17 Naturalne jednostki w fizyce atomowej
|
|
- Czesław Wójtowicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 7 Naturalne jednostki w fizyce atomowej W systemie CGS wszystkie wielkości fizyczne wyrażane są jako potęgi trzech fundamentalnych jednostek:. długości (l) cm,. masy (m) g, 3. czasu (t) s. Wymiary innych wielkości, z którymi mamy do czynienia w mechanice wyprowadza się z równań. Przykładowo z równań wynika p mv, E mv, F dp dt, df x da η v x y [pęd] m l t, [energia] m l t, [siła] m l t, [lepkość] m l t l ( l t l ) m l t. (7.) Inne jednostki: funt, cal, ar są pochodnymi tych podstawowych. W elektrodynamice pojawia się ładunek. Nowa jakość wymaga nowej jednostki, np. Coulomb czy Faraday. Dziś wiemy, że ładunek odpowiada pewnej liczbie elektronów, np: C 6, elektronów. (7.) Niezależna jednostka nie jest potrzebna, można użyć jednostek podstawowych, korzystając z prawa Coulomba (nie da się tego jednak zrobić dla grawitacji): skąd dostajemy F e e r [ładunek] [siła] / l m / l 3/ t. (7.3) Zatem podstawowa jednostka ładunku w systemie CGS to [ładunek] g/ cm 3/. s Jest tak, bo napisaliśmy prawo Coulomba bez stałej proporcjonalności. Gdy e e i r cm, wtedy siła F dyna. Taki ładunek nazywamy skrótowo esu lub stat Coulomb. Wynosi on około, elektrona. 88
2 W układzie MKS (SI) jest inaczej. Nowe jednostki ad hoc wprowadza się dowolnie dodając stałe proporcjonalności do wzorów. W MKS Coulomb jest w gruncie rzeczy równoważny pewnej liczbie elektronów (ilu). Definicja: jest to ładunek przenoszony przez prąd o natężeniu jednego ampera w czasie sekundy. Prawo Coulomba F 4πε 0 Q Q r. (7.4) Argument, który pozwala w CGS zdefiniować ładunek, można rozciągnąć na wszystkie wielkości elektrodynamiczne: F e E + e v B (7.5) ale też F e E + e c v B (7.6) wersja jednostek Gaussa. Stąd pole magnetyczne [pole magnetyczne] [siła] [ładunek] [siła] [siła] / l m/ l / t. (7.7) Kiedy jednak opuszczamy świat ludzkich rozmiarów, układ CGS przestaje być naturalny. Świadczą o tym duże potęgi /0 w stałych h czy c wyrażonych w CGS. h h π, (63) 0 7 g cm s, c, cm s, E ev, (49) 0 g cm s. System jednostek, w którym każda wielkość może być wyrażona przez h, c jest powszechnie używany w fizyce atomowej, jądrowej, astrofizyce, fizyce wysokich energii. Jest to Naturalny Układ Jednostek. m, l oraz t są niezależne, można jednak użyć innych niezależnych jednostek: [działanie] m l t, [prędkość] l t, [energia] m l t. (7.8) Każda wielkość D w CGS może być przeliczona na te jednostki gdzie [D] m a l b t c E α h β c γ m α+β l (α+β)+γ t α β γ, (7.9) α a b c, β b + c, γ b a. (7.0) 89
3 W tych jednostkach mamy [masa] ev c, [czas] ev h, [długość] ev h c, [pęd] ev c, [siła] ev h c, [ciśnienie] ev 4 h 3 c 3, [ładunek ] h c, [pole magnetyczne] ev h 3/ c 3/. Powody, dla których ten układ jednostek jest dobry: Prostota. Można opuścić h i c. To można było zrobić w CGS, elminując np. cm i sekundę wyrażając wszystkie wielkości w gramach. Nie robi się tego, bo nie ma po temu żadnej fundamentalnej przyczyny i dlatego, bo lubimy różne jednostki dla różnych wielkości. W przypadku jednostek naturalnych h i c są wyróżnione i stanowią naturalne jednostki działania i prędkości dla zjawisk atomowych. Druga niedogodność jest zrównoważona przez wygodę. Czynniki konversji: ( MeV 0 6 ev, fm 0 3 cm). hc 97, 37053(59) MeV fm, h 6, 580(0) 0 MeV s, (7.) Naturalność. Stała Plancka i prędkość światła wyznaczają skalę zjawisk kwantowych. Przykłady. Energia odpowiadająca masie elektronu to 5 kev, więc w jednostkach naturalnych m e 5 kev. (7.) Jakiej odległości to odpowiada: l e h m e c hc m e c 97 5 MeV fm kev 385 fm 3, 85 0 cm. To jest długość fali Comptona elektronu. Jaki to czas? t e l e c, 8 0 s. (7.3) To jest czas, jaki potrzba, żeby światło przeleciało długość fali Comptona elektronu. 90
