Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ (r) = k ψ σ(r) = k â kσ e ik r (22.1) â kσ e ik r (22.2) â kσ, â k σ operatory anihilacji i kreacji jednocząstkowych stanów fermionowych k wektor falowy elektronu σ rzut spinu na oś z Spełniają one relacje antykomutacji Operator gęstości fermionów [ ψ σ (r), ψ σ (r )] + = [ ψ σ(r), ψ σ (r )] + = 0 (22.3) n(r) df = σ ψ σ(r) ψ N σ (r) = δ(r r i ) (22.4) i=1 N wartość własna operatora N (całowita liczba fermionów w układzie) Operator całkowitej liczby fermionów N = df d 3 r n(r) (22.5)
2 Rozdział 22. Metoda funkcjonałów gęstości Hamiltonian gazu elektronowego znajdującego się w polu zewnętrznym o potencjale v(r) Ĥ = T + V + Û (22.6) Operator energii kinetycznej T = h2 2m d 3 r ψ (r) 2 ψ(r) (22.7) Operator energii potencjalnej elektronów w polu zewnętrznym V = d 3 r v(r) ψ (r) ψ(r) = d 3 rv(r) n(r) (22.8) operator energii potencjalnej oddziaływań elektronów z sobą Û = κe2 2 d 3 rd 3 r n(r) n(r ) r r (22.9) κ = 1/4πε 0 22.2 Gęstość jako zmienna podstawowa Gaz elektronowy w stanie podstawowym Ψ (nie zdegenerowany). Gęstość elektronów n(r) = df Ψ n(r) Ψ = d 3N rψ (r) n(r)ψ(r) (22.10) E energia całkowita układu N elektronów Ψ(r) = r Ψ N-elektronowa funkcja falowa r = (r 1,r 2,...,r N ) Ψ stan własny operatora Hamiltona układu N elektronów (Ĥ E) Ψ = 0 (22.11) Ψ(r) jest wyznaczona za pomocą równania własnego (22.11), zapisanego w reprezentacji położeniowej, w którym hamiltonian H jest określony przez podanie potencjału zewnętrznego v(r). Twierdzenie (I) Gęstość elektronów n(r) jest jednoznacznym funkcjonałem potencjału zewnętrznego v(r).
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 3 Twierdzenie (II) Potencjał zewnętrzny v(r) jest jednoznacznym funkcjonałem gęstości n(r) (z dokładnością do stałej addytywnej). Wniosek (A) Energia całkowita układu N elektronów E = Ψ Ĥ Ψ = Ψ T + Û + V Ψ jest jednoznacznym funkcjonałem gęstości elektronowej n(r). Twierdzenie (II) wraz z wnioskiem (A) stanowi podstawę formalizmu funkcjonałów gęstości. 22.3 Zasada wariacyjna dla funkcjonału E Energia stanu podstawowego E jest najmniejszą wartością funkcjonału E[n] otrzymaną z minimalizacji E[n ] względem dowolnych gęstości n (r) odpowiadających tej samej wartości N całkowitej liczby elektronów. Warunek minimum funkcjonału E[n] dla n(r) możemy wyrazić jako δe[n] = 0 (22.12) przy czym d 3 rn(r) = N (22.13) N = całkowita liczba elektronów 22.4 Równanie Poissona Energia potencjalna oddziaływań pomiędzy elektronami U[n] = E H [n] + E x [n] + E c [n]. (22.14) Interpretacja poszczególnych wyrazów we wzorze (22.14) (1) E H [n] = klasyczna energia kulombowska oddziaływań elektronów z sobą (tzw. energia Hartree) E H [n] = e d 3 rv H (r)n(r), (22.15) 2 gdzie v H jest potencjałem Hartree.
4 Rozdział 22. Metoda funkcjonałów gęstości (2) E x [n] = energia wymienna (3) E c [n] = energia korelacji Potencjał elektrostatyczny ϕ(r) df = v(r) + v H (r) (22.16) v(r) = potencjał zewnętrzny (pochodzi na ogół od ładunku dodatniego). Potencjał elektrostatyczny ϕ(r) znajdujemy z równania Poissona 2 ϕ(r) = e ε 0 [n(r) n + (r)]. (22.17) 22.5 Potencjał chemiczny Dla prawidłowej gęstości n(r) δe[n] δn(r) = µ (22.18) µ = mnożnik Lagrange a o wymiarze energii Dla dużych N czynnik Lagrange a µ jest równy potencjałowi chemicznemu układu N elektronów E N N v(r) = µ (22.19) Potencjał chemiczny interpretujemy jako energię potrzebną do zwiększenia liczby elektronów w układzie o jeden. 22.6 Jednocząstkowa postać problemu wielu cząstek Rozważmy fikcyjny układ N fermionów o masach m (równych masie elektronu), poruszających się w zewnętrznym polu statycznym o potencjale v s (r) oraz nie oddziaływujących pomiędzy sobą Zakładamy, że gęstość fermionów w fikcyjnym układzie n(r) jest taka sama jak w rzeczywistym układzie N elektronów, który jest pod działaniem zewnętrznego potencjału v(r). Pełny hamiltonian Ĥs tego fikcyjnego układu jest sumą hamiltonianów jednocząstkowych ĥ = h2 2m 2 + v s (r). (22.20)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 5 Wielocząstkowa funkcja falowa jest wyznacznikiem Slatera zbudowanym z jednocząstkowych funkcji falowych ψ i (r), które spełniają jednocząstkowe równania Schrödingera ] [ h2 2m 2 + v s (r) ψ i (r) = ε i ψ i (r) (22.21) Gęstość fermionów N n(r) = ψ i (r) 2 (22.22) i=1 ψ i (r) ortonormalne funkcje własne równania (22.21), które odpowiadają N najniższym poziomom energetycznym ε i (i = 1,...,N) Jest to sposób na znajdowanie gęstości rzeczywistego układu N fermionów, która odpowiada najniższej energii tego układu. Metoda ta może być stosowana do opisu stanu podstawowego układu oddziaływujących fermionów. 22.7 Opis rzeczywistego gazu elektronowego: przybliżenie lokalne (LDA) Zakładamy, że w stanie podstawowym: n(r) = n s (r). Energia wymienno-korelacyjna E xc [n] df = G[n] T s [n] (22.23) T s energia kinetyczna układu fermionów nieoddziałujących z sobą, ale poddanych działaniu statycznego pola zewnętrznego o potencjale v s (r) g(r) ma wymiar gęstości energii G[n] = d 3 rg(r) (22.24) Przybliżenie lokalne (Local-Density Approximation = LDA): wyrażamy wszystkie funkcjonały występujące w teorii układu N elektronów w postaci podobnej do (22.24). Jeżeli n(r) zmienia się wtedy wystarczająco powoli, to stosowalny jest wzór na gęstość energii jednorodnego gazu elektronowego g(n(r)) = n(r)[t(n(r)) + ε x (n(r)) + ε c (n(r))] (22.25)
6 Rozdział 22. Metoda funkcjonałów gęstości t średnia energia kinetyczna pojedynczego elektronu ε x średnia energia wymienna pojedynczego elektronu (obliczoną w przybliżeniu Hartree-Focka) ε c średnia energia korelacji pojedynczego elektronu E xc [n] = d 3 rε xc (n(r))n(r) (22.26) ε xc (n) = ε x (n)+ε c (n) = średnia energia wymienno-korelacyjna pojedynczego elektronu w jednorodnym gazie elektronowym o gęstości n. Warunek istnienia minimum funkcjonału energii v eff [n;r] + δt s[n] δn(r) = µ (22.27) Potencjał efektywny v eff [n;r] df = ϕ(r) + δe xc[n] δn(r) (22.28) odgrywa rolę potencjału jednocząstkowego v s (r). Równanie (22.27) zastępujemy układem równań } { h2 2m 2 + v eff [n;r] ψ i (r) = ε i ψ i (r) (22.29) o gęstości n(r) = N ψ i (r) 2 (22.30) i=1 Układ równań (22.29) i (22.30) możemy rozwiązać metodą iteracyjną, np. startując z próbnego v eff. Otrzymamy w ten sposób rozwiązania samouzgodnione.
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 7 Rys. 22.1. Schemat blokowy procedury iteracyjnej. Wymienno-korelacyjna część potencjału chemicznego jednorodnego gazu elektronowego o gęstości n µ xc (n) df = δe xc[n] δn(r) = d dn (nε xc(n)) (22.31) 22.7.1 Przybliżenie LDA dla energii wymienno-korelacyjnej Naturalna jednostka długości dla gazu elektronowego a B atomowy promieniem Bohra r średnia odległość elektron-elektron ( 1 n = 4 3a πr3) r s = r a B (22.32)
8 Rozdział 22. Metoda funkcjonałów gęstości Dla r s < 1: przybliżenie Gell-Manna Bruecknera ε xc (r s ) = 0.916 r s + 0.062 ln r s 0.096 [Ry] (22.33) Dla 2 r s 5 przybliżenie Wignera ε xc (r s ) = 0.916 r s 0.88 r s + 7.8 [Ry] (22.34) Dla dowolnej gęstości elektronów: przybliżona formuła, zaproponowana przez Hedina i Lundqvista ε c (x) = Ce2 2 x = r s /A, C = 0.045 i A = 21 Gęstość energii wymienno-korelacyjnej [ (1 + x 3 ) ln(1 + 1 x ) + x 2 x2 1 ] 3 (22.35) ε xc = ε x + ε c = 0.916 r s + ε c (22.36) 22.8 Energia całkowita układu N elektronów w stanie podstawowym E[n] = + N i=1 ε i κe2 2 d 3 rd 3 r n(r)n(r ) r r d 3 rn(r)[ε xc (n(r)) µ xc (n(r))] (22.37)