PODSTAWY MATEMATYKI FINANSOWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY MATEMATYKI FINANSOWEJ"

Transkrypt

1 PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach długość roku bakowego w diach (1) KWOTA ZWROTU (6) (2) OPROCENTOWANIE KREDYTU (3) ODSETKI OD KREDYTU (4) KWOTA ZWROTU ODSETKI PROSTE i ODSETKI SKŁADANE odsetki za koleje okresy trwaia lokaty aliczae są od tej samej podstawy (7) (8) O Ozaczeia: P- początkowa kwota lokaty (początkowa kwota kapitału) - końcowa wartość lokaty (kwota zwracaa po upływie okresów bazowych) i - oprocetowaie lokaty za jede okres bazowy - liczba okresów bazowych trwaia lokaty Ods - odsetki za cały okres trwaia lokaty Odsetki za koleje okresy trwaia lokaty aliczamy od kwoty powiększoej o odsetki.

2 (9) P (1 + i) 10) Ods P [ ( 1 + i ) 1] PRZYKŁAD Załóżmy, że chcemy ulokować w baku kwotę zł a okres pół roku i mamy do wyboru dwa baki (A i B). W obu bakach oferowaa jest rocza stopa oprocetowaia 4,4%. Jedak w baku (A) odsetki aliczae są tylko a koiec okresu trwaia lokaty, atomiast w baku (B) odsetki aliczae są i kapitalizowae co kwartał. BANK (A) Zgodie ze wzorem (7) P (1 + i ) ( ) zł zgodie ze wzorem (6) 90 i 1,085% 4,4% 365 ( t) Pe it Efektywa stopa procetowa dla kapitalizacji ciągłej: E e i t BANK (B) Zgodie ze wzorem (9) P (1 + i ) ( ) ,21

3 STOPA PROCENTOWA NOMINALNA I EEKTYWNA ERSP - efektywa rocza stopa procetowa PRZYKŁAD Chcemy wziąć kredyt w baku P gdzie R19%, a odsetki ależy płacić co miesiąc. Jeżeli zaiwestoway kapitał przyrasta o stały procet częściej iż raz a rok. 11) ERSP 1 + i 1 i - oprocetowaie za jede bazowy okres czasu (miesiąc, kwartał,...) - liczba okresów bazowych w roku (liczba kapitalizacji w okresie jedego roku) Jeżeli zaiwestoway kapitał przyrasta o stały procet ie częściej iż raz a rok. ERSP (1 + i) 1 i - oprocetowaie za cały okres trwaia iwestycji (rok, 2 lata,...) - liczba lat trwaia iwestycji W baku S : R19,2%, a odsetki ależy płacić co kwartał. Który bak wybrać? ERSP(P) (1+ 0,19/12) , , ,745% ERSP(S) (1+0,192/4) 4 1 1, , ,627%

4 AMORTYZACJA KREDYTU Ulokowaliśmy w baku 1000 zł i po 2 latach oszczędzaia otrzymaliśmy 1250 zł. Ile wyiosła efektywa rocza stopa oprocetowaia aszego rachuku w tym okresie jeżeli bak kapitalizował odsetki co kwartał. WARUNKI UDZIELANIA KREDYTU. OPRÓCZ KWOTY I ROCZNEJ STOPY OPROCENTOWANIA OKREŚLA SIĘ SPOSÓB SPŁATY (AMORTYZACJI) KREDYTU USTALAJĄC PLAN SPŁATY KREDYTU. NA PODSTAWIE PLANU SPORZĄDZA SIĘ TABELĘ SPŁATY KREDYTU ZWANĄ TEŻ TABELĄ AMORTYZACJI KREDYTU ERSP (1 + i) 1 Efektywa stopa kwartala ERSP(1+0,0283) 4-10,0574 -

5 Wartość pieiądza w czasie Wartość przyszła pieiądza (future value of moey- VM) (13) P (1 + i) Wartość obeca pieiądza (preset value of moey PVM) P (14) ( ) i +

6 y P ( ) P Strumieie pieiędzy (Cash lows-) ( )

