Metody oceny efektywności projektów inwestycyjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody oceny efektywności projektów inwestycyjnych"

Transkrypt

1 Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie rafych decyzji doyczących jej rozwoju. Rozwoju firmy dokouje się zasadiczo poprzez realizację długoermiowych przedsięwzięć iwesycyjych, kóre przyiosą zysk, ale wymagają zgromadzeia iezbędego kapiału do sfiasowaia akładów począkowych. Decyzję o podjęciu realizacji określoego przedsięwzięcia iwesycyjego podejmuje się a podsawie aalizy opłacalości owych projeków iwesycyjych. A. Meoda warości bieżącej eo iwesycji Meoda warości bieżącej eo iwesycji pozwala wyzaczyć bieżącą warość zysków z iwesycji orzymaą przez zdyskoowaie, oddzielie dla każdego okresu (roku), różicy między wpływami i wydakami pieiężymi w całym okresie realizacji i eksploaacji iwesycji, przy określoym i sałym poziomie sopy dyskoowej: Warość bieżąca eo iwesycji = Warość bieżąca płaości - Iwesycja począkowa Iwesycja począkowa jes kapiałem począkowym zaiwesowaym w przedsięwzięcie. Warość bieżąca płaości (przepływów pieiężych)- wyzaczaa się dla płaości regularych według 1 CFi i i= 1 (1+ d) wzoru: CFi przewidywae przepływy pieięże eo (czyli: wpływ wydaek) w kolejych okresach czasu (CF Cash Flow), d - sopa dyskoowa, - liczba okresów (p. la) w rozważaym horyzocie czasowym (realizacji iwesycji). Warość bieżącą eo iwesycji dla płaości regularych możemy obliczyć sosując fukcję NPV 1 (ag. Ne Prese Value) isiejącą w programie Excel: Warość bieżąca eo iwesycji = NPV(sopa; warość1; warość2;...) Iwesycja począkowa sopa sała sopa dyskoowa we wszyskich okresach płaości, warość1, warość2,... warości przepływów pieiężych (wpływy wydaki) w całym okresie realizacji i eksploaacji iwesycji. (przyjmuje się, że warość1, warość2,... są rówomierie rozmieszczoe w czasie, a ich płaości przypadają a koiec każdego okresu). Podejmowaie decyzji przy użyciu warości bieżącej eo iwesycji: 1. Przedsięwzięcie iwesycyje jes opłacale wedy i ylko wedy, gdy warość bieżąca eo iwesycji jes większa lub rówa zero 2 ( 0): gdy warość bieżąca eo iwesycji jes dodaia (> 0), o ozacza o, że sopa reowości daego przedsięwzięcia jes wyższa od sopy graiczej, określoej przez sopę dyskoową, jeżeli warość bieżąca eo iwesycji jes rówa zero, o aalizoway projek i projeky aleraywe (p. lokaa kapiału iwesycyjego w baku) są rówoważe, w przypadku gdy kilka projeków iwesycyjych charakeryzuje się dodaią warością bieżącą eo iwesycji, o do realizacji powiiśmy wybrać projek iwesycyjy, dla kórego warość bieżąca eo iwesycji jes ajwiększa. 2. Jeżeli warość bieżąca eo iwesycji jes miejsza od zera (< 0), o realizacja daego projeku iwesycyjego jes ieopłacala (gdyż sopa reowości przedsięwzięcia jes iższa od graiczej sopy reowości, kóra rówa jes sopie dyskoowej). 1 Fukcja NPV jes podoba do fukcji PV (warość bieżąca). Podsawowa różica pomiędzy PV a NPV polega a ym, że dla fukcji PV przepływy pieięże muszą być sałe i mogą mieć miejsce zawsze albo a końcu albo a począku okresu płaości. 2 Podjęcie realizacji przedsięwzięcia iwesycyjego jes uzasadioe ylko wówczas, gdy warość orzymaych dochodów (wpływów) jes co ajmiej rówa lub większa od zaiwesowaych w ie środków fiasowych.

2 Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa B. Meoda wewęrzej sopy zwrou iwesycji Meoda wewęrzej sopy zwrou iwesycji pozwala wyzaczyć rzeczywisą sopę dochodu uzyskiwaą z iwesycji w pełym okresie jej realizacji i eksploaacji: Wewęrza sopa zwrou iwesycji, o aka warość sopy dyskoowej: Wewęrza sopa zwrou = d dla kórej warość bieżąca eo iwesycji jes rówa zero: Warość bieżąca eo iwesycji = NPV(d;...)-Ip= 0 Wewęrza sopa zwrou (zwaa reowością wewęrzą) określa maksymaly kosz użycia kapiału (rówoważy sopie dyskoowej), przy kórym uzyskae wpływy rówoważą wydaki. Realizacja projeku iwesycyjego jes zaem opłacala wedy i ylko wedy, gdy jego wewęrza sopa zwrou jes wyższa od przyjęej sopy dyskoowej. Im przyjęy przez iwesora kosz użycia kapiału jes miejszy od wewęrzej sopy zwrou, ym bezpiecziejsza jes realizacja projeku iwesycyjego. Jeżeli aomias rzeczywisy kosz użycia kapiału przekracza wewęrzą sopę zwrou, o oczywisym jes, że day projek iwesycyjy ie przyiesie żadej adwyżki fiasowej. Warość bieżącą dla płaości regularych możemy obliczyć sosując fukcję IRR (ag. Ieral Rae of Reur): warości progozoway_wyik IRR(warości; progozoway_wyik) ablica lub adres do bloku komórek zwierających serię przepływów pieiężych, dla kórych obliczaa jes wewęrza sopa zwrou. progozowaa (przewidywaa) warość wewęrzej sopy zwrou (podaie ego argumeu iej jes koiecze i jeśli ie zosaie poday, o fukcja IRR przyjmie dla iego warość domyślą rówą 10%). UWAGA: W serii przepływów pieiężych (podaych przez paramer warości): musi wysąpić, co ajmiej jeda warość dodaia (przychód) i jeda warość ujema (wydaek), waża jes kolejość podawaych warości, kóra powia odpowiadać kolejości rzeczywisych przychodów i wydaków. Podejmowaie decyzji przy użyciu wewęrzej sopy zwrou iwesycji:

3 Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa wybieramy zawsze ylko e projek, dla kórego wewęrza sopa zwrou iwesycji jes większa od żądaej sopy dyskoowej d, czyli projek, dla kórego sopa zwrou jes większa od sopy zwrou z ajlepszych iych możliwych projeków, (p. z lokay kapiału w baku a oproceowaie rówe d), w przypadku aalizy kilku projeków, wybieramy zawsze projek, dla kórego warość wewęrzej sopy zwrou iwesycji jes ajwiększa, w przypadku, gdy: warość wewęrzej sopy zwrou iwesycji = d o rozważaa iwesycja i projek aleraywy (p. lokaa kapiału w baku a oproceowaie rówe d) są rówoważe, w przypadku wyboru jedego z wielu rożych projeków iwesycyjych o akiej samej warości wewęrzej sopy zwrou iwesycji ależy wybrać e, kóry ma ajwiększą warość NPV (gdyż jes oa miarą przyrosu warości firmy, jaki zapewiają przepływy pieięże powsałe dzięki realizacji daego projeku). C. Meoda zmodyfikowaej wewęrzej sopy zwrou iwesycji W oceie przedsięwzięć iwesycyjych według meody wewęrzej sopy zwrou przyjmuje się założeie, że dodaie przepływy pieięże z realizowaej iwesycji są reiwesowae przy sopie zysku rówej wewęrzej sopie zwrou. W prakyce, częso o założeie ie jes spełioe i dlaego w akich przypadkach sosowaa jes meoda zmodyfikowaej wewęrzej sopy zwrou. Meoda zmodyfikowaej wewęrzej sopy zwrou MIRR (Modified Ieral Rae of Reur) pozwala uwzględić przewidywaą sopę reiwesycji3 3 w oceie efekywości projeku iwesycyjego. Zmodyfikowaa wewęrza sopa zwrou jes warością sopy dyskoowej, przy kórej asępuje zrówaie warości bieżącej dodaich przepływów pieiężych z warością bieżącą przepływów ujemych: COF CIF (1 + d ) r = = 0 (1 + d j ) = 0 (1 + MIRR) COF ujemy przepływ pieięży w okresie (roku), CIF dodai przepływ pieięży w okresie (roku), d i sopa dyskoowa iwesycji, d r sopa dyskoowa reiwesycji, okres obliczeiowy (w laach). Rozwiązaiem ej rówości jes wzór: CIF (1 + dr ) = 0 COF = 0 (1 + dr ) MIRR = 1 Zmodyfikowaą wewęrzą sopę zwrou iwesycji możemy obliczyć sosując poday wzór lub sosując fukcję MIRR (udosępiaą przez program kalkulacyjy Excel): MIRR(warości; sopa_dyskoowa_iwesycji; sopa_dyskoowa_reiwesycji) warości, ablica lub adres bloku komórek zawierających warości przychodów i wydaków, sopa_dyskoowa_iwesycji, sopa dyskoowa dla daej iwesycji, sopa_dyskoowa_reiwesycji, sopa dyskoowa dla reiwesycji (wpływów z daej iwesycji zaiwesowaych w ową iwesycję). 3 Sopa reiwesycji o sopa proceowa iwesowaia dodaich przepływów pieiężych, (czyli zysków) osiągaych z daej iwesycji w ową iwesycję.

