Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F

Wielkość: px
Rozpocząć pokaz od strony:

Download "Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F"

Transkrypt

1 Scriptiones Geometrica Volumen I (2014), No. 6F, Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa odbić w zwierciad lach p laskich Odbicie w zwierciadle p laskim w sensie geometrycznym opisuje symetria osiowa. Z prawa odbicia bowiem (k at padania jest równy k atowi odbicia promienia świetlnego). Zatem jesżeli obrazem punktu A jest punkt A (rys. 6F-01), to: odcinek [AA ] jest prostopad ly do p laszczyzny zwierciad la ǫ i środek S odcinka [AA ] leży na p laszczyźnie ǫ. Rys. 6F-01: Ilustracja zasady odbicia w zwierciadle p laskim Edwin Koźniewski c 2014 Politechnika Bia lostocka, Bia lystok

2 2 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F 1.1. Odbicie w lustrze wody Rys. 6F-02: Za lożenia do zadania 6F.01: odwzorowany w perspektywie pionowej prostopad lościenny budynek [ABCDA B C D ]([A s B s C s D s A s B s C s D s ]) oraz krawȩdzie niecki basenu z wod a (linie proste przechodz ace przez punkt K(K s )); poziom wody utrzymuje siȩ na wysokości linii przechodz acych przez punkt K 0 (cdn) Rys. 6F-03: Znajdujemy obraz punktu K w symetrii wzglȩdem p laszczyzny lustra wody, w perspektywie pionowej jest koniec odcinka o pocz atku K s i środku K 0 (cdn) Zadanie 6F.01. Prostopad lościenny budynek znajduje siȩ obok basenu z wod a. Wyznaczyć odbicie tego budynku w lustrze wody basenu.

3 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F 3 Rys. 6F-04: Konstruujemy proste przechodz ace przez punkt K s i odpowiednio przez Z 1 i Z 2 (korzystaj ac z podzia lek zbiegu) (cdn) Rys. 6F-05: Wyznaczamy punkt wspólny P s prostych: jednej zawieraj acej krawȩdź [A B ]([A s B s ]) budynku oraz drugiej zawieraj acej krawȩdź niecki basenu przechodz ac a przez punkt K(K s ) (cdn) Rozwi azanie. W perspektywie pionowej przyjmujemy rzuty budynku i basenu (rys. 6F-02) i na widocznych ścianach obudowy niecki basenu zaznaczamy poziom wody (p laszczyzna określona przez dwie proste przechodz ace przez punkt K 0 ). P laszczyzna ta jest p laszczyzn a zwierciad la - symetrii. Rzuty przyjmujemy (konstruujemy) w oparciu o podzia lki zbiegu (por. ), gdyż punkty zbiegu Z 1 i Z 2 oraz punkt g lówny O τ nie mieszcz a siȩ jednocześnie na rysunku. Budynek (wielościan [ABDCC A B D ] o widocznych na rysunku w rzucie krawȩdziach [A s B s ],

4 4 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F Rys. 6F-06: Znajdujemy punkt P 0 poziomu lustra wody wzglȩdem którego odbije siȩ punkt P s oraz prost a w p laszczyźnie poziomu lustra wody zawart a w p laszczyźnie ściany A s A s B s B s domu (leż ac a w p laszczyźnie symetrii) (cdn) Rys. 6F-07: Znajdujemy punkt A 0 oraz punkt A s - obraz punktu A s po odbiciu w wodzie (punkt A 0 jest środkiem odcinka [A s A s ]) (cdn) [A s C s ], [A s B s ], [A s C s ], [A s A s ], [B s B s ], [C s C s ]) i krawȩdzie niecki basenu (proste przechodz ace w rzucie przez punkt K s ) odbij a siȩ w wodzie symetrycznie wzglȩdem p laszczyzny poziomej (równoleg lej do p laszczyzny podstawy) przechodz acej przez punkt K 0 ). Zgodnie z zasad a odbicia (rys. 6F-01) i w lasnościami perspektywy pionowej obrazem punktu K(K s ) jest punkt K (K s ). Jest to koniec odcinka o środku K 0 i drugim końcu K(K s ) (w per-

5 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F 5 spektywie pionowej kierunek pionowy - prostopad ly do p laszczyzny podstawy jest równoleg ly do t la, zatem zachowany jest w rzucie środek odcinka). Ponieważ krawȩdzie niecki basenu s a równoleg le do p laszczyzny lustra wody, po odbiciu pozostan a również równoleg le (rys. 6F-04). Nastȩpnie w celu skonstruowania obrazu wierzcho lka A(A s ) odbitego w wodzie wyznaczamy Rys. 6F-08: Znajdujemy odbicie czȩści budynku widocznej w wodzie (czȩści krawȩdzi budynku przechodz acych przez punkt A s ) punkt wspólny P s prostych: jednej zawieraj acej krawȩdź [A B ]([A s B s ]) budynku oraz drugiej zawieraj acej krawȩdź niecki basenu przechodz ac a przez punkt K(K s ) (rys. 6F-05). Punkt A 0 prostej zawieraj acej krawȩdź [AA ] leż acy w p laszczyźnie lustra wody znajdujemy w przeciȩciu prostych A s A s, P 0 Z 1 (rys. 6F-07) Odbicia wnȩtrz Zadanie 6F.02. Dane jest wnȩtrze pokoju z posadzk a kwadratow a na pod lodze, z wnȩk a okienn a i z biurkiem. Należy odbić to wnȩtrze w zwierciadle pionowym, którego p laszczyzna tworzy k at ϕ ze ścian a boczn a. Rozwi azanie. W perspektywie pionowej przyjmujemy rzut wnȩtrza o wymiarach 400cm 250cm 300cm z posadzk a kwadratow a o wymiarach 50cm 50cm, z otworem okiennym o wymiarach 150cm 175cm na wysokości 100cm w odleg lości po 50cm od obu krawȩdzi pionowych ściany (przy za lożeniu, że ściana ma grubość 50cm), z biurkiem o wymiarach (150cm 100cm 75cm z otworem 50cm 100cm 50cm) zajmuj acym na pod lodze 2 3 kwadratów (rys. 6F-09). Posadzka zosta la wyznaczona przez równe odcinki na prostej podstawy, proste równoleg le zbiegaj ace siȩ w punkcie g lównym oraz punkt zbiegu Z 1 = O τ. Konstrukcjȩ wnȩtrza wykonano w uk ladzie zredukowanym. Operacje znajdowania śladów zbiegu kierunków wnȩtrza pokoju i ich odbić w zwierciadle p laskim pionowym wzglȩdem p laszczyzny podstawy zrealizowano nastȩpuj aco. Po przyjȩciu zredukowanego k ladu oka O 1/2x (rys. 6F- 09a) i śladu zbiegu przek atnych kwadratów posadzki zredukowany (G 1/2 1 ) oraz rzeczywisty (G 1 = Z1 45 ) (rys. 6F-09a) skonstruowano promień zbiegu kierunku krawȩdzi p laszczyzny lustra z podstaw a (p laszczyzn a posadzki) określony przez k at ϕ - oś symetrii w p laszczyźnie

6 6 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F Rys. 6F-09: Operacje znajdowania śladów zbiegu kierunków wnȩtrza pokoju i ich odbić w zwierciadle p laskim pionowym wzglȩdem p laszczyzny podstawy: a) zredukowany k lad oka O 1/2x i ślad zbiegu przek atnych kwadratów posadzki zredukowany (G 1/2 1 ) oraz rzeczywisty (G 1 = Z1 45 ); a1) promień zbiegu kierunku krawȩdzi p laszczyzny lustra z podstaw a (p laszczyzn a posadzki) określony przez k at ϕ - oś symetrii w p laszczyźnie zbiegu p laszczyzny podstawy; a2) ślady zbiegu Z 1 = O τ i Z 2 kierunków linii g lównych pokoju (posadzki) i k aty jakie tworz a z osi a symetrii; a3) odbicie promieni zbiegu kierunków linii g lównych pokoju (posadzki); a4) wyznaczenie zredukowanych śladów zbiegu kierunków krawȩdzi p laszczyzny lustra z podstaw a (Z 1/2 0 ) i kierunków g lównych pokoju (Z 1/2 1, Z 1/2 2 ); a5) wyznaczenie rzeczywistych śladów zbiegu kierunków krawȩdzi p laszczyzny lustra z podstaw a (Z 0 ) i odbitych śladów zbiegu kierunków g lównych pokoju (Z 1, Z 2 ) Rys. 6F-10: Wnȩtrze pokoju z biurkiem i odwzorowane charakterystyczne ślady zbiegu

7 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F 7 Rys. 6F-11: Linie proste równoleg le do horyzontu h po odbiciu w lustrze należ a do pȩku o wierzcho lku Z2 (wszystkie punkty krawȩdzi zwierciad la z p laszczyzn a podstawy s a sta le - st ad odpowiadaj ace sobie proste przecinaj a siȩ na tej krawȩdzi) Rys. 6F-12: Linie proste maj ace ślad zbiegu w punkcie g lównym po odbiciu należ a do pȩku o wierzcho lku Z1 (wszystkie punkty krawȩdzi zwierciad la z p laszczyzn a podstawy s a sta le - st ad odpowiadaj ace sobie proste przecinaj a siȩ na tej krawȩdzi) zbiegu p laszczyzny podstawy (rys. 6F-09a1). Nastȩpnie skonstruwano ślady zbiegu Z 1 = O τ i Z2 kierunków linii g lównych pokoju (posadzki) i k aty jakie tworz a z osi a symetrii (rys. 6F-09a2). Odbicie promieni zbiegu kierunków linii g lównych pokoju (posadzki) wykonano w ten sposób, że promienie zbiegu odbito symetrycznie w p laszczyzźnie zbiegu wzglȩdem osi symetrii określonej w uk ladzie zredukowanym przez k at nachylenia ϕ p laszczyzny zwierciad la do p laszczyzny czo lowej pokoju (rys. 6F-09a3). Otrzymano zredukowane ślady zbiegu kierunków krawȩdzi p laszczyzny lustra z podstaw a (Z 1/2 0 ) i kierunków g lównych pokoju (Z 1/2 1,

8 8 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F Z 1/2 2 )(rys. 6F-09a4). Nastȩpnie wyznaczono rzeczywiste ślady zbiegu kierunków krawȩdzi p laszczyzny lustra z podstaw a (Z 0 ) i odbitych śladów zbiegu kierunków g lównych pokoju (Z1, Z 2 ) (rys. 6F-09a5). Na rysunku 6F-10 przyjmujemy już tylko rzeczywiste punkty Rys. 6F-13: Odwzorowanie krawȩdzi ściany i krawȩdzi otworu okiennego: linie proste pionowe po odbiciu w lustrze przechodz a na pionowe (wszak p laszczyzna symetrii jest pionowa). Wysokość linii zbiegaj acych siȩ w punkcie g lównym O τ przenoszona jest za pośrednictwem linii poziomej na p laszczyźnie poziomej Rys. 6F-14: Odwzorowanie wnȩki okiennej (poziome krawȩdzie wnȩki okiennej, równoleg le do linii horyzontu po odbiciu przechodz a przez punkt zbiegu Z 2 ) zbiegu Z 0 Z 1, Z 2, krawȩdź lustra z pod log a przechodz ac a przez punkt Z 0 oraz odwzorowan a czȩść wnȩtrza pokoju wraz z wnȩk a okienn a i biurkiem. Znajdujemy obrazy linii posadzki równoleg lych do horyzontu. Linie proste równoleg le do horyzontu h po odbiciu w lustrze

9 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F 9 Rys. 6F-15: Odwzorowanie biurka: pokazano istotnie nowe linie potrzebne (prowadz ace do) do konstrukcji Rys. 6F-16: Odwzorowanie biurka: pokazano jedynie odwzorowane linie określaj ace biurko należ a do pȩku o wierzcho lku Z2 (wszystkie punkty krawȩdzi zwierciad la z p laszczyzn a podstawy s a sta le - st ad odpowiadaj ace sobie proste przecinaj a siȩ na tej krawȩdzi) (rys. 6F-11). Nastȩpnie znajdujemy obrazy linii posadzki maj acych jako punkt zbiegu punkt g lówny O τ. Linie proste maj ace ślad zbiegu w punkcie g lównym po odbiciu należ a do pȩku o wierzcho lku Z1 (wszystkie punkty krawȩdzi zwierciad la z p laszczyzn a podstawy s a sta le - st ad odpowiadaj ace sobie proste przecinaj a siȩ na tej krawȩdzi) (rys. 6F-12). Rysujemy odbicie otworu okiennego pamiȩtajçc, że wyznaczaj ace go linie przechodz a przez O τ i po odbiciu przez Z2, inne s a pionowe i po odbiciu pozostaj a pionowe. Zwracamy uwagȩ na fakt, że wysokość linii zbiegaj acych siȩ w punkcie g lównym O τ przenoszona jest za pośrednictwem linii poziomej na p laszczyźnie poziomej (rys. 6F-13, rys. 6F-14). Na rysunku 6F-15 pokazano istotnie nowe linie prowadz ace do konstrukcji, rysunku 6F-16 pokazano jedynie odwzorowane

10 10 E. Koźniewski: Geometria odwzorowań inżynierskich, perspektywa odbić... 06F Rys. 6F-17: Odbicie wnȩtrza w zwierciadle po usuniȩciu linii konstrukcyjnych (pomocniczych) linie określaj ace biurko. N rysunku 6F-17 przedstawiono odbicie wnȩtrza w zwierciadle po usuniȩciu linii konstrukcyjnych (pomocniczych). Literatura [Gro95] B. Grochowski: Geometria wykreślna z perspektyw a stosowan a. Wydawnictwo Naukowe PWN. Warszawa [Ott94] F. Otto, E. Otto: Podrȩcznik geometrii wykreślnej. Wydawnictwo Naukowe PWN. Warszawa [Pal85] Z. Pa lasiński: Zasady perspektywy. Skrypt. Politechnika Krakowska im. Tadeusza Kościuszki. Kraków 1985.

Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C

Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Scriptiones Geometrica Volumen I (2014), No. 6C, 1 8. Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa czo lowa wnȩtrza Rys. 6C-01:

Bardziej szczegółowo

Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E

Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E Scriptiones Geometrica Volumen I (2014), No. 6E, 1 14. Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa boczna wnȩtrza

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06A

Geometria odwzorowań inżynierskich rzut środkowy 06A Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. Zadania 10A

Geometria odwzorowań inżynierskich. Zadania 10A Scriptiones Geometrica Volumen I (2014), No. Z10A, 1 7. Geometria odwzorowań inżynierskich. Zadania 10A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Twierdzenia o rozpadzie linii przenikania W

Bardziej szczegółowo

Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D

Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Scriptiones Geometrica Volumen I (2014), No. 6D, 1 9. Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie w perspektywie i perspektywie

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 01

Geometria odwzorowań inżynierskich Zadania 01 Scriptiones Geometrica Volumen I (2007), No. Z1, 1 4. Geometria odwzorowań inżynierskich Zadania 01 Edwin Koźniewski Instytut Inżynierii Budowlanej, Politechnika Bia lostocka 1. Twierdzenie o punkcie wȩz

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 04

Geometria odwzorowań inżynierskich Zadania 04 Scriptiones Geometrica Volumen I (2014), No. Z4, 1 3. Geometria odwzorowań inżynierskich Zadania 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Punkt przebicia p laszczyzny prost a w aksonometrii

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 06

Geometria odwzorowań inżynierskich Zadania 06 Scriptiones Geometrica Volumen I (2014), No. Z6, 1 9. Geometria odwzorowań inżynierskich Zadania 06 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Przenikanie siȩ figur (bry l) w rzutach Monge a

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 02

Geometria odwzorowań inżynierskich Zadania 02 Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 03B

Geometria odwzorowań inżynierskich Wyk lad 03B Scriptionis Geometrica Volumen I (2014), No. 3B, 1 9. Geometria odwzorowań inżynierskich Wyk lad 03B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie wzajemne w aksonometrii Przyk lad 1 Wyznaczyć

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06B

Geometria odwzorowań inżynierskich rzut środkowy 06B Scriptiones Geometrica Volumen I (2014), No. 6B, 1 17. Geometria odwzorowań inżynierskich rzut środkowy 06B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. K lad p laszczyzny Rys. 6B-01: Konstrukcja

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. Zadania 10

Geometria odwzorowań inżynierskich. Zadania 10 Scriptiones Geometrica Volumen I (2014), No. Z10, 1 12. Geometria odwzorowań inżynierskich. Zadania 10 Edwin Koźniewski Zak lad Infoemacji Przestrzennej 1. Cień sfery na p lszczyznȩ 1.1. Jeszcze o kolineacji

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania Przekroje stożka. Twierdzenie Dandelina

Geometria odwzorowań inżynierskich Zadania Przekroje stożka. Twierdzenie Dandelina Scriptiones Geometrica Volumen I (2014), No. Z9, 1 12. Geometria odwzorowań inżynierskich Zadania 09 Przekroje stożka. Twierdzenie Dandelina Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Przekroje

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 03A

Geometria odwzorowań inżynierskich Wyk lad 03A Scriptionis Geometrica Volumen I (2014), No. 3A, 1 17. Geometria odwzorowań inżynierskich Wyk lad 03A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Elementy wspólne prostej i p laszczyzny (okrȩgu

Bardziej szczegółowo

Geometria odwzorowań inżynierskich powierzchnie Wyk lad 05B

Geometria odwzorowań inżynierskich powierzchnie Wyk lad 05B Scriptiones Geometrica Volumen I (2014), No. 5B, 1 11. Geometria odwzorowań inżynierskich powierzchnie Wyk lad 05B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. O powierzchniach maj acych zastosowanie

Bardziej szczegółowo

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty

Bardziej szczegółowo

Geometria odwzorowań inżynierskich dachy 04

Geometria odwzorowań inżynierskich dachy 04 Scriptiones Geometrica Volumen I (2014), No. 4, 1 23. Geometria odwzorowań inżynierskich dachy 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Obroty i k lady Wykorzystywaliśmy już pojȩcie obrotu

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr

Bardziej szczegółowo

Geometria przestrzenna. Stereometria

Geometria przestrzenna. Stereometria 1 Geometria przestrzenna. Stereometria 0.1 Graniastos lupy Graniastos lup to wielościan, którego dwie ściany, zwane podstawami, s a przystaj cymi wielok atami leż acymi w p laszczyznach równoleg lych,

Bardziej szczegółowo

Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej

Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej 1. Perspektywa dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu. Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,

Bardziej szczegółowo

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje. Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut cechowany 07

Geometria odwzorowań inżynierskich rzut cechowany 07 Scriptiones Geometrica Volumen I (2014), No. 7, 1 18. Geometria odwzorowań inżynierskich rzut cechowany 07 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Definicja rzutu cechowanego Rys. 07-01: Definicja

Bardziej szczegółowo

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.

Bardziej szczegółowo

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 01

Geometria odwzorowań inżynierskich Wyk lad 01 Scriptionis Geometrica Volumen I (2014), No. 1, 1 21. Geometria odwzorowań inżynierskich Wyk lad 01 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. O rzutach i elementach niew laściwych w geometrii

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów.

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. Grafika inżynierska geometria wykreślna 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka

Bardziej szczegółowo

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem przebicie ostrosłupa prostą, przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem WSA - wykład VII w dn. 12. I. 2014 r: Przenikanie wzajemne brył nieobrotowych (graniastosłupów,

Bardziej szczegółowo

Geometria wykreślna. 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 6. Punkty

Bardziej szczegółowo

MiNI Akademia Matematyki na Politechnice Warszawskiej

MiNI Akademia Matematyki na Politechnice Warszawskiej MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość.

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość. Grafika inżynierska geometria wykreślna 2. Przynależność. Równoległość. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0 Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...

Bardziej szczegółowo

Geometria odwzorowań inżynierskich powierzchnie 05A

Geometria odwzorowań inżynierskich powierzchnie 05A Scriptiones Geometrica Volumen I (2014), No. 5A, 1 17. Geometria odwzorowań inżynierskich powierzchnie 05A E. Koźniewski Zak lad Informacji Przestrzennej 1. O krzywych i powierzchniach Dotychczas zajmowaliśmy

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Obroty w zadaniach geometrycznych

Obroty w zadaniach geometrycznych Obroty w zadaniach geometrycznych Piotr Grzeszczuk piotrgr@pb.bialystok.pl Wydzia l Informatyki Politechnika Bia lostocka Spotkania z matematyka SIGNUM, Centrum Popularyzacji Matematyki Bia lystok, 15

Bardziej szczegółowo

Łożysko z pochyleniami

Łożysko z pochyleniami Łożysko z pochyleniami Wykonamy model części jak na rys. 1 Rys. 1 Część ta ma płaszczyznę symetrii (pokazaną na rys. 1). Płaszczyzna ta może być płaszczyzną podziału formy odlewniczej. Aby model można

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Geometria odwzorowań inżynierskich w aspekcie CAD

Geometria odwzorowań inżynierskich w aspekcie CAD Scriptiones Geometrica Volumen I (2014), No. 8, 1 11. Geometria odwzorowań inżynierskich w aspekcie CAD Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Odwzorowanie obiektu geometrycznego w aspekcie

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 02

Geometria odwzorowań inżynierskich Wyk lad 02 Scriptionis Geometrica Volumen I (2014), No. 2, 1 21. Geometria odwzorowań inżynierskich Wyk lad 02 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzuty prostok atne na dwie rzutnie - Monge a Rys.

Bardziej szczegółowo

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

GEOMETRIA I GRAFIKA INŻYNIERSKA (1)

GEOMETRIA I GRAFIKA INŻYNIERSKA (1) WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TECHNIKI ŚWIETLNEJ GEOMETRIA I GRAFIKA INŻYNIERSKA (1) 1. WIADOMOŚCI WSTĘPNE 1.1. Informacje o wykładzie i warunkach zaliczenia

Bardziej szczegółowo

Kolektor. Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk. Wykonajmy model kolektora jak na rys. 1.

Kolektor. Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk. Wykonajmy model kolektora jak na rys. 1. Kolektor Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk Wykonajmy model kolektora jak na rys. 1. Rysunek 1 Składa się on z grubszej rury, o zmiennym przekroju, leżącej w płaszczyźnie symetrii kolektora

Bardziej szczegółowo

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych. Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego

Bardziej szczegółowo

Skrypt 26. Stereometria: Opracowanie Jerzy Mil

Skrypt 26. Stereometria: Opracowanie Jerzy Mil Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie

Bardziej szczegółowo

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Wymiarowanie. Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych.

Wymiarowanie. Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych. Wymiarowanie Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych. Wymiarowanie: -jedna z najważniejszych rzeczy na rysunku technicznym

Bardziej szczegółowo

Analiza zrekonstruowanych śladów w danych pp 13 TeV

Analiza zrekonstruowanych śladów w danych pp 13 TeV Analiza zrekonstruowanych śladów w danych pp 13 TeV Odtwarzanie rozk ladów za pomoc a danych Monte Carlo Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka 31 lipca 2015 r. Jakub Cholewiński, pod

Bardziej szczegółowo

METODA RZUTÓW MONGE A (II CZ.)

METODA RZUTÓW MONGE A (II CZ.) RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,

Bardziej szczegółowo

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 9. Aksonometria

Grafika inżynierska geometria wykreślna. 9. Aksonometria Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9.

Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9. Zadanie. Przyk³adowe zdania Napisz równanie prostej przechodz¹cej przez punkty A (, ) i B (, 4 ). Zadanie. Napisz równanie prostej, której wspó³czynnik kierunkowy równy jest, wiedz¹c, e przechodzi ona

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj

Bardziej szczegółowo

Spis treści. Słowo wstępne 7

Spis treści. Słowo wstępne 7 Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl

Bardziej szczegółowo

A. Kasperski, M. Kulej, BO -Wyk lad 5, Optymalizacja sieciowa 1

A. Kasperski, M. Kulej, BO -Wyk lad 5, Optymalizacja sieciowa 1 A. Kaperki, M. Kulej, BO -Wyk lad, Opymalizacja ieciowa 1 Zagadnienie makymalnego przep lywu (MP). Przyk lad. W pewnym mieście inieje fragmen wodoci agów zadany w poaci naȩpuj acej ieci: 1 Luki oznaczaj

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany.

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany. Grafika inżynierska geometria wykreślna 11. Rzut cechowany. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 11. Rzut cechowany.

Bardziej szczegółowo

SZa 98 strona 1 Rysunek techniczny

SZa 98 strona 1 Rysunek techniczny Wstęp Wymiarowanie Rodzaje linii rysunkowych i ich przeznaczenie 1. linia ciągła cienka linie pomocnicze, kreskowanie przekrojów, linie wymiarowe, 2. linia ciągła gruba krawędzie widoczne 3. linia kreskowa

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Równoleg le sortowanie przez scalanie

Równoleg le sortowanie przez scalanie Równoleg le sortowanie przez scalanie Bartosz Zieliński 1 Zadanie Napisanie programu sortuj acego przez scalanie tablicȩ wygenerowanych losowo liczb typu double w którym każda z procedur scalania odbywa

Bardziej szczegółowo

Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych.

Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych. WYMIAROWANIE (w rys. technicznym maszynowym) 1. Co to jest wymiarowanie? Aby rysunek techniczny mógł stanowić podstawę do wykonania jakiegoś przedmiotu nie wystarczy bezbłędne narysowanie go w rzutach

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY Instytut Geologii, Uniwersytet im. A. Mickiewicza w oznaniu GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY prof. UAM, dr hab. Jędrze Wierzbicki racownia Geologii Inżynierskie i Geotechniki p. 251, e-mail: wi@amu.edu.pl

Bardziej szczegółowo

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł 1. Dane Droga klasy technicznej G 1/2, Vp = 60 km/h poza terenem zabudowanym Prędkość miarodajna: Vm = 90 km/h (Vm = 100 km/h dla krętości trasy = 53,40 /km i dla drogi o szerokości jezdni 7,0 m bez utwardzonych

Bardziej szczegółowo

Trigonometria. Funkcje trygonometryczne

Trigonometria. Funkcje trygonometryczne 1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak

Bardziej szczegółowo

Geometria wykreślna. 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław

Geometria wykreślna. 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław Geometria wykreślna 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr

Bardziej szczegółowo

Algorytm określania symetrii czasteczek

Algorytm określania symetrii czasteczek O czym to b Podzi 21 września 2007 O czym to b O czym to b Podzi 1 2 3 O czym to b Podzi W lasności symetrii hamiltonianu: zmniejszenie z lożoności obliczeń i wymagań pami eciowych, utrzymanie tożsamościowych

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Linie wymiarowe i pomocnicze linie wymiarowe

Linie wymiarowe i pomocnicze linie wymiarowe Linie wymiarowe i pomocnicze linie wymiarowe Linie wymiarowe rysuje się linią ciągłą cienką równolegle do wymiarowanego odcinka w odległości co najmniej 10 mm, zakończone są grotami dotykającymi ostrzem

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej:

Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej: ROZDZIA L Metoda sympleksowa Motto: Matematyka nie może wype lnić życia ale jej nieznajomość już niejednemu je wype lni la H Steinhaus Tablica sympleksowa Rozważmy ZPL w postaci klasycznej maksymalizować

Bardziej szczegółowo

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r. MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

FUNKCJE LICZBOWE. x 1

FUNKCJE LICZBOWE. x 1 FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy

Bardziej szczegółowo

ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA

ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA i SZKO LA PODSTAWOWA HELIANTUS 02-892 Warszawa ul. Bażancia 16 ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA KLASA I, II, III TADEUSZ STYŠ Warszawa, Październik 2017 ii Contents 0.1 Wstȩp............................

Bardziej szczegółowo

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2. WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle

Bardziej szczegółowo

Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej

Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej Maciej Czarnecki Uniwersytet Lódzki 8 Forum Matematyków Polskich Lublin, 21 września 2017 r. Forma hermitowska na C n+1 X Y = X 1 Y 1 +...

Bardziej szczegółowo