7 Wartość obeca i przyszła strumieia pieiędzy i Wartość obeca 0 jest rówa 0 Wartość obeca 1 jest rówa ( + i) Wartość obeca 2 jest rówa ( + i) M Wartość obeca jest rówa ( ) + i Wartość przyszła 0 jest rówa 0 (1+i) Wartość przyszła 1 jest rówa 1 (1+i) -1 Wartość przyszła 2 jest rówa 2 (1+i) -2 M Wartość przyszła jest rówa (1+i) - ( + i) + ( + i) + L + j ( + ) j i j P + + L+ ( + i) ( + i) ( + i) ( + i) P j j ( + i ) j

8 Załóżmy, że w wyiku pewej iwestycji spodziewamy się uzyskać w okresie kolejych miesięcy dochody w kwotach 10, 15, 20, 20 tys zł odpowiedio a koiec każdego miesiąca. Mamy obliczyć wartość przyszłą tego strumieia przychodów a koiec 4 miesiąca przy założeiu, że miesięcza stopa procetowa wyosi 3%. 4, i0,03 P A ( ) ( ) ( ) ( ) ( ) P B ( ) ( ) ( ) ( ) ( ) tys z tys z

9 Strumieie rówych płatości A A A A A A... A Strumień rówych płatości dokoywaych a koiec kolejych, rówych okresów czasu. wartość przyszła strumieia a koiec - tego okresu. A wysokość pojedyczej płatości liczba okresów bazowych i oprocetowaie za jede okres bazowy j j + i j poieważ 0 0, A A (1+i) -1 +A (1+i) A(1+i)+A (1+i ) i + i A [( ) ] + i ( + i) A i A + i : Załóżmy, że przez okres 10 lat będziemy oszczędzać a mieszkaie i wpłacać a rachuek oszczędościowy kwotę 50 zł a koiec każdego okresu(miesiąca). Rachuek jest oprocetoway w wysokości 2,5 % miesięczie. Ile uzbieramy po 10 latach? A50 zł, i0,025, ( + ) A

10 Wartość obeca rozpatrywaego strumieia P + P A i ( ) + i i( + i) : Zajomy propouje am odkupieie od iego samochodu. Propouje sprzedaż a raty. Chce byśmy dziś zapłacili 5000, a przez koleje 6 miesięcy płacili jeszcze po 1000 zł. Jeżeli oprocetowaie kredytów bakowych wyosi 5% miesięczie to za ile zajomy chce am sprzedać samochód? P ( ) ( ) czyli zajomy wyceił samochód a ,7. Czy koszt kredytu zależy od częstości płaceia odsetek? : Wzięto kredyt w wysokości zł. Rocza stopa procetowa wyosi 60 %. Kredyt ma być zwrócoy po upływie dwóch miesięcy. W ujęciu omialym suma odsetek od kredytu płacoych co miesiąc jest rówa kwocie odsetek płacoych jedorazowo. Dla porówaia ależy policzyć wartość przyszłą a koiec drugiego miesiąca Przypadek 1 Odsetki płacoe jedorazowo po upływie dwóch miesięcy2 Ods 2 Ods2( ,05) t

11 Przypadek 2 Odsetki płacoe a koiec pierwszego i drugiego miesiąca t Ods(1+i)+Ods(2+i)Ods (2+0,05) ( ,05)1025 Wiosek Efektywy koszt kredytu jest w przypadku 2 większy. Efektywy koszt kredytu zależy ie tylko od wysokości stopy % ale rówież od częstości płaceia odsetek. Jest tym większy im częściej ależy płacić odsetki od kredytu (przy iezmieej omialej stopie procetowej). Czy efektywy koszt kredytu zależy od tego czy i jak często ależy płacić raty kapitałowe? Rozpatrujemy dwa przypadki kredytów udzieloych a okres dwóch miesięcy. W obu przypadkach kwota kredytu i stopa procetowa są takie same, a odsetki ależy płacić po upływie każdego miesiąca. Przypadek 1 Całą kwotę kredytu (kapitał) spłacamy jedorazowo a koiec drugiego miesiąca. 1 Ods(1+i)+Ods+KK+Ods(2+i) K+K i (2+i)K (1+2 i+i 2 )K (1+i) 2 0 kredyt 1 2 t Przypadek 2 kredyt odsetki Odsetki+kredyt odsetki+rata odsetki+rata

12 2(Ods+0,5K) (1+i)+0,5 Ods+ 0,5K (K i+0,5k) (1+i)+0,5K i+0,5k K i+k i 2 +0,5K+0,5K i+0,5k i+0,5 K 2 K i+k i 2 +KK (i 2 +2 i+1) K(1+i) 2 W obu przypadkach łącza wartość wszystkich płatości związaych ze spłatą każdego kredytu sprowadzoa do wartości przyszłej a koiec 2 miesiąca wyosi K(1+i) 2 Efektywy koszt kredytu ie zależy od częstości i wysokości płacoych rat kapitałowych. a) cała wpłata (5 000) a koto spłaty kredytu Tabela amortyzacji kredytu Saldo kredytu a początku kolejego półrocza Odsetki za ostati okres Rata kapitałowa Saldo kredytu a koiec półrocza Wzieliśmy kredyt. Mamy go spłacić jedorazowo (kapitał+odsetki) po upływie 12 miesięcy. W połowie roku osiągęliśmy ieprzewidywaly dochód w wysokości ½ kwoty kredytu i chcemy za jego pomocą spłacić częściowo kredyt (czego ie zabraia umowa kredytowa). Jak bak powiie zaksięgować wpłacaą przez as kwotę pieiędzy? Jako ratę kapitałową czy odsetki? b) bak pobrał ajpierw odsetki za pierwsze 6 miesięcy trwaia kredytu Saldo kredytu a początku kolejego półrocza Tabela amortyzacji kredytu Odsetki za ostati okres Rata kapitałowa Saldo kredytu a koiec półrocza

13 W przypadku kredytów ceą jedostkową będzie cea (czyli ależe odsetki) za 1 złotówkę kredytu za ustaloy okres czasu (p. rok). Nie zależy oa od kwoty kredytu i okresu jego trwaia. Miarą kredytu, jego kosztu, która uwzględia dwa istote parametry wpływające a efektywy koszt kredytu stopę procetową oraz częstość płaceia odsetek jest efektywa rocza stopa oprocetowaia kredytu Nomiala rocza stopa kredytu60%, odsetki ależy płacić co miesiąc. Ile wyosi efektywa rocza stopa % tego kredytu. i0,6 (30/365) ERSP(1+i) -1(1+0,049) ,78-10,78

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Matematyka I dla DSM zbiór zadań

Matematyka I dla DSM zbiór zadań I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i

Bardziej szczegółowo

MATEMATYKA FINANSOWA - PROCENT SKŁADANY 2. PROCENT SKŁADANY

MATEMATYKA FINANSOWA - PROCENT SKŁADANY 2. PROCENT SKŁADANY 2. PROCENT SŁADANY Zasada procetu składaego polega a tym, iż liczymy odsetki za day okres i doliczamy do kapitału podstawowego. Odsetki za astępy okres liczymy od powiększoej w te sposób podstawy. Czyli

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3 Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

ZADANIE 1. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

ZADANIE 1.  NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Na budowę domu możesz zaciagn ać pożyczkę w wysokości 63450 e. Do wyboru sa dwa warianty spłaty: I w każdym miesiacu spłacasz równe raty, każda w wysokości 2% pożyczonej kwoty. II pierwsza rata

Bardziej szczegółowo

Zastosowanie matematyki w finansach i bankowości

Zastosowanie matematyki w finansach i bankowości Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

1% wartości transakcji + 60 zł

1% wartości transakcji + 60 zł Procet.. Wysokość prowizji, którą kliet płaci w pewym biurze maklerskim przy każdej zawieraej trasakcji kupa lub sprzedaży akcji jest uzależioa od wartości trasakcji: Wartość trasakcji do 500 zł od 500.0

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1 i 2

Zadania do wykładu Matematyka bankowa 1 i 2 Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200

Bardziej szczegółowo

dr hab. Marcin Jędrzejczyk

dr hab. Marcin Jędrzejczyk dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci

Bardziej szczegółowo

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Wstęp Celem wykładu jest przedstawienie podstawowych pojęć oraz zaleŝności z zakresu zarządzania finansami w szczególności

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2 Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

Praktyczne Seminarium Inwestowania w Nieruchomości

Praktyczne Seminarium Inwestowania w Nieruchomości Praktyczne Seminarium Inwestowania w Nieruchomości Kalkulator finansowy 10BII pierwsze kroki www.edukacjainwestowania.pl Kalkulator finansowy 10BII, oprócz typowych funkcji matematycznych i statystycznych,

Bardziej szczegółowo

Obowiązuje od 01.02.2016 r.

Obowiązuje od 01.02.2016 r. KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie limitu

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe dwukrotność odsetek ustawowych,

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe dwukrotność odsetek ustawowych,

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Procenty zadania maturalne z rozwiązaniami

Procenty zadania maturalne z rozwiązaniami Każde zadanie 1 punkt. 1. Cena towaru bez podatku VAT jest równa 60 zł. Towar ten wraz z podatkiem VAT w wysokości 22% kosztuje 0,22 60 = 13,20 kwota VAT 60 + 13,20 = 73,20 Odp. A 2. Wskaż liczbę, której

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Temat 1: Wartość pieniądza w czasie

Temat 1: Wartość pieniądza w czasie Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste Tabela oprocentowania dla konsumentów konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami

Bardziej szczegółowo

Zarządzanie finansami

Zarządzanie finansami STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ W POZNANIU Zarządzaie fiasami DR LESZEK CZAPIEWSKI - POZNAŃ - WARTOŚĆ PIENIĄDZA W CZASIE Pieiądze posiadają określoą wartość. Wartość w diu dzisiejszym omialej

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów konta Konto osobiste konta 0,50% Brak kwoty minimalnej. zmienne obowiązuje od 12.08.2013 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste konta 0,25% Brak kwoty minimalnej. zmienne obowiązuje od 16.12.2014 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Oprocentowanie konta 0,10% Oprocentowanie konta 0,00% Oprocentowanie konta 0,00%

Oprocentowanie konta 0,10% Oprocentowanie konta 0,00% Oprocentowanie konta 0,00% KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie limitu

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN

Bardziej szczegółowo

MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku.

MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku. MATEMATYA FIASWA Rachuek osetek postych Wykozystyway w okesie kótki o 1 oku Wzó oóly * * t Wzó pzy uwzlęieiu oiesieia czasoweo t * * t * T p. w pzypaku okesu zieeo t * * 360 Zaaie 1 jakiej kwoty otzyao

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

Darmowa publikacja dostarczona przez ebooki24.org

Darmowa publikacja dostarczona przez ebooki24.org Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez ebooki24.org Copyright by Złote Myśli &, rok 2008 Autor: Tytuł:

Bardziej szczegółowo

I = F P. P = F t a(t) 1

I = F P. P = F t a(t) 1 6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia

Bardziej szczegółowo

Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł.

Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł. Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł. Zadanie 2 Cena towaru bez podatku VAT jest równa 90 zł. Towar ten

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Co należy wiedzieć o racie mieszkaniowego kredytu hipotecznego?

Co należy wiedzieć o racie mieszkaniowego kredytu hipotecznego? Co należy wiedzieć o racie mieszkaniowego kredytu hipotecznego?, czyli na co zwrócić szczególną uwagę przy doborze kredytu. Autor: Przemysław Mudel p.mudel@niezaleznydoradca.pl Copyright 2007 Przemysław

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Spłata długów. Rozliczenia związane z zadłużeniem

Spłata długów. Rozliczenia związane z zadłużeniem płata długów Rozliczeia związae z zadłużeiem Źódła fiasowaia Źódła fiasowaia Kapitał własy wkład właściciela, wpłaty udziałowców, opłaty za akcje, wkład zeczowy, apot. Kapitał obcy kedyty, pożyczki, ie

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE PYTANIA KONTROLNE Różnica pomiędzy: inwestycją, projektem inwestycyjnym, przedsięwzięciem inwestycyjnym Rodzaje inwestycji ze względu na cel Wartość pieniądza w

Bardziej szczegółowo

Rozdział 10. Wykorzystanie funkcji finansowych w analizie danych

Rozdział 10. Wykorzystanie funkcji finansowych w analizie danych Moduł 2. Wykorzystanie programu Excel do zadań analitycznych Rozdział 10. Wykorzystanie funkcji finansowych w analizie danych Zajęcia 10. 2 godziny Zakres zdobytych umiejętności: Zapoznanie się z wybranymi

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Ekonomiczny Uniwersytet Dziecięcy Bank zaufanie na całe życie Czy warto powierzać pieniądze bankom? nna Chmielewska Miasto Bełchatów 24 listopada 2010 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY Uniwersytet Dziecięcy,

Bardziej szczegółowo

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym)

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym) KREDYT GOTÓWKOWY I. Przykłady dla klientów posiadających w Banku, na dzień zawarcia umowy o kredyt, od co najmniej 12 miesięcy: a) rachunek oszczędnościowo rozliczeniowy wykazujący stałe miesięczne wpływy

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Wartość pieniądza w czasie (time value of money)

Wartość pieniądza w czasie (time value of money) Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH W PBS VII.

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH W PBS VII. Załącznik nr 2 do Uchwały Zarządu PBS Nr 289/2015 z dnia 16 grudnia 2015 r. tekst jednolity TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH W PBS VII. Kredyty i pożyczki dla podmiotów prowadzących działalność

Bardziej szczegółowo

OPŁACALNOŚĆ INWESTYCJI

OPŁACALNOŚĆ INWESTYCJI 3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub

Bardziej szczegółowo

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2 METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE Ćwiczenia nr 1 i 2 - Cel ćwiczeń - Komunikacja email: i.ratuszniak@efficon.pl, w temacie - mopi - Konsultacje: pokój: 428,

Bardziej szczegółowo

Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza

Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza Opracowanie: kwiecień 2016r. www.strattek.pl strona 1 Spis 1. Parametry kredytu w PLN 2 2. Parametry kredytu denominowanego

Bardziej szczegółowo

Darmowa publikacja dostarczona przez PatBank.pl - bank banków

Darmowa publikacja dostarczona przez PatBank.pl - bank banków Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez PatBank.pl - bank banków Copyright by Złote Myśli &, rok 2008 Autor:

Bardziej szczegółowo

Wartość pieniądza w czasie (Value of money in time)

Wartość pieniądza w czasie (Value of money in time) WRTOŚĆ PIENIĄDZ W CZSIE FINNSE I ROBERT ŚLEPCZUK Watość pieiądza w czasie (Value of oey i tie - futue value - watość pzyszła, PV - peset value - watość bieżąca, - stopa pocetowa, - ilość kapitalizacji

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Cztery lokaty Zadanie Którą lokatę wybrać?

Cztery lokaty Zadanie Którą lokatę wybrać? Marian Maciocha Cztery lokaty Zadanie Którą lokatę wybrać? Chcemy ulokować 1000 zł na cztery miesiące i mamy do wyboru cztery propozycje: Propozycja 1: Lokata z oprocentowaniem 4% w skali roku. Odsetki

Bardziej szczegółowo

dr Tomasz Łukaszewski Budżetowanie projektów 1

dr Tomasz Łukaszewski Budżetowanie projektów 1 Firma rozważa sfinansowanie projektu kredytem. Kwota kredytu wynosi 100 000 zł, oprocentowanie 15%, spłacany będzie przez 7 lat. A. Ile wyniosą raty przy założeniu, że kredyt będzie spłacany ratą roczną

Bardziej szczegółowo

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu Załącznik nr 3 do Uchwały Nr 8/Z/2014 Zarządu BS w Podegrodziu z dnia 14.01.2014r Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH Dla klientów indywidualnych w Banku Spółdzielczym

Bardziej szczegółowo