Niepewności pomiarowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Niepewności pomiarowe"

Transkrypt

1 Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki e mogą być zmiee, a czyików wpływających a przebieg zjawiska może być wiele. W celu usaleia prawa rządzącego zjawiskiem koiecze jes zaem wykoywaie doświadczeia, czyli obserwacji zjawiska w warukach sworzoych szuczie, korolowaych przez badacza. (Przykład: Chcemy wyzaczyć okres drgań wahadła uworzoego z kuli zawieszoej a ice. Obserwujemy, że wahadło wykoae z lekkiej piłeczki wychyloe z położeia rówowagi wykouje ylko kilka wahięć o malejącej ampliudzie, podczas gdy wahadło uworzoe z pełej kulki salowej o ej samej średicy i zawieszoej a ej samej ici będzie wahać się przez czas sosukowo długi. Z obserwacji ej moża by wyciągąć wiosek (lecz błędy) o zależości ruchu wahadła od własości ciała zawieszoego p. od jego masy. Wysarczy jedak umieścić oba wahadła pod kloszem szklaym, kóry opróżiamy z powierza, by przekoać się, że czyikiem zakłócającym ruch wahadeł był opór powierza, po jego wyelimiowaiu oba wahadła wykoują ruch drgający o iemalejącej ampliudzie i ym samym okresie). Aaliza czyików i waruków wpływających a przebieg obserwowaego zjawiska jes szczególie ruda gdy przedmioem badań są maeriały biologicze, lub orgaizmy żywe. Doświadczeia przeprowadza się w laboraorium posługując się przyrządami skosruowaymi w oparciu o akualy sa wiedzy. Za pomocą przyrządów dokouje się pomiarów wielkości fizyczych. Pomiar wielkości fizyczej polega a porówaiu jej z wielkością ego samego rodzaju przyjęą za jedoskę. Zaem liczba orzymaa jako wyik pomiaru zależy od wyboru jedoski (przykład: pomiar długości w cm, m, f, i ip.). Wyik pomiaru musi więc zawsze składać się z dwóch części: warości liczbowej oraz jedoski. Pomiary wielkości fizyczych dzielimy a bezpośredie i pośredie. Pomiary bezpośredie są ajprossze polegają wpros a porówaiu daej wielkości z odpowiedią miarą wzorcową p. pomiar wymiarów ciała za pomocą liijki, suwmiarki, śruby mikromeryczej ip., pomiar czasu rwaia jakiegoś procesu przy użyciu sopera, pomiar aężeia prądu amperomierzem. W przypadku pomiarów pośredich warość badaej wielkości wyzaczaa jes a podsawie pomiarów bezpośredich iych wielkości fizyczych, kóre są z ią związae zaym am prawem fizyczym. Przykład: Wyzaczaie przyspieszeia ziemskiego, a podsawie okresu drgań wahadła π l maemayczego. Jak wiadomo okres drgań wahadła opisuje wzór: T π l / g, sąd g. T Widzimy, że w celu wyzaczeia warości g musimy dokoać pomiarów (bezpośredich) okresu drgań wahadła (T) oraz długości ici (L). Iym przykładem jes wyzaczaie aężeia prądu

2 elekryczego a podsawie pomiarów spadku apięcia a oporiku wzorcowym oraz prawa Ohma I U / R. Widzimy, że w zależości od wyboru meody pomiarowej, warości iekórych wielkości fizyczych mogą być wyzaczae zarówo drogą pomiarów bezpośredich, jak i pośredich. Niezależie od meody pomiarów ie możemy igdy bezwzględie dokładie wyzaczyć rzeczywisej warości wielkości fizyczej. Różicę pomiędzy wyikiem pomiaru, a rzeczywisą warością mierzoej wielkości azywamy błędem pomiaru. Błędy pomiarów radycyjie dzielimy a grube (omyłki), przypadkowe oraz sysemaycze. Błędy grube powsają zwykle a skuek ieuwagi lub iesaraości obserwaora przy odczyywaiu lub zapisywaiu wyików lub w wyiku agłej zmiay waruków pomiaru (p. wsrząsy). Jeśli mamy serię pomiarów wyiki obarczoe błędem grubym są ławe do wykrycia i usuięcia. Błędy sysemaycze wyikają z iedoskoałości przyrządów i meod pomiarowych. Moża je redukować sosując bardziej doskoałe i precyzyje meody i przyrządy, jedak całkowie wyelimiowaie błędów sysemayczych jes iemożliwe. Rozpozae błędy sysemaycze ależy uwzględiać poprzez wprowadzeie odpowiedich poprawek do wyiku, p. kiedy ważymy a wadze, kórej wskazaie bez obciążeia wyosi m 0 zamias 0 o m 0 jes błędem sysemayczym, kóry ależy odjąć od wyiku ważeia, iym ypowym przykładem jes poprawka a opór wewęrzy wolomierza przy pomiarze apięcia. Z błędami przypadkowymi mamy do czyieia zawsze. Wyikają oe z różych przypadkowych i ie dających się uwzględić czyików (p. wahaia emperaury, lub ruch powierza w pobliżu przyrządu pomiarowego, czasem wielkość mierzoą charakeryzuje auraly rozrzu (p. akywość promieiowórcza)). O isieiu błędów przypadkowych świadczy iepowarzalość wyików pomiaru jedej i ej samej wielkości. Błędy przypadkowe redukuje się poprzez wielokroe powarzaie pomiaru zachodzi wówczas częściowa kompesacja przypadkowych zawyżających i zaiżających odchyłek wyiku. Poieważ igdy ie zamy rzeczywisej warości wielkości mierzoej, więc posługiwaie się w prakyce pojęciem błędu pomiaru ie jes wygode. Obecie przy opracowywaiu wyików pomiarów ależy sosować się do zaleceń Międzyarodowej Normy Ocey Niepewości Pomiaru. Norma a uzgodioa w 99 r. i przyjęa usawowo w Polsce w 999 r. zajduje zasosowaie w wielu różych dziedziach auki i echologii. Międzyarodowa Norma zaleca posługiwaie się ermiem iepewość pomiarowa zdefiiowaym jako paramer charakeryzujący wąpliwości doyczące warości wyiku pomiarowego. Miarą iepewości pomiarowej jes iepewość sadardowa, kóra może być szacowaa a sposoby: ypu A wykorzysujący aalizę saysyczą serii pomiarów oraz ypu B opary a aukowym osądzie obserwaora. Symbolem iepewości sadardowej jes u (od ag. uceraiy), kóry moża zapisywać a róże sposoby, p. u, u(x) lub u(sężeie NaCl). Zaleą ego

3 zapisu jes o, że iformacja o wielkości mierzoej może być wyrażoa słowie, co uławia worzeie dokumeacji pomiaru. Należy jedak pamięać, że u ie jes fukcją ylko liczbą! Niepewość sadardowa pomiarów bezpośredich Przypuśćmy, że wykoaliśmy serię pomiarów bezpośredich wielkości fizyczej orzymując wyiki,.... Jeśli wyiki pomiarów ie są akie same, wówczas za ajbardziej zbliżoą do warości prawdziwej przyjmujemy średią arymeyczą ze wszyskich wyików pomiarów: i i Swierdzeie o jes ym bardziej słusze im większa jes liczba przeprowadzoych pomiarów (dla, ). W celu określeia iepewości sadardowej posługujemy się w ym wypadku sposobem ypu A, czyli korzysamy ze wzoru a odchyleie sadardowe średiej u( ) s i ( ) i ( ) Jeśli aomias wyiki pomiarów ie wykazują rozrzuu, czyli (), ()..., lub eż gdy isieje ylko jede wyik pomiaru, wówczas iepewość sadardową szacujemy sposobem ypu B. Moża p. wykorzysać iformację o iepewości maksymalej określoej przez producea przyrządu pomiarowego, jeśli ie mamy iych dodakowych iformacji, wówczas iepewość sadardową obliczamy ze wzoru u( ). () Dla prosych przyrządów (j. liijka, śruba mikromerycza czy ermomer) jako częso moża przyjąć działkę elemearą przyrządu (p. l mm dla pomiaru długości za pomocą liijki). W wielu wypadkach eksperymeaor usala wielkość iepewości maksymalej kierując się własym osądem. Przykłady:. Dla pomiaru czasu za pomocą sopera przyjmuje się 0, s, chociaż działka elemeara dla ego przyrządu o 0.0 s. Jes o związae z czasem reakcji człowieka włączającego i wyłączającego soper. Przy pomiarze długości sołu za pomocą liijki o długości 0 cm iepewość maksymala będzie z pewością większa iż mm (elemeara działka przyrządu), ze względu a koieczość kilkakroego przykładaia miarki.

4 . W elekroiczych przyrządach cyfrowych iepewość maksymala podawaa jes przez producea w isrukcji obsługi i jes zwykle kilkakroie większa od działki elemearej. Najczęściej zależy oa od wielkości mierzoej i zakresu a kórym mierzymy Z: c + cz Gdy wysępują oba ypy iepewości (z. zarówo rozrzu wyików jak i iepewość wzorcowaia) i żada z ich ie może być zaiedbaa (z. obie są ego samego rzędu), wówczas iepewość sadardową (całkowią) obliczamy ze wzoru ( ) u( ) s +. () Niepewość sadardowa pomiarów pośredich iepewość złożoa (u c ) W przypadku pomiarów pośredich wielkość mierzoą Y obliczamy korzysając ze związku fukcyjego, kóry moża zapisać w ogólej posaci: Y f,,..., ), gdzie symbolami ( k,,..., k ozaczamy k wielkości fizyczych mierzoych bezpośredio. Zakładamy, że zae są wyiki pomiarów ych wielkości,,..., k oraz ich iepewości sadardowe u ( ), u( ),..., u( Y Y k f (,,..., k ). Wyik (końcowy) pomiaru oblicza się wówczas ze wzoru: ) W przypadku pomiarów pośredich ieskorelowaych (z. gdy każdą z wielkości,...,, mierzy się iezależie) iepewość złożoą wielkości Y szacujemy przy pomocy przybliżoego wzoru: (,,..., k ) u ( j ) k f uc ( Y). () j j k Niepewość rozszerzoa Niepewość sadardowa całkowicie i jedozaczie określa warość wyiku, jedak do wioskowaia o zgodości wyiku pomiaru z iymi rezulaami (p. z warością abelaryczą) oraz dla celów komercyjych i do usalaia orm przemysłowych, zdrowia, bezpieczeńswa ip. Międzyarodowa Norma wprowadza pojęcie iepewości rozszerzoej ozaczaej symbolem U (dla pomiarów bezpośredich), lub U c (dla pomiarów pośredich). Warość iepewości rozszerzoej oblicza się ze wzoru U ( ) ku( ) lub U c ( ) kuc ( ). (6)

5 Liczba k, zwaa współczyikiem rozszerzeia, jes umowie przyjęą liczbą wybraą ak, aby w przedziale ± U ( ) zalazła się większość wyików pomiaru porzeba dla daych zasosowań. Warość współczyika rozszerzeia mieści się ajczęściej w przedziale -. W większości zasosowań zaleca się przyjmowaie umowej warości k. Zapis wyików pomiaru Wyiki pomiaru zapisujemy zawsze łączie z iepewością i jedoską. Niepewość podajemy zawsze z dokładością do dwu cyfr, zaś liczbę cyfr zaczących wyiku dobieramy ak, aby osaia cyfra rezulau i iepewości ależały do ego samego rzędu. Dla iepewości sadardowych zalecay jes zapis z użyciem awiasów, zaś dla iepewości rozszerzoej sosoway jes zapis z użyciem symbolu ±. Przykłady zapisu Dobrze: Niepewość sadardowa: m 00,0 g, u(m), mg m 00,0() g m 00,0(0,00) g Niepewość rozszerzoa: Źle: m 00,0 g, U (m) 0,0070 g m (00,0 ± 0, 0070) g m 00,0 g ie podao iepewości, m 00,0(0,00) g osaie cyfry rezulau i iepewości ie są ego samego rzędu, m 00,0 g, u(m) mg przy zapisie iepewości podao zby mało cyfr, m 00,07(0,00) g - przy zapisie iepewości podao zby dużo cyfr. Przykład opracowaia wyików pomiaru W celu wyzaczeia przyspieszeia ziemskiego przeprowadzoo pomiary czasu spadku ciała z pewej wysokości. Wysokość spadku h zmierzoo -kroie aśmą miericzą z podziałką milimerową uzyskując za każdym razem wyik 70 mm. Czas spadku zmierzoo razy orzymując asępujące wyiki (w s) 0, 09, 0,, 0, 0, 0, 0, 0, 0. Dokładość czasomierza wyosiła 0,00 s, zaś iepewość sysemayczą związaą z wyborem chwili włączeia i wyłączeia oszacowao a 0,0 s. Obliczyć z ych daych przyspieszeie ziemskie i jego iepewość.