4 Jaka to częstość? ν e t e 7, Hz (7.4) co stanowi częstość każdego z dwóch fotonów (promieni światła) wyemitowanych w wyniku anihilacj elektron-pozyton. Morał: wszystkie interesujące skale kwantowe i relatywistyczne związane z elektronem są naturalne w Naturalnym Układzie Jednostek.. Elektron o energii 0 ev rozprasza się na atomie pod kątem 0, radiana. Jaką odległość wgłąb atomu penetruje taki elektron? Najpierw policzmy jego pęd p me ( 5 kev 0 ev) / 3, kev. (7.5) Dla małych przekazów pędu w przybliżeniu p θp 0, 64 kev.użyjemy teraz zasady nieoznaczoności (bez /, bo chodzi o rząd wielkości) x h p (0, 64 kev) 97 MeV fm 0, 64 kev 3, 0 3 cm 3, A, czyli 4 rzędy wielkości mniej niż promień atomu Bohra. 3. Zgodnie z (7.3) kwadrat ładunku elektronu ma ten sam wymiar co hc: [e ] m l3 t [ h c]. Ile wynosi e / hc, która to kombinacja jest bezwymiarową miarą siły oddziaływań elektromagnetycznych? Z doświadczenia e, [cm 3 g/s ], hc 3, [cm 3 g/s ], stąd α ELM e hc Dokładna wartość (37, (6))., 30 3, 6 0, (7.6) 4. W klasycznej elektrodynamice siła może być dowolnie duża poprzez kumulację ładunku w jednym miejscu. W fizyce atomowej są ograniczenia: p < mc aby nie powstawały pary elektron-pozyton, więc x > h/mc (długość fali Comptona). Ponieważ nie możemy zlokalizować elektronu, więc energia oddziaływania dwóch elektronów jest rzędu (lub mniej) V e h/mc. Naturalną skalą energii dla tego problemu jest energia równoważna masie spoczynkowej elektronu mc : V mc e hc α ELM. (7.7) Zatem oddziaływania elektronów są słabe. 9
5 5. Wróćmy do skal atomowych. Długość fali Comptona elektronu wynosi λ h/mc. Ponieważ mamy do dyspozycji α ELM, które jest bezwymiarowe, możemy budować różne skale wielkości posiadające różne potęgi e. Np.: r e λα ELM e mc, (7.8) gdzie h się uprościło. Jest to więc wielkość klasyczna, często nazywana klasycznym promieniem elektronu. Precyzyjniej, jest to skala klasycznego rozkładu ładunku, którego energia potencjalna jest rzędu masy elektronu. Nie odgrywa ona roli w mechanice kwantowej. Bardziej interesująca jest wielkość a 0 λ α ELM h me, (7.9) czyli promień Bohra. Zwróćmy uwagę, że a 0 jest jedyną wilkością o wymiarze długości, która zawiera h, m oraz e, bez c. A zatem jest to jedyna skala długości, która charakteryzuje nierelatywistyczne efekty kwantowe w atomie. Analogicznie jedyna nierelatywistyczna skala energii (bez c) daje się zapisać jako E 0 e me4 a 0 h (7.0) co rzeczywiście odpowiada energii stanu podstawowego z dokładnością do E E 0 /. 6. Inny przykład analizy wymiarowej: poniewż α ELM jest bezwymiarowa, e / h ma wymiar prędkości. Zatem predkość elektronu w atomie wodoru v c α Ruch w polu magnetycznym 8. Poziomy Landaua Dotychczas omówiliśmy dość szczegółowo oddziaływanie cząstki naładowanej z zewnętrznym polem elektrycznym (atom wodoru). Aby opisać także ruch w polu magnetycznym, musimy skwantować odpowiedni hamiltonian klasyczny H ( p q A( r, m c t)) + qv ( r, t), (8.) gdzie q jest ładunkiem cząstki, zaś c prędkością światła. Przypomnijmy, że pola elektryczne i magnetyczne wyrażają się przez potencjały w następujący sposób: E c A t V, B A. (8.) 9
6 O ile część elektryczna nie przedstawia problemów, to część zawierająca potencjał wektorowy A nie daje się prosto skwantować, gdyż potencjał A jest funkcją r, a r nie komutuje z operatorem pędu. Jako przykład rozpatrzmy ruch elektronu w stałym polu magnetycznym B (0, 0, B). Wygodnie przyjąć potencjał wektorowy w postaci: Stąd Ĥ A B y 0 0 [ ( p q A c ) (ˆp x + qb ˆp x + ˆp z + ˆp y + m e Tu separację zmiennych przeprowadzamy zakładając. (8.3) ) c y + ˆp y + ˆp z ( qb m e c ] ) y + qb m e c yˆp x. (8.4) ψ(x, y, z) f(y)e ip xx/ h e ip zz/ h. (8.5) Podstawiając funkcję (8.5) do równania Schrödingera możemy zastąpić operatory ˆp z i ˆp x przez wartości własne. Oznaczając otrzymujemy Ĥ ω qb m e c p z + ˆp y + m e ω y + ωyp x + p x p z + ˆp y + m e ω ω (8.6) ( y + p x m e ω y + m e ω p x ). (8.7) Zmieniając zmienne otrzymujemy η y + p x m e ω (8.8) Ĥ p z + ˆp η + m e ω η. (8.9) Jest to hamiltonian oscylatora o częstości ω (plus ruch swobodny w kierunku z): ( E N,pz h ω N + ) + p z hω (N + ) + p z. (8.30) 93
7 Zwróćmy uwagę, że poziomy te są nieskończenie razy zdegenerowane ze względu na p x. Inna metoda znalezienia energii poziomów Landaua opiera się na uzyciu innego cechowania: A y B x. (8.3) 0 Wówczas Definiując nowe operatory mamy Zbadajmy komutator [ Ĥ (ˆp x + qb ) ( c y + ˆp y qb ) ] c x + ˆp z [(ˆpx h ω + m e ωy ) (ˆpx + m e ωx ) ] + ˆp z. (8.3) m e h ω m e h ω ˆπ x ˆp x + m e ωy, ˆπ y ˆp y m e ωx, (8.33) me h ω me h ω [ˆπ x, ˆπ y ] m e h ω Ĥ h ω [ˆπ x + ˆπ y ] + ˆp z. (8.34) { m e ω [ˆp x, x] + } m e ω [y, ˆp y ] i. (8.35) Widzimy zatem, że relacja komutacji [ˆπ x, ˆπ y ] przypomina (z dokładnością do h) relację komutacji między położeniem a pędem. Skonstruujmy nowe operatory â (ˆπ x + iˆπ y ), â (ˆπ x iˆπ y ), (8.36) których relacja komutacji jest w rzeczywistości relacją komutacji operatorów kreacji i anihilacji: [â, â ] i { [ˆπ x, ˆπ y ] + [ˆπ y, ˆπ x ]}. (8.37) Z kolei czyli Zatem â â (ˆπ x + ˆπ y + i [ˆπ x, ˆπ y ] ) (ˆπ x + ˆπ y ), (8.38) (ˆπ x + ˆπ y) â â +. (8.39) [ Ĥ h ω â â + ] + ˆp z. (8.40) 94
8 Dostajemy stąd, że energia poziomów Landaua E h ω (n + ) + p z (8.4) w zgodzie z (8.30). Zgodnie z naszymi poprzednimi rozważaniami, poziomy Landaua są nieskończenie zdegenerowane. Aby się przekonać, że w cechowaniu (8.3) mamy także do czynienia z nieskończoną degeneracją, zapiszmy operator anihilacji â w reprezentacji położeń: â { me h ω me h ω ˆp x + ( m e ωy + i ) { i h ( x + i y W reprezentacji położeń stan podstawowy spełnia równanie ˆp y )} m e ωx i } m e ω (x + iy). (8.4) â r 0 0, (8.43) co jest równoważne równaniu różniczkowemu {( x + i ) + m } e ω (x + iy) r 0 0. (8.44) y h Wielkość h/m e ω ma wymiar kwadratu długości i ma sens kwadratu promienia klasycznej orbity elektronu w ruchu w polu magnetycznym B. Oznaczmy: Wprowadźmy nowe zmienne r B h m e ω. (8.45) u x + iy, v x iy. Wówczas u ( x i ), y ( v x + i ) y (8.46) i równanie (??) przyjmuje postać ( v + ) u r 0 0. (8.47) 4rB Rozwiącanie tego równania jest bardzo proste r 0 f(u)e uv 4r B, (8.48) 95
9 gdzie f(u) jest dowolną funkcją spełniającą warunek normalizacji. Zatem rzeczywiście stan podstawowy jest nieskończnie zdegenerowany. Łatwo pokazać, że stany wzbudzone, które otrzymujemy działając na stan podstawowy operatorem â i r ( B u ) v (8.49) 4rB nie znosi tej degeneracji. 96
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
(U.13) Atom wodoropodobny
3.10.200 3. U.13 Atom wodoropodobny 122 Rozdział 3 U.13 Atom wodoropodobny 3.1 Model Bohra przypomnienie Zaznaczmy na wstępie o czym już wspominaliśmy w kontekście zasady nieoznaczoności, że model Bohra
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Mechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych
r. akad. 004/005 II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych Sprzężenie spin - orbita jest drugim, po efektach relatywistycznych, źródłem rozszczepienia subtelnego
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego
3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,
Efekt naskórkowy (skin effect)
Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.
1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
(U.14) Oddziaływanie z polem elektromagnetycznym
3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa
λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o
W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac
Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
Wykład 18: Elementy fizyki współczesnej -2
Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;
Zasada nieoznaczoności
3.10.2004 5. Zasada nieoznaczoności 63 Rozdział 5 Zasada nieoznaczoności 5.1 Formalna zasada nieoznaczoności 5.1.1 Średnie i dyspersje. Pojęcia wstępne Niech Â, ˆB oraz Ĉ będą operatorami hermitowskimi
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
21 Symetrie Grupy symetrii Grupa translacji
21 Symetrie 21.1 Grupy symetrii Spróbujmy odpowiedzieć sobie na pytanie, jak zmienia się stan układu kwantowego pod wpływem transformacji układu współrzędnych. Najprostszą taką transformacją jest np. przesunięcie
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
II.1 Serie widmowe wodoru
II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
Wykład Budowa atomu 1
Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia
Rozdział 6. Równania Maxwella. 6.1 Pierwsza para
Rozdział 6 Równania Maxwella Podstawą elektrodynamiki klasycznej są równania Maxwella, które wiążą pola elektryczne E i magnetyczne B ze sobą oraz z ładunkami i prądami elektrycznymi. Pola E i B są funkcjami
Droga do obliczenia stałej struktury subtelnej.
Artykuł pobrano ze strony eioba.pl Droga do obliczenia stałej struktury subtelnej. Stała struktury subtelnej, jest równa w przybliżeniu 1/137,03599976. α jest bezwymiarową kombinacją ładunku, stałej Plancka,
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
h 2 h p Mechanika falowa podstawy pˆ 2
Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
IV. TEORIA (MODEL) BOHRA ATOMU (1913)
IV. TEORIA (MODEL) BOHRA ATOMU (1913) Bohr zastanawiał się, jak wyjaśnić strukturę widm liniowych. Elektron musi krążyć, aby zrównoważyć siłę Coulomba (przyciągającą). Skoro krąży to doznaje przyspieszenia
Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a
Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA
ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Wykład 13 Mechanika Kwantowa
Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne
Zadania z mechaniki kwantowej
Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego
EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Podstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
I. Przedmiot i metodologia fizyki
I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej
Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Równanie Schrödingera
Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy