Podstawy Automatyki. wykład 1 ( ) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
|
|
- Artur Mucha
- 9 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Automatyki wykład 1 ( ) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1
2 Sprawy organizacyjne Książki: Marek Żelazny; Podstawy Automatyki; PWN Zaliczenie: 2x kolokwium egzamin (45%) Wykład: 2
3 Automatyka? dyscyplina naukowa zajmująca się teorią i praktyczną realizacją urządzeń sterujących procesami technologicznymi bez udziału człowieka teoria sterowania automatyzacja sterowanie procesami złożonymi pomiary automatyczne przetwarzanie i utrwalanie danych mechatronika 3
4 Proces technologiczny Sterowanie procesem sterowanie procesem oddziaływanie na strumień energii lub materiałów w taki sposób, aby zrealizowany został zamierzony przebieg procesu 4
5 Mechanizacja vs. Automatyzacja 5
6 Pojęcia podstawowe automatyki sygnał dowolna wielkość fizyczna występująca w procesie sterowania będąca funkcją czasu wykorzystywany do przekazywania informacji oznaczenia: WE x przykłady sygnałów elektryczne napięcie (U) prąd (I) częstotliwość (f) WY - y pneumatyka hydraulika mechaniczne przesunięcie ciśnienie (p) 6
7 Pojęcia podstawowe automatyki informacja dane zawarte w wartości lub kształcie sygnału element (człon) automatyki dowolny zespół, podzespół, przyrząd lub urządzenie występujące w układzie automatyki, w którym można wyróżnić sygnał wejściowy (WE / I) i wyjściowy (WY / O) 7
8 Pojęcia podstawowe automatyki układ automatyki zespół elementów stanowiących: obiekt sterowania, urządzenie sterujące zapewniające przebieg sterowanego procesu zgodnie z założonym algorytmem. 8
9 Rodzaje układów automatyki otwarty w sygnał wymuszenia z zakłócenia x sygnał sterujący y wielkość sterowana US urządzenie sterujące O obiekt sterowany przykład 9
10 Rodzaje układów automatyki zamknięty w sygnał wymuszenia z zakłócenia x sygnał sterujący y wielkość sterowana US urządzenie sterujące R - regulator O obiekt sterowany ε uchyb regulacji ε = x0 - y regulator układ mający za zadanie generowanie sygnału sterującego powodującego minimalizację ε 10
11 Rodzaje układów automatyki zamknięty 11
12 Klasyfikacja URA podział ze względu na zadanie układu stabilizujące (stałowartościowe) x0 = const. cel: utrzymanie stałej wartości wielkości regulowanej (y) programowe x0 = x0(t) 12
13 Klasyfikacja URA podział ze względu na zadanie układu nadążne x0 = x0(w) w wartość zmieniająca się w nieznany sposób (losowy) w czasie y u 45º po ło że ni e (w ) ε R 13
14 Klasyfikacja URA podział ze względu na zadanie układu sterowania optymalnego cel: maksymalizacja lub minimalizacja funkcji wielu zmiennych f (x1,..., xn) sens funkcji f: wydajność produkcji, zysk, koszt produkcji, zużycie paliwa 14
15 Klasyfikacja URA podział ze względu na zadanie układu sterowania sekwencyjnego cel: zapewnienie wykonania składowych operacji procesu technologicznego w określonej kolejności 15
16 Klasyfikacja URA podział ze względu na sposób działania elementów układu układy o działaniu ciągłym wszystkie elementy układu działają w sposób ciągły w czasie i poziomie => sygnały są funkcjami ciągłymi i mogą przybierać każdą wartość ze zbioru ich zmienności 16
17 Klasyfikacja URA podział ze względu na sposób działania elementów układu układy o działaniu dyskretnym co najmniej jeden element układu działa w sposób dyskretny => sygnał przyjmuje tylko wybrane wartości lub występuje tylko w niektórych chwilach czasu cyfrowe sygnał na wyjściu przyjmuje tylko kilka określonych wartości DO 0, 1 AO
18 Klasyfikacja URA podział ze względu na sposób działania elementów układu układy o działaniu dyskretnym impulsowe sygnał na wyjściu pojawia się w określonych chwilach czasu (impulsowania) nośnik informacji: wysokość (amplituda), szerokość, częstotliwość impulsów. 18
19 Klasyfikacja URA podział ze względu na liniowość elementów układu układy liniowe zawierają wyłącznie elementy o prostoliniowych charakterystykach statycznych opisywane za pomocą liniowych równań różniczkowych, różnicowych, całkowych lub algebraicznych układy nieliniowe układ zawierający co najmniej jeden element nieliniowy 19
20 Opis matematyczny układów dynamicznych ciągłych układ dynamiczny: dowolny układ fizyczny rozpatrywany z punktu widzenia jego zachowania się w czasie, opisywany przez rachunek różniczkowy => równania różniczkowe nazywane są równaniami dynamiki, charakterystyka czasowa - graficzna reprezentacja rozwiązania równania różniczkowego charakterystyka statyczna graficzna reprezentacja zależności y=f(x) w stanie ustalonym (t-> ) 20
21 Opis matematyczny układów dynamicznych ciągłych Model matematyczny ciągłego elementu lub układu składa się z: równania charakterystyki statycznej, równania różniczkowego lub operatorowego, które opisuje własności statyczne i dynamiczne w otoczeniu wybranego punktu pracy Jeśli charakterystyka statyczna jest: liniowa równanie różniczkowe lub operatorowe nieliniowa (krzywoliniowa) równanie różniczkowe i operatorowe linearyzacja 21
22 Linearyzacja statyczna Jeśli przesuniemy oś rzędnych do punktu x0, w badaniach ograniczymy sygnał wejściowy do wartości xmax=x1 to możemy układ traktować jako liniowy 22
23 Linearyzacja dynamiczna linearyzacja dynamiczna zastąpienie krzywoliniowego odcinka charakterystyki statycznej odcinkiem prostoliniowym, stycznym do rzeczywistej charakterystyki statycznej w wybranym punkcie 23
24 Linearyzacja dynamiczna Jeśli człon automatyki opisywany jest przez równanie różniczkowe nieliniowe postaci: f x, x,, x n, y, y,, y n =0 gdzie: x = i 1 dx dt x = i d x i=2,3,, n i dt to, o ile istnieją pochodne funkcji f dostatecznie wysokiego rzędu względem wszystkich argumentów, możemy dokonać linearyzacji równania (1) przez rozwinięcie w szereg Taylora w punkcie pracy (x0, y0) i odrzucenie składników nieliniowych. 24
25 Linearyzacja dynamiczna Rozwinięcie funkcji f w szereg Taylora ma postać: f x0, y0 x x0 x x n n n x 0 x 0 x 0 x 0 n + y y0 y n y + y 0 y 0 y f f x x0 2 2 x R x 0 x 0 reszta x część nieliniowa N - wartość pochodnej funkcji f względem zmiennej x w punkcie (x 0 0, y0) 25
26 Linearyzacja dynamiczna Aby otrzymać równanie zlinearyzowane odrzucamy wszystkie składniki nieliniowe oraz część R. Charakterystykę statyczną otrzymamy z równania (1) po przyrównaniu wszystkich pochodnych do zera. f x 0, y 0 + n x x 0 x x n x x 0 x 0 x 0 x 0 y y 0 y n y n + y 0 y 0 y 0 2 f 2 f x x x R x 0 x 0 reszta część nieliniowa N 26
27 Linearyzacja dynamiczna 2 f 2 f n n 2 f x 0, y 0 x x 0 x n x y y 0 n y 2 2 x x x 2 R x 0 x 0 y 0 x 0 y 0 x 0 x 0 N Niech x=x x 0 y= y y 0 to x = x y = y oraz przyjmując, że f x 0, y 0 =0 otrzymujemy zlinearyzowane równanie różniczkowe dla przyrostów Δx oraz Δy n n x x n x y n y =0 x 0 x 0 y 0 x 0 y 0 27
28 Linearyzacja dynamiczna Gdyby człon automatyki opisywało równanie nieliniowe pierwszego rzędu postaci f x, x, y, y =0 to zlinearyzowane równanie różniczkowe dla przyrostów Δx oraz Δy miało by postać x x y y =0 x 0 x 0 y 0 y 0 28
29 Przykład Wyznacz charakterystykę statyczną i zlinearyzowane równanie różniczkowe dla g y y = x h y funkcji: równanie to można przedstawić w postaci: f x, y, y = g y y x h y=0 uwzględniając ponadto cechę charakterystyki statycznej f x 0, y 0 =0 gdzie: x, y stałe 0 0 otrzymujemy: gdzie y0 g y 0 y 0 x0 h y 0=0 y 0=0 ostatecznie więc x0 h y 0=0 y0= x h x0 29
30 Przykład Linearyzacja przez fozwinięcie w szereg Taylora n n x x n x y n y =0 x 0 x 0 y 0 x 0 y 0 f x, y, y = g y y x h y=0 x y y =0 x 0 y 0 y 0 30
31 Przykład x y y =0 x 0 y 0 y 0 f x, y, y = g y y x h y=0 = 1 x 0 h y h = = y 0 y 0 2 y0 h y y 1 =h =h y y 2 y = g y 0 =g y 0 y 0 Równanie zlinearyzowane ma postać: x h 2 y0 y g y 0 y =0 Δx sygnał WE, Δy sygnał WY 31
32 Opis dynamiki układów automatyki Metody opisu dynamiki elementów liniowych można rozciągnąć na elementy linearyzowane, ale trzeba pamiętać o przyjętych ograniczeniach. Własności ciągłego liniowego elementu automatyki o parametrach stałych (stacjonarnego) można opisać za pomocą równania różniczkowego liniowego o stałych współczynnikach, który ma postać: n m bi y i = a j x j i=0 j =0, m n 2 d j x x = j dt j Jeśli a j = f t i bi= f t to równanie (2) nazywanym niestacjonarnym (opisuje układ niestacjonarny). 32
33 Opis dynamiki układów automatyki n m bi y i = a j x j i=0 j =0, m n 2 Równanie charakterystyki statycznej: a0 y= x b0 W przypadku układu automatyki o wielu WE i WY ich model stanowi układ równań różniczkowych. 33
34 Ocena dynamiki układów automatyki By ocenić dynamikę układu automatyki wymagane jest rozwiązanie równania (układu równań) różniczkowego. Sposoby rozwiązania równania różniczkowego: podejście klasyczne stworzenie równania charakterystycznego y a y by=0 r 2 ar b=0 obliczenie pierwiastków =b2 4ac r1 = b 2a r 2= b 2a wyznaczenie stałych na podstawie warunków brzegowych metoda operatorowa 34
35 Metoda operatorowa pozwala zastąpić równanie różniczkowo-całkowe równaniem algebraicznym W celu przekształcenia wykorzystywane jest przekształcenie całkowe postaci: b X s = x t K t, s dt a które przyporządkowuje funkcji x(t) pewną funkcję X(s) przy założeniu, że całka jest zbieżna (ma granicę skończoną). Przekształcenie to można ogólnie zapisać w postaci: X s =T [ x t ] a jego odwrotność: x t =T 1 [ X s ] 35
36 Przekształcenie Fourier'a X j = x t e j t dt 0 odwrotne przekształcenie Fouriera + 1 j t x t = X j e d 2 - TF 3 TF transformata Fouriera ω częstość kołowa Ponieważ w (3) x(t) składa się z nieskończonej liczby nietłumionych drgań harmonicznych dlatego dla większości sygnałów (np. skok jednostkowy) całka nie jest zbieżna. 36
37 Przekształcenie Laplace'a t j t X s = x t e e 0 WT dt= x t e st 0 dt s= j O WT współczynnik tłumienia O oryginał s operator całkowy X s = L[ x t ] Przekształcenie Laplace'a istnieje dla funkcji czasu spełniających warunki: x(t)=0 dla t<0 x(t) jest funkcją ciągłą x(t) narasta szybciej niż WT 37
38 Odwrotne przekształcenie Laplace'a 1 x t = 2 j j X s e st ds dla t 0 j 1 x t = L [ X s ] 38
39 Zastosowanie rachunku operatorowego 39
40 Własności rachunku operatorowego twierdzenie o dodawaniu L[a1 x1 t a 2 x 2 t ]=a 1 L [ x 1 t ] a 2 L [ x 2 t ] twierdzenie o iloczynie stałej i funkcji L[a x t ]=a L[ x t ]=a X s twierdzenie o transformacie pochodnej + L [ x t ]=s X s x 0 x 0+ wartość początkowa funkcji x t w punkcie t=0 + prawostronna granica 40
41 Własności rachunku operatorowego twierdzenie o transformacie II pochodnej L [ x t ]=s X s sx 0 x 0 twierdzenie o transformacie n-tej pochodnej [ ] d n x t n n 1 + n 1 + L =s X s s x 0 x 0 n dt twierdzenie o transformacie całek [ t ] X s L x t dt = s 0 41
42 Własności rachunku operatorowego twierdzenie o transformacie całek ogólnie X s L. x t dt = n s [ ] n twierdzenie o przesunięciu rzeczywistym L[ x t ]=e s X s przesunięcie czasowe 42
43 Przykład Rozwiąż równanie postaci dy =5 e 2t dt o warunku początkowym y 0 =0 ponieważ L[ x t ]=s Y s y 0+ L[e at ]= więc 1 s a 1 s Y s y 0 =5 s [ Y s = 5 s s 2 ] 1 1 t = e 1 s s ponieważ L więc 5 y t = e 2t
44 KONIEC CDN... Pytania 44
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Bardziej szczegółowoAutomatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Bardziej szczegółowoTransmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Bardziej szczegółowoPlan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoPodstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
Bardziej szczegółowoprzy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoRys. 1 Otwarty układ regulacji
Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący
Bardziej szczegółowoMechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Bardziej szczegółowoProcedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Bardziej szczegółowoSposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Bardziej szczegółowoI. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY DYNAMICZNE 2. Kod przedmiotu: Esd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
Bardziej szczegółowoDyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Bardziej szczegółowoWprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan
Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń
Bardziej szczegółowoRys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Bardziej szczegółowoELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Bardziej szczegółowoTransformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Bardziej szczegółowoTematyka egzaminu z Podstaw sterowania
Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych
Bardziej szczegółowoZadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego
Bardziej szczegółowoPolitechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI
Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)
Bardziej szczegółowoTeoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Bardziej szczegółowo1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
Bardziej szczegółowoPolitechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI
Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Bardziej szczegółowoKatedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Bardziej szczegółowoObiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).
SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Bardziej szczegółowoI. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: Ma 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów Mechatronicznych
Bardziej szczegółowoPodstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Bardziej szczegółowoTEORIA DRGAŃ Program wykładu 2016
TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba
Bardziej szczegółowoSterowanie napędów maszyn i robotów
Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna
Bardziej szczegółowoZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI
Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania
Bardziej szczegółowoSterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
Bardziej szczegółowoAkademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka
Bardziej szczegółowoAutomatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
Bardziej szczegółowoE2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. P KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
Bardziej szczegółowoĆwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze
Bardziej szczegółowoIII. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH Tak zwana identyfikacja charakteru i właściwości obiektu regulacji, a zwykle i całego układu pomiarowo-regulacyjnego, jest
Bardziej szczegółowoZaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli
Bardziej szczegółowoPrzeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Bardziej szczegółowoCHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
Bardziej szczegółowoWykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Bardziej szczegółowoWykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Bardziej szczegółowoPodstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy
Bardziej szczegółowoĆwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Bardziej szczegółowoAutomatyka i Regulacja Automatyczna SEIwE- sem.4
Automatyka i Regulacja Automatyczna SEIwE- sem.4 Wykład 30/24h ( Lab.15/12h ) dr inż. Jan Deskur tel. 061665-2735(PP), 061 8776135 (dom) Jan.Deskur@put.poznan.pl (www.put.poznan.pl\~jan.deskur) Zakład
Bardziej szczegółowoAutomatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji
Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy
Bardziej szczegółowoModele i metody automatyki. Układy automatycznej regulacji UAR
Modele i metody automatyki Układy automatycznej regulacji UAR Możliwości i problemy jakie stwarzają zamknięte układy automatycznej regulacji powodują, że stały się one głównym obiektem zainteresowań automatyków.
Bardziej szczegółowoCzęść 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Bardziej szczegółowoTeoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoPrzekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia:
Warszawa 2017 1 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: zasady budowy schematów blokowych układów regulacji automatycznej na podstawie równań operatorowych;
Bardziej szczegółowoLaboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
Bardziej szczegółowoWykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami
Bardziej szczegółowo13 Równanie struny drgającej. Równanie przewodnictwa ciepła.
Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu
Bardziej szczegółowoPrzekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Bardziej szczegółowoWYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU
WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność
Bardziej szczegółowoPrzekształcenie Z. Krzysztof Patan
Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji
Bardziej szczegółowoUkłady równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Bardziej szczegółowoTeoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l
Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l Prof. dr hab. Wojciech Moczulski Politechnika Ślaska, Wydział Mechaniczny Technologiczny Katedra Podstaw Konstrukcji Maszyn 19 października 2008
Bardziej szczegółowo1. Podstawowe pojęcia
1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany
Bardziej szczegółowoPODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Bardziej szczegółowoMECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba
Bardziej szczegółowoDystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Bardziej szczegółowodr inż. Krzysztof Stawicki
Wybrane zagadnienia teorii obwodów 1 dr inż. Krzysztof Stawicki e-mail: ks@zut.edu.pl w temacie wiadomości proszę wpisać tylko słowo STUDENT strona www: ks.zut.edu.pl/wzto 2 Wybrane zagadnienia teorii
Bardziej szczegółowoWykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Bardziej szczegółowoWykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe
Bardziej szczegółowoModelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński
Modelowanie i obliczenia techniczne dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, WNT Warszawa, 2005. J. Awrejcewicz: Matematyczne modelowanie
Bardziej szczegółowoPodstawy automatyki Bases of automatics. Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoProwadzący: Prof. PWr Jan Syposz
Automatyzacja w inżynierii środowiska Prowadzący: Wykład 1 Prof. PWr Jan Syposz Zakres tematyczny wykładu Wprowadzenie do techniki regulacji i sterowania Regulatory Programowanie sterowników swobodnie
Bardziej szczegółowoAiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Bardziej szczegółowo1. Transformata Laplace a przypomnienie
Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych
Bardziej szczegółowoPodstawy automatyki Bases of automatic
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Podstawy automatyki
Bardziej szczegółowoCelem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.
1 DWICZENIE 2 PRZENOSZENIE IMPULSÓW PRZEZ CZWÓRNIKI LINIOWE 2.1. Cel dwiczenia Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.
Bardziej szczegółowo- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Bardziej szczegółowoAnaliza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Bardziej szczegółowo20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Bardziej szczegółowoWYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka
Bardziej szczegółowoOpis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Bardziej szczegółowoPodstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi
Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:
Bardziej szczegółowoTeoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa
Bardziej szczegółowoNumeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Bardziej szczegółowoMECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Bardziej szczegółowo