6 Przyspieszeie ziemskie będziemy obliczać ze wzoru h g. Warość g orzymamy wsawiając do powyższego rówaia średie arymeycze wysokości spadku ( h ) oraz czasu spadku ( ) (wzór ()). Dla daych z ego przykładu mamy: h 70mm,7 m, (0,09 + 0, + 0,0 + 0,0 + 0,0) s 0,07 s,,7 m m sąd g 9,87 (0,07 s) s Aby obliczyć iepewość złożoą pomiaru pośrediego g musimy ajpierw określić iepewości sadardowe pomiaru czasu i wysokości. Oszacowaie iepewości sadardowej (bezpośrediego) pomiaru czasu u(): Ocea ypu A: Korzysając ze wzoru () oraz z abeli obliczamy odchyleie sadardowe średiej : Nr pomiaru i [s] i [ms] i [ms ] 0,09 0, 0,0 0,0 0,0,8,8,8, 6,,,0 7,8 0, 8, Suma: 8,80 8,80 ms s, ms,0 ms Ocea ypu B: Możemy przyjąć, że iepewość maksymala związaa z pomiarem czasu wyika przede wszyskim z iepewości chwili włączeia i wyłączeia, a zaem wyosi 0, 0s 0 ms (zaiedbujemy przy ym 0-kroie miejszą iepewość związaą z dokładością czasomierza). Niepewość sadardowa ypu B wyosi zaem,8 ms (wzór ()). Jak widać w ym wypadku ależy uwzględić oba ypy iepewości sadardowych (poieważ są oe ego samego rzędu). Osaeczie więc całkowia iepewość sadardowa pomiaru czasu wyosi (wzór ()): u ( ) (,0 +,8 ) ms 6, ms 0,006 s. Końcowy wyik pomiaru czasu moża zapisać w posaci: 0,07(0,006) s. Oszacowaie iepewości sadardowej (bezpośrediego) pomiaru wysokości u(h): Poieważ w ym wypadku ie wysąpił rozrzu wyików więc poprzesaiemy a określeiu iepewości sadardowej ypu B. Najmiejsza działka przyrządu pomiarowego wyosi w ym wypadku mm. Poieważ jedak pewie wpływ a wyik pomiaru może mieć rówież sposób usawieia miarki oraz sposób odczyu, rozsądie będzie przyjąć, że iepewość maksymala ego pomiaru jes większa od działki elemearej p. dwukroie: h mm. Zgodie ze wzorem (), iepewość sadardowa pomiaru wysokości wyosi zaem: u( h) h /, mm 0,00 m, a więc h 70,0(,) mm. Oszacowaie iepewości złożoej pomiaru pośrediego u c (g): Korzysamy ze wzoru (). Obliczmy ajpierw pochode cząskowe: 6

7 g (, h) h g h (, h),. Aby iepewość u c (g) wyrażoa była w m/s, przy podsawiaiu daych do wzoru () musimy pamięać o uzgodieiu jedosek ( i u() ależy wyrazić w s, zaś h i u(h) ależy wyrazić w m). u c h,700 m ( ) ( ) 0,00 m 0,006s u h + + u ( 0,07 s) ( 0,07 s) m m m ( 8, ,07) 0,07 0, u c s s s Jak widać, przyczyek do iepewości złożoej u c (g) związay z iepewością pomiaru wysokości okazał się zaiedbywalie mały. Obliczeie iepewości rozszerzoej U c (g): m m Podsawiając dae do wzoru (6) orzymujemy: U c uc 0, 0,8. s s Osaeczie końcowy rezula pomiaru przyspieszeia ziemskiego, kóry możemy porówywać z wielkością ablicową, wygląda asępująco: g ( 9,87 ± 0,8) m/s 7

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Gretl konstruowanie pętli Symulacje Monte Carlo (MC)

Gretl konstruowanie pętli Symulacje Monte Carlo (MC) Grel kosruowaie pęli Symulacje Moe Carlo (MC) W Grelu, aby przyspieszyć pracę, wykoać iesadardową aalizę (ie do wyklikaia ) możliwe jes użycie pęli. Pęle realizuje komeda loop, kóra przyjmuje zesaw iych

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Spis treści Przedmowa... 4 Wykaz niektórych oznaczeń... 5 1.,, Liczby losowe"... 6 2. Generatory liczb losowych o rozkładzie równomiernym... 8 2.1.

Spis treści Przedmowa... 4 Wykaz niektórych oznaczeń... 5 1.,, Liczby losowe... 6 2. Generatory liczb losowych o rozkładzie równomiernym... 8 2.1. Spis reści Przedmowa... 4 Wykaz iekórych ozaczeń... 5.,, Liczby losowe"... 6. Geeraory liczb losowych o rozkładzie rówomierym... 8.. Wprowadzeie... 8.. Geeraory liiowe... 0... Opis... 0... Okres geeraora.....3.

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Mapowanie rozkładu temperatury w przestrzeniach magazynowych praktyczne podejście

Mapowanie rozkładu temperatury w przestrzeniach magazynowych praktyczne podejście Fa r m a c j a p r z e m y s ł o wa Mapowaie rozkładu temperatury w przestrzeiach magazyowych praktycze podejście Michał Kucharczyk, Bartłomiej Slusarski LSMW Sp. z o.o. Total Life Sciece Solutios Oddział

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Podstawy zarządzania finansami przedsiębiorstwa

Podstawy zarządzania finansami przedsiębiorstwa Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie Zespół Szkół Tehizyh w Skarżysku-Kamieej Sprawozdaie PRCOWN ELEKTRYCZN ELEKTRONCZN imię i azwisko z ćwizeia r 1 Temat ćwizeia: UKŁDY REGULCJ NTĘŻEN PRĄDU rok szkoly klasa grupa data wykoaia. Cel ćwizeia:

Bardziej szczegółowo

Fale elektromagnetyczne i optyka

Fale elektromagnetyczne i optyka Fale elekromageycze i opyka Pole elekrycze i mageycze Powsaie siły elekromooryczej musi być związae z powsaiem wirowego pola elekryczego Zmiee pole mageycze wywołuje w kaŝdym pukcie pola powsawaie wirowego

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych Iwetta Budzik-Nowodzińska SZACOWANIE WARTOŚCI DOCHODOWEJ PRZEDSIĘBIORSTWA STUDIUM PRZYPADKU Wprowadzeie Dochodowe metody wycey wartości przedsiębiorstw są postrzegae, jako ajbardziej efektywe sposoby określaia

Bardziej szczegółowo

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r.

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia 18 paździerika 2012 r. w sprawie szczegółowego zakresu obowiązków uzyskaia

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice

Ocena ekonomicznej efektywności przedsięwzięć inwestycyjnych w elektrotechnice. 2. Podstawowe pojęcia obliczeń ekonomicznych w elektrotechnice opracował: prof. dr hab. iż. Józef Paska, mgr iż. Pior Marchel POLITECHNIKA WARSZAWSKA Isyu Elekroeergeyki, Zakład Elekrowi i Gospodarki Elekroeergeyczej Ekoomika w elekroechice laboraorium Ćwiczeie r

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

wirnika (w skrócie CPW). Jako czujniki położenia wirnika najczęściej stosuje się czujniki hallotronowe.[1]

wirnika (w skrócie CPW). Jako czujniki położenia wirnika najczęściej stosuje się czujniki hallotronowe.[1] Zeszyy Probleowe aszyy Elekrycze Nr 7/5 149 Jausz Heańczyk, Krzyszof Krykowski Poliechika Śląska, Gliwice BADANIA SYULACYJNE I LABORAORYJNE SILNIKA P BLDC WYKORZYSUJĄCEGO CZUJNIK POŁOŻENIA WIRNIKA W OBWODZIE

Bardziej szczegółowo

Studia ekonomiczne 1 Economic studies nr 1 (LXXVI) 2013. Witold Kwaśnicki * w ekonomii

Studia ekonomiczne 1 Economic studies nr 1 (LXXVI) 2013. Witold Kwaśnicki * w ekonomii Sudia ekoomicze 1 Ecoomic sudies r 1 (LXXVI) 13 Wiold Kwaśicki, Problemy aalizy wymiarowej w ekoomii Wiold Kwaśicki * Problemy aalizy wymiarowej w ekoomii Ekoomia główego uru (a zwłaszcza ekoomia eoklasycza)

Bardziej szczegółowo

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Zmiany w zarządzaniu jakością w polskich szpitalach

Zmiany w zarządzaniu jakością w polskich szpitalach Łopacińska Hygeia Public I, Tokarski Health 2014, Z, Deys 49(2): A. 343-347 Zmiay w zarządzaiu jakością w polskich szpitalach 343 Zmiay w zarządzaiu jakością w polskich szpitalach Quality maagemet chages

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

Jak skutecznie reklamować towary konsumpcyjne

Jak skutecznie reklamować towary konsumpcyjne K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800

Bardziej szczegółowo

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE 4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.

Bardziej szczegółowo

Dlaczego potrzebna jest reforma ochrony danych w UE?

Dlaczego potrzebna jest reforma ochrony danych w UE? Dlaczego potrzeba jest reforma ochroy daych w UE? Uija dyrektywa o ochroie daych z 1995 r. staowiła kamień milowy w historii ochroy daych osobowych. Jej podstawowe zasady, zapewiające fukcjoowaie ryku

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

OCHRONA WIBROAKUSTYCZNA ZAŁOGI MOTOROWYCH JACHTÓW MORSKICH Z SILNIKIEM STACJONARNYM

OCHRONA WIBROAKUSTYCZNA ZAŁOGI MOTOROWYCH JACHTÓW MORSKICH Z SILNIKIEM STACJONARNYM 1-2008 PROBLEMY EKSPLOATACJI 161 Jausz GARDULSKI Politechika Śląska, Katowice OCHRONA WIBROAKUSTYCZNA ZAŁOGI MOTOROWYCH JACHTÓW MORSKICH Z SILNIKIEM STACJONARNYM Słowa kluczowe Morskie jachty motorowe,

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects ISSN 1733-8670 ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA E X P L O - S H I P 2 0 0 6 Adrzej Burzyński Aaliza dokładości wskazań obiektów

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

PERSPECTIVES OF STATISTICAL METHODS IN DESIGN OF TRADING STRATEGIES FOR FINANCIAL MARKETS USING HIERARCHICAL STRUCTURES AND REGULARIZATION

PERSPECTIVES OF STATISTICAL METHODS IN DESIGN OF TRADING STRATEGIES FOR FINANCIAL MARKETS USING HIERARCHICAL STRUCTURES AND REGULARIZATION STUDIA INFORMATICA 2013 Volume 34 Number 2A (111) Alia MOMOT Politechika Śląska, Istytut Iformatyki Michał MOMOT Istytut Techiki i Aparatury Medyczej ITAM PERSPEKTYWY ZASTOSOWAŃ METOD STATYSTYCZNYCH W

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

Na podstawie art. 55a ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2013 r. poz. 1409) zarządza się, co następuje:

Na podstawie art. 55a ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2013 r. poz. 1409) zarządza się, co następuje: Projekt z dia 16.12.2013 r. Rozporządzeie Miistra Ifrastruktury i Rozwoju 1) z dia.. 2013 r. w sprawie metodologii obliczaia charakterystyki eergetyczej budyku i lokalu mieszkalego lub części budyku staowiącej

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Zakład Systemów Zasilania (Z-5) Opracowanie nr 292/Z5 z pracy statutowej pt.

Zakład Systemów Zasilania (Z-5) Opracowanie nr 292/Z5 z pracy statutowej pt. Zakład Systemów Zasilaia (Z-5) Opracowaie r 292/Z5 z pracy statutowej pt. Aaliza istiejących w Polsce regioalych różic wartości czyików wpływających a koszt eergii używaej w telekomuikacyjych systemach

Bardziej szczegółowo

Materiał pomocniczy dla nauczycieli kształcących w zawodzieb!

Materiał pomocniczy dla nauczycieli kształcących w zawodzieb! Projekt wsp,ł.iasoway ze 4rodk,w Uii Europejskiej w ramach Europejskiego Fuduszu Społeczego Materiał pomociczy dla auczycieli kształcących w zawodzieb "#$%&'( ")*+,"+(' -'#.,('#. przygotoway w ramach projektu

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

2. Trójfazowe silniki prądu przemiennego

2. Trójfazowe silniki prądu przemiennego 2. Trójfazowe siliki prądu przemieego Pierwszy silik elektryczy był jedostką prądu stałego, zbudowaą w 1833. Regulacja prędkości tego silika była prosta i spełiała wymagaia wielu różych aplikacji i układów

Bardziej szczegółowo

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa 48 Warość przedsiębiorswa 1.3. Meody pomiaru efeku kreacji warości przedsiębiorswa Przesłaki pomiaru efeku kreacji warości przedsiębiorswa Aby kocepcja zarządzaia warością mogła być wprowadzoa w Ŝycie,

Bardziej szczegółowo

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia Ewelia Majka, Katarzya Kociuba-Adamczuk, Mariola Bałos Wpływ religijości a ukształtowaie postawy wobec eutaazji The impact of religiosity o the formatio of attitudes toward euthaasia Ewelia Majka 1, Katarzya

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 203 ANDRZEJ JAKI POMIAR I OCENA EFEKTYWNOŚCI KREOWANIA WARTOŚCI W PRZEDSIĘBIORSTWIE Słowa kluczowe: efekywość

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Współpraca instytucji pomocy społecznej z innymi instytucjami

Współpraca instytucji pomocy społecznej z innymi instytucjami Projekt 1.16 Koordyacja a rzecz aktywej itegracji jest współfiasoway przez Uię Europejską w ramach Europejskiego Fu duszu Społeczego Współpraca istytucji pomocy społeczej z iymi istytucjami a tereie gmiy,

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ Nr 573 Ekoomia XXXIX 2001 BŁAŻEJ PRUSAK Katedra Ekoomii i Zarządzaia Przedsiębiorstwem METODY OCENY PROJEKTÓW INWESTYCYJNYCH Celem artykułu jest przedstawieie metod

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

Projekt z dnia 8.07.2013 r.

Projekt z dnia 8.07.2013 r. Projekt z dia 8.07.2013 r. Rozporządzeie Miistra Trasportu, Budowictwa i Gospodarki Morskiej 1) z dia.. 2013 r. w sprawie metodologii obliczaia charakterystyki eergetyczej budyku i lokalu mieszkalego lub

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9.

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. Literatura: P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. A. Zięba, 2001, Natura rachunku niepewności a

Bardziej szczegółowo

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r. Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe

Bardziej szczegółowo

Konica Minolta Optimized Print Services (OPS) Oszczędzaj czas. Poprawiaj efektywność. Stabilizuj koszty. OPS firmy Konica Minolta

Konica Minolta Optimized Print Services (OPS) Oszczędzaj czas. Poprawiaj efektywność. Stabilizuj koszty. OPS firmy Konica Minolta Koica Miolta Optimized Prit Services (OPS) Oszczędzaj czas. Poprawiaj efektywość. Stabilizuj koszty. OPS firmy Koica Miolta Optimized Prit Services OPS Najlepszą metodą przewidywaia przyszłości jest jej

Bardziej szczegółowo

Kluczowy aspekt wyszukiwania informacji:

Kluczowy aspekt wyszukiwania informacji: Wyszukiwaieiformacjitoproceswyszukiwaiawpewymzbiorze tychwszystkichdokumetów,którepoświęcoesąwskazaemuw kweredzietematowi(przedmiotowi)lubzawierająiezbędedla Wg M. A. Kłopotka: użytkowikafaktyiiformacje.

Bardziej szczegółowo

Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW

Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW 1. Wstęp Pomiarem jest procesem pozawczm, któr umożliwia odwzorowaie właściwości fizczch obiektów w dziedziie liczb. Sam proces pomiarow jest ciągiem czości

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Akustyczno-fonetyczne cechy mowy polskiej

Akustyczno-fonetyczne cechy mowy polskiej II PRACOWNIA FIZYCZNA Akustyczo-foetycze cechy mowy polskiej Opis ćwiczeia w ramach II Pracowi Fizyczej Adrzej Wicher Aleksader Sęk Jacek Koieczy Istytut Akustyki UAM Pozań, 5 . WSTĘP... 3. SYGNAŁY ORAZ

Bardziej szczegółowo

SUPLEMENTY MAGNEZU I POTRZEBA ICH STOSOWANIA W DIETACH DZIECI ZDROWYCH I Z CELIAKIĄ

SUPLEMENTY MAGNEZU I POTRZEBA ICH STOSOWANIA W DIETACH DZIECI ZDROWYCH I Z CELIAKIĄ ŻYWNOŚĆ. Nauka. Techologia. Jakość, 29, 4 (65), 295 32 ANNA WOJTASIK, HANNA KUNACHOWICZ, JERZY SOCHA 1 SUPLEMENTY MAGNEZU I POTRZEBA ICH STOSOWANIA W DIETACH DZIECI ZDROWYCH I Z CELIAKIĄ Streszczeie Na

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

WYKORZYSTANIE WYKRESÓW CZTEROPOLOWYCH W BADANIACH SPOŁECZNO-EKONOMICZNYCH 1

WYKORZYSTANIE WYKRESÓW CZTEROPOLOWYCH W BADANIACH SPOŁECZNO-EKONOMICZNYCH 1 Agieszka Staimir Uiwersytet Ekoomiczy we Wrocławiu WYKORZYSTANIE WYKRESÓW CZTEROPOLOWYCH W BADANIACH SPOŁECZNO-EKONOMICZNYCH 1 Wprowadzeie W badaiach społeczo-ekoomiczych bardzo często występują zmiee

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Moment skrawania w procesie gwintowania PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieronim Korzeniewski,

Moment skrawania w procesie gwintowania PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieronim Korzeniewski, fot. Thikstock Momet skrawaia w procesie gwitowaia PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieroim Korzeiewski, INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

Metody i systemy detekcji nieszczelności rurociągów dalekosiężnych (1)

Metody i systemy detekcji nieszczelności rurociągów dalekosiężnych (1) Metody i systemy detekcji ieszczelości rurociągów dalekosiężych (1) Ryszard Sobczak Mateusz Turkowski Adrzej Bratek Marci Słowikowski Adam Bogucki Niezależie od tego, jak staraie rurociąg został zaprojektoway

Bardziej szczegółowo

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę

Bardziej szczegółowo

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II (Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II 1 Zapoznanie z wymaganiami edukacyjnymi i kryeriami oceniania. Regulamin pracowni i przepisy BHP. 1. Jak opisujemy ruch? (1.1, 1., 1.5, 1.6,

Bardziej szczegółowo

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ]

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ] Załączik 5 do Umowy r EPS/[ ]/ sprzedaży eergii elektryczej a pokrywaie strat powstałych w sieci przesyłowej zawartej pomiędzy Polskie Sieci Elektroeergetycze Spółka Akcyja [ ] a WARUNKI ZABEZPIECZENIA

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

FINANSE PRZEDSIĘBIORSTW konwersatorium, 21 godzin, zaliczenie pisemne, zadania + interpretacje

FINANSE PRZEDSIĘBIORSTW konwersatorium, 21 godzin, zaliczenie pisemne, zadania + interpretacje mgr Joaa Sikora jsikora@ wsb.gda.pl joaasikora@wordpress.com FINANS PRZDSIĘBIORSTW kowersaorium, 21 godzi, zaliczeie piseme, zadaia + ierpreacje Treści programowe Wprowadzeie do fiasów korporacyjych podsawowe

Bardziej szczegółowo