4 Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Fukcja MIRR oblicza warość zmodyfikowaej wewęrzej sopy zwrou dla szeregu okresowych przepływów goówkowych, biorąc pod uwagę jedocześie kosz iwesycji oraz dochody uzyskae z poowego reiwesowaia środków pieiężych: (-NPV(sopa_dyskoowa, dodaie warości przepływów)*(1+sopa_dyskoowa) / (NPV(sopa_dyskoowa_reiwesycji, ujeme warości przepływów)*(1+sopa_dyskoowa_reiwesycji) ) ) 1/(-1) Podejmowaie decyzji przy użyciu zmodyfikowaej wewęrzej sopy zwrou: 1. Projek iwesycyjy przyjmuje się do realizacji, gdy zmodyfikowaa wewęrza sopa zwrou jes większa od sopy dyskoowej d r, czyli wedy, gdy spełioy jes waruek: MIRR > d r W syuacji, gdy warość zmodyfikowaej wewęrzej sopy zwrou ma saowić podsawę do wyboru jedego spośród kilku oferowaych projeków, o wybiera się oczywiście e projek, dla kórego warość MIRR jes ajwiększa (i jes oczywiście większa od sopy dyskoowej dr). D. Meoda wskaźika zyskowości Wskaźik reowości (zyskowości, opłacalości) PI (ag. Profiabiliy Idex) jes ilorazem sumy zdyskoowaych dodaich przepływów pieiężych do modułu z sumy zdyskoowaych ujemych przepływów pieiężych: PI = zdyskooway przepłrz zdyskooway przepłrz dodai ujemy = = 0 = 0 CIF (1 + d) COF (1 + d) COF - ujemy przepływ pieięży w roku, CIF - dodai przepływ pieięży w roku, d - sopa dyskoowa sosowaa przez iwesora (kosz kapiału), - okres obliczeiowy (w laach). Podejmowaie decyzji przy użyciu wskaźika reowości: 1. Projek iwesycyjy przyjmuje się do realizacji, gdy wskaźik reowości PI > Wskaźik reowości PI: wyzaczay jes ylko dla ych projeków, kórych warość NPV jes ³ 0 (ujema warość NPV od razu elimiuje day projek iwesycyjy), sosoway jes wedy, gdy mamy dokoać wyboru jedego spośród kilku projeków iwesycyjych przy ograiczoych możliwościach fiasowych. 3. W syuacji, gdy wskaźik reowości sosoway jes do wyboru jedego spośród kilku oferowaych projeków, o wybiera się e projek, dla kórego warość wskaźika reowości PI jes ajwiększa. Wskaźik reowości wykorzysyway jes w prakyce, w syuacji, kiedy poecjaly iwesor boryka się z ograiczoością zasobów fiasowych. E. Meoda wskaźika dochodowości Doychczas pozae meody ocey efekywości ekoomiczej projeków iwesycyjych ie uwzględiają w dosaeczym sopiu wymagaej wysokości iwesycji począkowej, dla oceiaych projeków. Wysokość wymagaych iwesycji począkowych może częso decydować 4 o wyborze jedego z wielu projeków fiasowych. Dlaego przy oceie opłacalości projeków fiasowych bray jes jeszcze pod uwagę wskaźik dochodowości, kóry jes bardzo użyeczy przy oceie aalizowaych projeków fiasowych o zbliżoej warości wewęrzej sopy zwrou IRR i warości bieżącej eo NPV, ale o rożych wysokościach iwesycji począkowych. 4 Gdyż możemy podjąć się realizacji iwesycji ylko wedy, gdy mamy wysarczający kapiał począkowy.

5 Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Wskaźik dochodowości (ROI ag. Reur O Ivesme) jes fukcją kapiału począkowego i wyzaczay jes według formuły: Wskaźik dochodowości= (Warość_Bieżąca_Zysku (przychodu)_neo + Kapiał_Począkowy ) / Kapiał_Począkowy Wskaźik dochodowości jes porówaiem warości bieżącej przychodu (wyikającej z iwesycji) z warością zaiwesowaego kapiału począkowego. Podejmowaie decyzji przy użyciu wskaźika dochodowości: 1. Projek iwesycyjy przyjmuje się do realizacji, gdy wskaźik dochodowości > W syuacji, gdy wskaźik dochodowości sosoway jes do wyboru jedego spośród kilku oferowaych projeków, o wybiera się e projek, dla kórego warość wskaźika dochodowości jes ajwiększa. G. Meoda zdyskoowaego okresu zwrou iwesycji W przypadku ocey projeków iwesycyjych według meody warości bieżącej eo iwesycji waża rówież jes iformacja o okresie zwrou iwesycji, po upływie kórego suma przepływów pieiężych osiągie warość dodaią. Okres zwrou iwesycji w przypadku sosowaia meod dyamiczych wyzaczay jes a podsawie zdyskoowaych przepływów pieiężych. H. Wyzaczaie sopy dyskoowej iwesycji Sosowaie fukcji NPV do ocey projeków iwesycyjych wymaga wyzaczeia sopy dyskoowej. Zwykle we wszyskich meodach dyskoowych przyjmuje się sałą 5 sopę dyskoową, kóra jes rówa koszowi użycia kapiału. Wysokość koszu użycia kapiału zależy między iymi od: źródeł fiasowaia iwesycji (kapiał własy czy kredy bakowy), oproceowaia kredyu, wysokości podaku dochodowego, reowości osiągaej przy aleraywym lokowaiu środków własych oraz od ryzyka związaego z iwesowaiem a daym ryku. Przy usalaiu koszu użycia kapiału posługujemy się wzorem: K o = K b w b + K w K o kosz użycia kapiału (rówy sopie dyskoowej projeku), K b kosz użycia kredyów bakowych, K kosz użycia kapiału eo (kapiału własego), w b udział kredyów bakowych w ogólych środkach fiasowych przezaczoych a fiasowaie iwesycji, w udział kapiału eo (kapiału własego) w fiasowaiu iwesycji, przy czym: w b + w = 100% Z podaego wzoru wyika, że ogóly kosz użycia kapiału jes średią ważoą jego poszczególych składików (WACC ag. Weighed Average Cos of Capial), czyli koszu użycia kredyu bakowego oraz koszu użycia kapiału eo (kapiału własego). Kosz użycia kredyu bakowego określay jes a podsawie sopy oproceowaia ego kredyu, przy uwzględieiu faku, że odseki płacoe od zaciągięego kredyu wliczae są do wydaków przedsiębiorswa, czyli w rzeczywisości zmiejszają oe podsawę opodakowaia. W rezulacie kosz użycia kredyu bakowego oblicza się według wzoru: K b = p (1-P d ) p - bakowa sopa proceowa, (jeżeli korzysa się z kredyów o zróżicowaej sopie proceowej, o ależy za p wsawić średią ważoą sopę proceową), P d sopa podaku dochodowego. Kosz użycia kapiału eo (kapiału własego) określa się przez ormaywą sopę zwrou kapiału, czyli miimaly poziom zwrou kapiału, jaki muszą przyieść iwesycje fiasowe ze środków własych, aby ich 5 Sałą sopę dyskoową sosujemy jedak ylko do projeków iwesycyjych krókoermiowych o iedużym poziomie ryzyka. W pozosałych przypadkach sosowae jes podejście probabilisycze, w kórym przyjmuje się, że wpływy z przedsięwzięcia iwesycyjego są losowe, a akłady fiasowe są zdeermiowae (lub eż losowe).

6 Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa projeky były zaakcepowae 6. W prakyce, w oszacowywaiu koszu użycia kapiału własego uwzględia się rówież (dodając parę proce) ryzyko związae z realizacją daego przedsięwzięcia iwesycyjego: K = K br + K r K br kosz użycia środków własych bez ryzyka, K r kosz ryzyka. Poziom ryzyka szacuje iwesor a podsawie swoich subiekywych oce, dla kórego daa iwesycja jes miej lub bardziej pewa. Poziom ryzyka projeku iwesycyjego zależy od wielu czyików, do kórych zalicza się: przewidyway wzros iflacji, wzros sopy oproceowaia depozyów bakowych, zwiększeie kokurecyjości, kłopoy w pozyskiwaiu surowców produkcyjych, kłopoy z pozyskiwaiem ryków zbyu dla produkowaych wyrobów, zmiay meeorologicze (p. częse deszcze w okresie leim zmiejszają zaporzebowaie a kosiumy kąpielowe), ip. Zadaie Opracuj aplikację dla oszacowaia efekywości pewego projeku iwesycyjego. Dae: 1. Okresy realizacji iwesycji: 7 la, 2. Oproceowaie kredyu: 18,5 %, 3. Wymagay kapiał począkowy (iwesycyjy): zł, 4. Kosz miesięczy wyajmu lokalu: 1450 zł, 5. Ubezpieczeie kwarale: 400 zł 6. Rocze koszy płac (urzymaia persoelu): rozkład losowy rówomiery z przedziału warości: [10000, 15000] zł, 7. Leasig środków rasporu (roczie): rośie liiowo od warości 9000 zł z 10% przyrosem w każdym asępym roku w sosuku do roku poprzediego, 8. Paliwo: w pierwszym roku: 9 500, a w kolejych laach o 7, 5% więcej w sosuku do roku poprzediego, 9. Wpływy z iwesycji (ze sprzedaży): rozkład losowy rówomiery z przedziału warości: [70000, ] zł, 10. Sopa podaku dochodowego: 33% 11. Sopa refiasowa: 29,8 % Oblicz: 1. Koszy użycia kapiału (sopa dyskoowa), 2. Współczyik dyskoowy, 3. Zdyskoowae przepływy pieięże, 4. Warość bieżącą eo iwesycji (NPV), 5. Sumę zdyskoowaych przepływów pieiężych, 6. Wewęrzą sopę zwrou (IRR), 7. Zmodyfikowaą wewęrzą sopę zwrou (MIRR) przy reiwesowaiu zysków w iych przedsięwzięciach, 8. Wskaźik zyskowości (PI), 9. Wskaźik dochodowości (ROI), 10. Nr okresu zwrou iwesycji, 11. Opracuj wykres zależości NPV od wysokości sopy dyskoowej, przy iezmieych pozosałych warukach zadaia. 6 Oszacowywaie koszów użycia kapiału własego rozpoczya się zawsze od oproceowaia depozyów bakowych przy zerowym poziomie ryzyka. Takie możliwości swarzają baki, bądź zakup obligacji Skarbu Pańswa. Każdy jedak iwesor podwyższy ę sopę proceową do poziomu, kóry zbliży kosz użycia kapiału własego do sopy zwrou kapiału eo uzyskiwaego przez iego w doychczasowych przedsięwzięciach iwesycyjych.

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

Podstawy zarządzania finansami przedsiębiorstwa

Podstawy zarządzania finansami przedsiębiorstwa Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych

Bardziej szczegółowo

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice opracował: prof. dr hab. iż. Józef Paska, mgr iż. Pior Marchel POLITECHNIKA WARSZAWSKA Isyu Elekroeergeyki, Zakład Elekrowi i Gospodarki Elekroeergeyczej Ekoomika w elekroechice laboraorium Ćwiczeie r

Bardziej szczegółowo

Obligacja i jej cena wewnętrzna

Obligacja i jej cena wewnętrzna Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel

Bardziej szczegółowo

FINANSE PRZEDSIĘBIORSTW konwersatorium, 21 godzin, zaliczenie pisemne, zadania + interpretacje

FINANSE PRZEDSIĘBIORSTW konwersatorium, 21 godzin, zaliczenie pisemne, zadania + interpretacje mgr Joaa Sikora jsikora@ wsb.gda.pl joaasikora@wordpress.com FINANS PRZDSIĘBIORSTW kowersaorium, 21 godzi, zaliczeie piseme, zadaia + ierpreacje Treści programowe Wprowadzeie do fiasów korporacyjych podsawowe

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r. Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Isyu Elekroeergeyki, Zakład Elekrowi i Gospodarki Elekroeergeyczej Ekoomika wywarzaia, przewarzaia i uŝykowaia eergii elekryczej - laboraorium Isrukcja do ćwiczeia p.: Ocea ekoomiczej

Bardziej szczegółowo

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa 48 Warość przedsiębiorswa 1.3. Meody pomiaru efeku kreacji warości przedsiębiorswa Przesłaki pomiaru efeku kreacji warości przedsiębiorswa Aby kocepcja zarządzaia warością mogła być wprowadzoa w Ŝycie,

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

kapitał trwały środki obrotowe

kapitał trwały środki obrotowe Obliczeia ekoomicze i ocea przesięwzięć iwesycyjych oraz racjoalizujących użykowaie eergii (J. Paska). Posawowe pojęcia rachuku ekoomiczego w elekroechice Całkowie akłay iwesycyje (wyaki kapiałowe - capial

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 203 ANDRZEJ JAKI POMIAR I OCENA EFEKTYWNOŚCI KREOWANIA WARTOŚCI W PRZEDSIĘBIORSTWIE Słowa kluczowe: efekywość

Bardziej szczegółowo

Zarządzanie finansami

Zarządzanie finansami STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ W POZNANIU Zarządzaie fiasami DR LESZEK CZAPIEWSKI - POZNAŃ - WARTOŚĆ PIENIĄDZA W CZASIE Pieiądze posiadają określoą wartość. Wartość w diu dzisiejszym omialej

Bardziej szczegółowo

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej

Bardziej szczegółowo

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ Nr 573 Ekoomia XXXIX 2001 BŁAŻEJ PRUSAK Katedra Ekoomii i Zarządzaia Przedsiębiorstwem METODY OCENY PROJEKTÓW INWESTYCYJNYCH Celem artykułu jest przedstawieie metod

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Okresy i stopy zwrotu nakładów inwestycyjnych w ocenie efektywności inwestycji rzeczowych

Okresy i stopy zwrotu nakładów inwestycyjnych w ocenie efektywności inwestycji rzeczowych Ekoomia Meedżerska 2009, r 5, s. 45 62 Marek Łukasz Michalski* Okresy i stopy zwrotu akładów iwestycyjych w oceie efektywości iwestycji rzeczowych 1. Wprowadzeie Podstawowym celem przedsiębiorstwa, w długim

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

Szacowanie składki w ubezpieczeniu od ryzyka niesamodzielności

Szacowanie składki w ubezpieczeniu od ryzyka niesamodzielności Skłaki w ubezpieczeiu o ryzyka iesamozielości EDYTA SIDOR-BANASZEK Szacowaie skłaki w ubezpieczeiu o ryzyka iesamozielości Kalkulacja skłaki w ubezpieczeiach jes barzo ważym zagaieiem związaym z maemayką

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

ZARZĄDZANIE FINANSAMI

ZARZĄDZANIE FINANSAMI STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ WIELKOPOLSKI W POZNANIU ZARZĄDZANIE FINANSAMI WYBRANE ZAGADNIENIA (1/2) DR LESZEK CZAPIEWSKI - POZNAŃ - 1 SPIS TREŚCI 1. RYZYKO W ZARZĄDZANIU FINANSAMI... 4 1.1.

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0 Maemayka finansowa i ubezpieczeniowa - 1 Sopy procenowe i dyskonowe 1. Sopa procenowa (sopa zwrou, sopa zysku) (Ineres Rae). Niech: F - kapiał wypoŝyczony (zainwesowany) w momencie, F T - kapiał zwrócony

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

ANALIZA PRZYCZYNOWOŚCI W ZAKRESIE ZALEŻNOŚCI NIELINIOWYCH. IMPLIKACJE FINANSOWE

ANALIZA PRZYCZYNOWOŚCI W ZAKRESIE ZALEŻNOŚCI NIELINIOWYCH. IMPLIKACJE FINANSOWE Wiold Orzeszko Magdalea Osińska Uiwersye Mikołaja Koperika w Toruiu ANALIA PRCNOWOŚCI W AKRSI ALŻNOŚCI NILINIOWCH. IMPLIKACJ FINANSOW WSTĘP Przyczyowość w sesie Gragera jes jedym z kluczowych pojęć ekoomeryczej

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Gretl konstruowanie pętli Symulacje Monte Carlo (MC)

Gretl konstruowanie pętli Symulacje Monte Carlo (MC) Grel kosruowaie pęli Symulacje Moe Carlo (MC) W Grelu, aby przyspieszyć pracę, wykoać iesadardową aalizę (ie do wyklikaia ) możliwe jes użycie pęli. Pęle realizuje komeda loop, kóra przyjmuje zesaw iych

Bardziej szczegółowo

Michał Księżakowski Project Manager (Kraków, 17.02.2012)

Michał Księżakowski Project Manager (Kraków, 17.02.2012) Ekoomicze aspekty budowy biogazowi i dystrybucji biogazu Michał Księżakowski Project Maager (Kraków, 17.02.2012) Czyiki warukujące budowę biogazowi Uwarukowaia Ekoomicze Prawe Techologicze Aspekty Prawe

Bardziej szczegółowo

Materiał pomocniczy dla nauczycieli kształcących w zawodzieb!

Materiał pomocniczy dla nauczycieli kształcących w zawodzieb! Projekt wsp,ł.iasoway ze 4rodk,w Uii Europejskiej w ramach Europejskiego Fuduszu Społeczego Materiał pomociczy dla auczycieli kształcących w zawodzieb "#$%&'( ")*+,"+(' -'#.,('#. przygotoway w ramach projektu

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

2.2 Funkcje wyceny. Wśród autorów przeważa pogląd, iż wycenie można przypisać cztery podstawowe funkcje:

2.2 Funkcje wyceny. Wśród autorów przeważa pogląd, iż wycenie można przypisać cztery podstawowe funkcje: . Cele wycey przedsiębiorstw. Przedsiębiorstwa w rozwiiętej gospodarce rykowej są powszechie przedmiotem różorakich trasakcji hadlowych co implikuje potrzebę uzyskaia szacuków ich wartości przy pomocy

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Wybór projektu inwestycyjnego ze zbioru wielu propozycji wymaga analizy następujących czynników:

Wybór projektu inwestycyjnego ze zbioru wielu propozycji wymaga analizy następujących czynników: Wybór projeu wesycyjego ze zboru welu propozycj wymaga aalzy asępujących czyów:. Korzyśc z przyjęca do realzacj daego projeu. 2. Ryzya z m zwązaego. 3. Czasu, óry powoduje zmaę warośc peądza. Czy czasu

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

Islamskie indeksy giełdowe

Islamskie indeksy giełdowe Bak i Kredy maj 2007 Produky i Techiki Bakowe Miscellaea 67 slamskie ideksy giełdowe slamic Marke dexes Jacek Karwowski* pierwsza wersja: 21 maja 2007 r., osaecza wersja: 28 czerwca 2007 r., zaakcepoway:

Bardziej szczegółowo

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny. OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie

Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie odswy pryczych decyzji eooiczo- fisowych w przedsiębiorswie l wyłdu - Wrość pieiądz w czsie 4 h - Efeywość projeów w iwesycyjych 3-4 h -Wżoy osz piłu u WACC h odswy pryczych decyzji eooiczo- fisowych w

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Wyższa Szkoła Markeingu i Zarządzania w Lesznie MATERIAŁY ROBOCZE NA ZAJĘCIA Z PRZEDMIOTU BIZNES PLAN Opracowali: dr Jacek Kowalewski mgr Kazimierz Linowski Leszno 2008 2 S P I S T R E Ś C I WPROWADZENIE.

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Projekt z dnia 8.07.2013 r.

Projekt z dnia 8.07.2013 r. Projekt z dia 8.07.2013 r. Rozporządzeie Miistra Trasportu, Budowictwa i Gospodarki Morskiej 1) z dia.. 2013 r. w sprawie metodologii obliczaia charakterystyki eergetyczej budyku i lokalu mieszkalego lub

Bardziej szczegółowo

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r.

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia 18 paździerika 2012 r. w sprawie szczegółowego zakresu obowiązków uzyskaia

Bardziej szczegółowo

Nowa synteza neoklasyczna w makroekonomii

Nowa synteza neoklasyczna w makroekonomii Bak i Kredy 41 (2), 2010, 43 70 www.bakikredy.bp.pl www.bakadcredi.bp.pl Nowa syeza eoklasycza w makroekoomii Izabela Bludik * Nadesłay: 7 grudia 2009 r. Zaakcepoway: 18 luego 2010 r. Sreszczeie Od poad

Bardziej szczegółowo

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych Iwetta Budzik-Nowodzińska SZACOWANIE WARTOŚCI DOCHODOWEJ PRZEDSIĘBIORSTWA STUDIUM PRZYPADKU Wprowadzeie Dochodowe metody wycey wartości przedsiębiorstw są postrzegae, jako ajbardziej efektywe sposoby określaia

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

CZYNNIKOWY MODEL ZARZĄDZANIA PORTFELEM OBLIGACJI

CZYNNIKOWY MODEL ZARZĄDZANIA PORTFELEM OBLIGACJI Zeszyy Naukowe Wydzału Iorayczych echk Zarządzaa Wyższej Szkoły Iorayk Sosowaej Zarządzaa Współczese robley Zarządzaa Nr /0 CZYNNIKOWY MOE ZARZĄZANIA OREEM OBIGACJI Adrzej Jakubowsk Isyu Badań Syseowych

Bardziej szczegółowo

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ]

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ] Załączik 5 do Umowy r EPS/[ ]/ sprzedaży eergii elektryczej a pokrywaie strat powstałych w sieci przesyłowej zawartej pomiędzy Polskie Sieci Elektroeergetycze Spółka Akcyja [ ] a WARUNKI ZABEZPIECZENIA

Bardziej szczegółowo

METODY DYSKONTOWE W OCENIE EFEKTYWNOŚCI NAKŁADÓW NA EDUKACJĘ WYŻSZĄ 1

METODY DYSKONTOWE W OCENIE EFEKTYWNOŚCI NAKŁADÓW NA EDUKACJĘ WYŻSZĄ 1 EKONOMETRIA ECONOMETRICS ISSN 1507-3866 Anna Król e-mail: anna.krol@ue.wroc.pl METODY DYSKONTOWE W OCENIE EFEKTYWNOŚCI NAKŁADÓW NA EDUKACJĘ WYŻSZĄ 1 Sreszczenie: Jedną z ważnych form inwesycji w zasoby

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

Zerowe stopy procentowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR

Zerowe stopy procentowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR Zerowe sopy procenowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR 111 seminarium BRE-CASE Warszaw awa, 25 lisopada 21 Plan Wprowadzenie Hipoezy I, II, III i IV Próba (zgrubnej)

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

Studia ekonomiczne 1 Economic studies nr 1 (LXXVI) 2013. Witold Kwaśnicki * w ekonomii

Studia ekonomiczne 1 Economic studies nr 1 (LXXVI) 2013. Witold Kwaśnicki * w ekonomii Sudia ekoomicze 1 Ecoomic sudies r 1 (LXXVI) 13 Wiold Kwaśicki, Problemy aalizy wymiarowej w ekoomii Wiold Kwaśicki * Problemy aalizy wymiarowej w ekoomii Ekoomia główego uru (a zwłaszcza ekoomia eoklasycza)

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

30 Matematyka finansowa i bankowa

30 Matematyka finansowa i bankowa 30 Matematyka fiasowa i bakowa koszty admiistrowaia, koszty koserwacji, koszty utrzymaia techiczego budyku, koszty utrzymaia pomieszczeń wspólych op laty za utrzymaie czystości, eergiȩ elektrycz a i ciepl

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Składka ubezpieczeniowa

Składka ubezpieczeniowa Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia

Bardziej szczegółowo

DEA podstawowe modele

DEA podstawowe modele Marek Miszczński KBO UŁ 2008 - Aaliza dach graiczch (EA) cz.2 (przkład aaliza damiki rakigi) EA podsawowe modele WPROWAZENIE Efekwość (produkwość) obieku gospodarczego o es defiiowaa ako sosuek sum ważoch

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 25.01.2003 r.

Matematyka ubezpieczeń życiowych 25.01.2003 r. Maemayka ubezpieczeń życiowych 25.01.2003 r. 1.. Dany jes wiek całkowiy x. Nasępujące prawdopodobieńswa przeżycia: g= 2p x + 1/3, h= 2p x + 1/ 2, j= 2p x + 3/4 obliczono sosując inerpolację zakładającą,

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo