skąpa wdowa kotratakuje) Wdowa pomyślała sobie tak: skoro bak mie oszukał to poszukam takiego, w którym jest troszkę miejszy procet i kapitalizacja ieskończeie częsta w ciągu roku. No i zalazła taki bak, w którym procet wyosił 80% wraz z odpowiadającą jej kapitalizacją. Oddała w ręce bakierów swój kapitał, B i pozostało jej tylko czekać. No ciekawe czy zowu uda im się mie oszukać!! wykrzykęła a koiec. Zad. (Czyżby wdowa zmądrzała?) Oszukali mie!! Jak mogli?? Teraz zostawię mój kapitał C a kilka lat. Niech będzie a lata w tym samym baku i a takich samych warukach. Co powiecie teraz?! Czy wdowa zmądrzała? Zad 4. (Droga do milioa) Wdowa zadowoloa wykrzykęła już odkryłam potęgę procetu składaego!! Ciekawe a ile lat muszę zostawić 1 tys. zł, aby przy tych samych warukach uzyskać milio złotych? Po ilu latach wdowa miałaby milio gdyby odsetki były bardziej reale tz. p. 6%? Zad 5 (Droga do milioa) Przy jakich odsetkach wdowa z 1 tys. zł uzyska milio złotych w ciągu 25 lat?

5 Załączik 2 (rozwiązaia) Rozwiązaie 1 Z waruków zadaia mamy: 1 Kapitał końcowy Akońońco = A 1 + gdzie jest ilością kapitalizacji w ciągu roku, a liczik ułamka jest oprocetowaiem (100% = 1). Możemy przyjąć, że liczba okresów kapitalizacji dąży do ieskończoości (w końcu asza wdowa długo szukała odpowiediego baku). Zapiszmy, więc po raz kolejy asz wzór, tym razem używając ciągu. Skorzystajmy rówież z własości graicy i obliczymy wartość ciągu. 1 Akońońco A A 1 = 1 + = + = A e 1. Dla przypomieia: poday ciąg zbiega do e. Stałej Eulera będącej częściej spotykaą, jaka podstawa logarytmu aturalego. W przybliżeiu e wyosi 2, Więc asza wdowa pomożyła swój kapitał miej iż trzykrotie. Czy a pewo tego się spodziewaliście? Odp. Wdowa ie zała się a matematyce tak dobrze jak sądziła. Uzyskała stopę zwrotu ok. 272% kapitału początkowego. Rozwiązaie 2 Kapitał początkowy B Odsetki r = 80% = 0, 8 Kapitał końcowy Bkońońco = B 1 + gdzie jest ilością kapitalizacji w ciągu roku. Zowu możemy przyjąć, że liczba okresów kapitalizacji dąży do ieskończoości. Zapiszmy asz wzór i obliczmy wartość kapitału końcowego. Bkońońco B B = + = + 1 = B e B 1 2, Gdy pod zakiem ciągu zmiea (w tym przypadku ) zajduje się w licziku, w graicy zajdzie się w wykładiku potęgi o podstawie e. A więc ogólie: r r 1 + = e Odp. Wdowa po raz kolejy ie spełiła swoich marzeń odośie kapitału. Stopa zwrotu 226% kapitału początkowego jest miejsza iż w zadaiu 1. Rozwiązaie Kapitał początkowy C Odsetki r = 80% = Ilość lat m = Aalogiczie, jedak korzystając już z pełego wzoru a procet składay:

6 1 C 1 końońco = C + = C + Przyjmując, że liczba okresów kapitalizacji dąży do ieskończoości otrzymujemy: C końońco = C 1 + = C 1 + = C = C 2,4 = C e = C e 4, C Gdy dodatkowo asz ciąg mamy podiesioy do jakiejś potęgi (w tym przypadku o wykładiku ) w wyiku otrzymujemy e podiesioe do tej potęgi. A więc ogólie: m 1 + ( e ) r r m 1+ = e Odp. Wdowa wykazała więcej rozsądku zostawiając kapitał a dłuższy czas. 421% Związae jest bezpośredio z okresem lat poświęcoych a czekaie. = Rozwiązaie 4 Kapitał początkowy 1 tys. zł =1 000 zł =10 Odsetki r = 80% = Ilość lat m = 10 e e m m 6 = = 10 = 10 m m l10 10 = 10 = 10 = m l10 = m l10 = m 6, m m 8, m = 10 ( e ) m Odp. Wdowa przy tak dużych odsetkach już po 8 latach Przypadek dla odsetek r = 6% = 0,06. Tok myśleia aalogiczy do pokazaego wyżej. m = m m l10 0,06 6, ,06 115,

7 Odp. Już po 116 latach (!!) od założeia takiej lokaty będzie moża mówić o iej: Prawdziwa milioerka Ciekawostka 1 Zachodzi tożsamość: Lub ogóliej Ciekawostka 2 Zachodzi tożsamość: log e l10 = 1 log x log a = 1 a a log x b x = b log x a Rozwiązaie 5 Kapitał początkowy 1 tys. zł =1 000 zł =10 Odsetki r Ilość lat m = 25 Aalogicze rozumowaie doprowadza do rówaia: 0 = 10 e r l10 = 0r l10 = r 0 6, m 0 m 0, Odp. Oprocetowaie ok. 2 % pozwoli w ciągu 0 lat uzbierać wdowie milio.

8 Bibliografia: Praca zbiorowa pod redakcją Witolda Mizerskiego, Tablice matematycze, Wydawictwo Adamat, Warszawa 2002 G. M. Fichteholz, Rachuek różiczkowy całkowy, PWN, Warszawa 1999 G. Gabor, Wykład Aaliza matematycza 1 dla kieruku Nauczaie matematyki i fizyki, UMK, Toruń 2005

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska Prace domowe z matematyki Semestr zimowy 2010/2011 Zoa Zieli«ska-Kolasi«ska 5 pa¹dzierika 2010 Rozdziaª 0 Uwagi Prace domowe ie s obowi zkowe aczkolwiek zach cam gor co do ich robieia i oddawaia mi a kartkach.

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

AUDYT SYSTEMU GRZEWCZEGO

AUDYT SYSTEMU GRZEWCZEGO Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Cztery lokaty Zadanie Którą lokatę wybrać?

Cztery lokaty Zadanie Którą lokatę wybrać? Marian Maciocha Cztery lokaty Zadanie Którą lokatę wybrać? Chcemy ulokować 1000 zł na cztery miesiące i mamy do wyboru cztery propozycje: Propozycja 1: Lokata z oprocentowaniem 4% w skali roku. Odsetki

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków Ku chwale ierówości Sebastia Lisiewski 25 lutego 200 XXVII Ogólopolski Sejmik Matematyków VIII Liceum Ogólokształcące im. Marii Skłodowskiej- Curie w Katowicach ul. 3-go Maja 42 40-097 Katowice Opiekuowie

Bardziej szczegółowo

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA SPIS TREŚCI Rozdział I O egzamiie... Rozdział II Elemety matematyki fiasowej dr hab. Michał Szurek... 6 Rozdział III Wzory... 9 Rozdział

Bardziej szczegółowo

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA SPIS TREŚCI Rozdział I O egzamiie... Rozdział II Elemety matematyki fiasowej dr hab. Michał Szurek... 6 Rozdział III Wzory... 9 Rozdział

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Konspekt do lekcji matematyki w klasie I

Konspekt do lekcji matematyki w klasie I Konspekt do lekcji matematyki w klasie I Prowadzący: Edyta Pikor Miejsce: Publiczne Gimnazjum w Jacie Temat lekcji: O ile procent więcej, o ile procent mniej. Punkty procentowe. Cel główny: Poznanie podstawowych

Bardziej szczegółowo

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2.

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2. Katarzya JARZYŃSKA ABB Sp. z o.o. PRODUKTY NISKONAPIĘCIOWE W INSTALACJI PV Streszczeie: W ormalych warukach pracy każdy moduł geeruje prąd o wartości zbliżoej do prądu zwarciowego I sc, który powiększa

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie

SCENARIUSZ LEKCJI. kategoria B zrozumienie SCENARIUSZ LEKCJI 1. Informacje wstępne: Data: 12.11.2012 Klasa: I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki

Bardziej szczegółowo

Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie

Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie Temat: Obliczanie procentu danej liczby z wykorzystaniem sytuacji praktycznych. Klasa VI szkoły

Bardziej szczegółowo

Scenariusz lekcji. Tytuł lekcji Lokaty bankowe (2 jednostki lekcyjne) Data i miejsce realizacji Maj 2015, Zespół Szkół w Wielgolesie

Scenariusz lekcji. Tytuł lekcji Lokaty bankowe (2 jednostki lekcyjne) Data i miejsce realizacji Maj 2015, Zespół Szkół w Wielgolesie Scenariusz lekcji Autor/ka / Autorzy: Lidia Parobczyk Trenerka wiodąca: Olga Wieczorek-Trzeciak Tytuł lekcji Lokaty bankowe (2 jednostki lekcyjne) Data i miejsce realizacji Maj 2015, Zespół Szkół w Wielgolesie

Bardziej szczegółowo

Scenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny

Scenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny Scenariusz lekcyjny Data: 20 listopad 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

AGH, Wydział Elektrotechniki, Automatyki Informatyki i Elektroniki Katedra Automatyki METODY OPTYMALIZACJI. Wojciech Grega

AGH, Wydział Elektrotechniki, Automatyki Informatyki i Elektroniki Katedra Automatyki METODY OPTYMALIZACJI. Wojciech Grega AGH, Wydział Elektrotechiki, Automatyki Iformatyki i Elektroiki Katedra Automatyki METODY OPTYMALIZACJI Wojciech Grega Kraków, 6 . Wykład I. Problemy optymalizacji: formułowaie, klasyfikacja, przykłady.

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości

Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości Temat: Dochody z kapitału Opracowała Grażyna Drożdżowska Uwagi realizacyjne Lekcja jest przewidziana jako jednostka 2- godzinna stanowiąca utrwalenie

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

Przeczytaj, zanim zaczniesz rozwiązywać

Przeczytaj, zanim zaczniesz rozwiązywać Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5

Bardziej szczegółowo

mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku

mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.

Bardziej szczegółowo

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Scenariusz lekcji z przedmiotu matematyka

Scenariusz lekcji z przedmiotu matematyka Scenariusz lekcji z przedmiotu matematyka Temat lekcji: Inwestuję z głową ( 90 min - lekcja podawczo ćwiczeniowa) Inwestuję z głową w akcje i kontrakty terminowe (90 minut - lekcja podawczo-ćwiczeniowa)

Bardziej szczegółowo

Chemiczne metody analizy ilościowej (laboratorium)

Chemiczne metody analizy ilościowej (laboratorium) Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Praktyczne Seminarium Inwestowania w Nieruchomości

Praktyczne Seminarium Inwestowania w Nieruchomości Praktyczne Seminarium Inwestowania w Nieruchomości Kalkulator finansowy 10BII pierwsze kroki www.edukacjainwestowania.pl Kalkulator finansowy 10BII, oprócz typowych funkcji matematycznych i statystycznych,

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Materiały Konferencji MathPAD 2008

Materiały Konferencji MathPAD 2008 Materiały Koferecji MathPAD 2008 Wydział Matematyki i Iformatyki Uiwersytetu Mikołaja Koperika w Toruiu 9-22 sierpia 2008 Redakcja materiałów: Mirosław Majewski (e-mail: mirek.majewski@yahoo.com) Robert

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW

Bardziej szczegółowo

Jak skutecznie reklamować towary konsumpcyjne

Jak skutecznie reklamować towary konsumpcyjne K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

KARTA PRACY Z PROCENTÓW - nowa

KARTA PRACY Z PROCENTÓW - nowa KARTA PRACY Z PROCENTÓW - nowa ZADANIE 1. Zamień procenty na ułamki ( : 100 ) 25%= 50%= % % 62%= 16 % 138%= 11 % 2%= 33 % 2340%= 3 % 0,4%= 66 % 0,35%= % 1,05%= 1%= 2,3%= 4%= 27,4%= 16%= 0,004%= 28%= %

Bardziej szczegółowo

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę).

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę). 3 WARTOŚĆ PIENIĄDZA W CZASIE Ziea watość pieiądza w czasie to ieodłączy atybut pieiądza właściwy ie tylko aszy czaso W teoii fiasów, okesowe płatości azywa się stuieie pieiędzy, pzepływe pieiędzy lub z

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część V: Ciągi liczbowe ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo