RACHUNEK WEKTOROWY W FIZYCE

Wielkość: px
Rozpocząć pokaz od strony:

Download "RACHUNEK WEKTOROWY W FIZYCE"

Transkrypt

1 Pzedmiot: Fizk RACHUNEK WEKTOROWY W FIZYCE Wkłd /2016, zim 1

2 Pzedmiot: Fizk Pln Pojęcie wekto Dziłni n wektoch Wekto w ktezjńskim ukłdzie współzędnch Pzkłd wkozstni wektoów i dziłń n nich w fizce Wkłd /2016, zim 2

3 Pzedmiot: Fizk Pojęcie wekto Wekto m tz cech: 1. Kieunek 2. Zwot 3. Wtość (długość) Wkłd /2016, zim 3

4 Pzedmiot: Fizk DŁUGOŚĆ WEKTORA â Oś liczow 5 â Weso jest to wekto jednostkow Długość wekto Wkłd 2 Ogólnie: /2016, zim 4

5 Pzedmiot: Fizk A punkt pzłożeni? Ruch postępow Ruch ootow Wkłd /2016, zim 5

6 Pzedmiot: Fizk Dziłni n wektoch Dodwnie Odejmownie Mnożenie: Iloczn wekto pzez liczę Iloczn skln dwóch wektoów Iloczn wektoow dwóch wektoów Wkłd /2016, zim 6

7 Pzedmiot: Fizk Dodwnie wektoów + Wkłd /2016, zim 7

8 Odejmownie wektoów + ( ) Pzedmiot: Fizk Wekto pzeciwn Wkłd /2016, zim 8

9 Pzedmiot: Fizk Reguł ównoległooku + Wkłd /2016, zim 9

10 Pzedmiot: Fizk WEKTOR WYPADKOWY np. wpdkowe pzemieszczenie, wpdkow sił Wkłd /2016, zim 10

11 Rozkłd wekto k Pzedmiot: Fizk k Wkłd 2 l 2015/2016, zim 11 l + k l

12 Pzedmiot: Fizk ILOCZYN WEKTORA PRZEZ LICZBĘ k 3 1, 5 Wnik dziłni jest wektoem Wkłd /2016, zim 12

13 Wekto i są ównoległe (mją ten sm kieunek) Pzedmiot: Fizk k Gd k>0, zwot zgodne Gd k<0, zwot pzeciwne Wtość (długość) wekto: k Wkłd /2016, zim 13

14 Pzedmiot: Fizk ILOCZYN SKALARNY - DEFINICJA o cosϕ φ Wnik dziłni jest liczą: dodtnią, ujemną (kied?) lu nwet zeo Dziłnie jest pzemienne o o Wkłd /2016, zim 14

15 Pzedmiot: Fizk ILOCZYN SKALARNY - KONSEKWENCJE o cos90 0 φ Jeżeli wekto są postopdłe to ich iloczn skln jest ówn 0 Służ do spwdzni postopdłości wektoów Wkłd /2016, zim 15

16 Pzedmiot: Fizk ILOCZYN SKALARNY - KONSEKWENCJE φ0 0 o 2 Służ do okeśleni długości wekto o Wkłd /2016, zim 16

17 Pzedmiot: Fizk c ILOCZYN WEKTOROWY - DEFINICJA c φ Wnik dziłni jest wektoem. Nleż ztem podć tz jego cech, nie tlko wtość le pzede wszstkim kieunek (!!!!) i zwot Wkłd /2016, zim 17

18 Pzedmiot: Fizk Iloczn wektoow - definicj 1. Kieunek wekto jest postopdł do płszczzn utwozonej pzez wekto i czli i Wkłd /2016, zim 18

19 Pzedmiot: Fizk Iloczn wektoow - definicj 2. Zwot wekto okeślm egułą pwej ęki lu śu pwoskętnej Dziłnie to nie jest pzemienne Wkłd /2016, zim 19

20 Iloczn wektoow - definicj 3. Długość wekto to licz: sin ϕ Pzedmiot: Fizk Uwg: Jeżeli pznjmniej jeden z wektoów jest zeow lu wekto mją ten sm kieunek (pokwją się lu są ównoległe) to W szczególności 0 Wkłd /2016, zim 20

21 Pzedmiot: Fizk 0 DLACZEGO? Bo jeżeli jest tlko jeden wekto to nie możn utwozć płszczzn, do któej wekto ędąc wnikiem ilocznu wektoowego ł postopdł. Jk widć, jest to polem kieunku nie wtości wekto. Wkłd /2016, zim 21

22 Pzedmiot: Fizk Iloczn wektoow - konsekwencje 1. Jeżeli 0 2. Służ do spwdzni ównoległości wektoów Wkłd /2016, zim 22

23 2015/2016, zim 23 Pzedmiot: Fizk Alge wektoów Rozdzielność mnożeni sklnego i wektoowego względem dodwni (odejmowni) c c o o o + + ) ( c c + + ) ( Dzielić pzez wekto nie wolno!!! Wkłd 2

24 Pzedmiot: Fizk Pzkłd 1. Alge wektoów Dne jest ównnie wektoowe: x + o Znleźć wekto x [( ) ] 0 Rozwiąznie: Wkłd /2016, zim 24

25 Alge wektoów x + o Rozwiąznie: 1. Z ozdzielności mnożeni względem dodwni: 3. Dodjąc i odejmując stonmi [( ) ] x 2 o ( o + o ) 0 jk w zwkłm ównniu: x ( o + 2 ) Mm pwo podzielić pzez wżenie w nwisie po upewnieniu się, że jest liczą: 2. Ale: x 2 o + Wkłd /2016, zim 25

26 Pzedmiot: Fizk Dowodzenie twiedzeń Rchunek wektoow ułtwi dowodzenie twiedzeń geometcznch. Pzkłd 2. Udowodnić, że dw wekto muszą mieć ówne długości jeżeli ich sum jest postopdł do ich óżnic. Wkłd /2016, zim 26

27 Pzedmiot: Fizk 1. Jeżeli: Dowód + ( ) ( ) 2. To (z definicji ilocznu sklnego): ( + ) o ( ) 0 3. Kozstjąc z ozdzielności mnożenie względem dodwni: o o + o o 0 Wkłd /2016, zim 27

28 Pzedmiot: Fizk Dowód 4. Iloczn skln jest pzemienn, ztem: o + o 0 5. I: o o + o o 0 edukuje się do: Ztem: c.n.d. Wkłd /2016, zim 28

29 Pzedmiot: Fizk Zdnie 2-1 Stosując chunek wektoow udowodnić twiedzenie cosinusów. Wkłd /2016, zim 29

30 Pzedmiot: Fizk Wekto w ktezjńskim ukłdzie współzędnch pzpdek dwuwmiow ĵ Wkłd 2 î φ x x + x Tw. Pitgos 2015/2016, zim 30 i x x Tgonometi tg ϕ x 2 j

31 Pzedmiot: Fizk x Wekto w ktezjńkim ukłdzie współzędnch 3D z x z k î ĵ i j i o j i o i i x + j + k 0 1 z k Wkłd /2016, zim 31

32 2015/2016, zim 32 Stosując definicje ilocznów sklnego i wektoowego olicz: Pzedmiot: Fizk i j k j k i,, oz j j k j k i,, o o o Zdnie 2-2 Wkłd 2

33 Pzedmiot: Fizk Dziłni n wektoch w ukłdzie ktezjńskim Wkłd /2016, zim 33

34 Pzedmiot: Fizk 1. Dodwnie wektoów + Wnik jest wektoem i x + j + z k i x + j + z k + ( + )i + ( + )j + ( + x x z z ) k Wkłd /2016, zim 34

35 2015/2016, zim 35 Pzedmiot: Fizk 2. Równość wektoów lu k j i z x + + k j i z x + + Wnik z z x x Wkłd 2

36 2015/2016, zim 36 Pzedmiot: Fizk 3. Iloczn skln k j i z x + + k j i z x + + Wnik z z x x + + o OBOWIĄZUJE TYLKO W UKŁADZIE KARTEZJAŃSKIM DLACZEGO? Wkłd 2

37 2015/2016, zim 37 Pzedmiot: Fizk 4. Iloczn wektoow k j i z x + + k j i z x + + Wnik z x z x k j i Wkłd 2

38 Pzedmiot: Fizk ZASTOSOWANIE RACHUNKU WEKTOROWEGO W FIZYCE Wkłd /2016, zim 38

39 Wielkości fizczne Pzedmiot: Fizk Długość, czs, sił, ms, pędkość, pzspieszenie, tempetu, ciśnienie, ntężenie pol elektcznego, ntężenie pądu elektcznego, stumień pol mgnetcznego SKALARY WEKTORY Wkłd /2016, zim 39

40 Pzedmiot: Fizk Mnożenie wekto pzez liczę: Pęd: definicj p mv Ptnie: Jki jest kieunek wekto pędu? ms m v wekto pędkości p Odpowiedź: p v Wkłd /2016, zim 40

41 Pzedmiot: Fizk Iloczn skln Pc W F o s F A Wekto sił B Wekto pzesunięci W F s cos φ φ s AB Wkłd /2016, zim 41

42 Pzedmiot: Fizk Iloczn wektoow: 1. Moment sił (ng. toque) L τ p F 2. Moment pędu (ng. ngul momentum) L F Wkłd /2016, zim 42 p

43 Iloczn wektoow: Pzedmiot: Fizk 3. Sił Loentz (ng. mgnetic foce) sił dziłjąc n łdunek q pouszjąc się w polu mgnetcznm o wektoze indukcji B F qv B To jest definicj wekto indukcji pol mgnetcznego Wkłd /2016, zim 43

44 Pzedmiot: Fizk Okeślnie zwotu ilocznu wektoowego : Wkłd /2016, zim 44

45 Pzedmiot: Fizk Pole mgnetczne zkzwi to uchu łdunku elektcznego. p - skok śu p v T - pomień śu mv 2 qv B Wkłd /2016, zim 45

46 Pzedmiot: Fizk Zdnie 2-3 Rozwżć szczególne pzpdki uchu cząstki nłdownej w polu mgnetcznm, gd: )wekto pędkości jest ównoległ do wekto indukcji mgnetcznej )wekto pędkości jest postopdł do wekto indukcji mgnetcznej Odpowiedzieć n ptni: jk sił dził n cząstkę i jk kzw opisuje to uchu cząstki. Wkłd /2016, zim 46

47 Pzedmiot: Fizk Zstnowić się nd innmi zstosownimi chunku wektoowego zówno w mtemtce jk i fizce. Poszukć infomcji n temt ilocznu miesznego oz podwójnego ilocznu wektoowego czli: o ( c) Zdnie 2-4 ( c) Wkłd /2016, zim 47

48 Pole mgnetczne nie zmieni enegii kinetcznej cząstki nłdownej pouszjącej się w tm polu E k m 2 v o de k dt v de k dt m 2 d dt le czli v o F qv ( v B) o E k const 0 v dv o v mv o dt dv m m dt F Wkłd /2016, zim 48

49 TEST 2P 1. Wekto o długości 20 dodno do wekto o długości 25. Długość wekto ędącego sumą wektoów może ć ówn: A) zeo B) 3 C) 12 D) 47 E) Wekto i leżą n płszczźnie x. Możem wnosić, że jeżeli: A) x x D) B) E) C) x x i x x 2 2 / / x i x x x Wkłd /2016, zim 49

50 3. Jeżeli ( 6m) i (8m) j to 4 m wtość: A) 10 m B) 20 m C) 30 m D) 40 m E) 50 m 4. Kąt pomiędz wektoem ( 25m i + (45m) j dodtnim kieunkiem osi OX wnosi: A) 29 o B) 61 o C) 119 o D) 151 o E) 209 o ) 5. Dw wekto, któch początki się pokwją, twozą pewien kąt. Jeżeli kąt pomiędz tmi wektomi zwiększ się o 20 o to iloczn skln tch dwóch wektoów zmieni znk n pzeciwn. Kąt, któ początkowo twozł te dw wekto wnosi: A) 0 B) 60 0 C) 70 o D) 80 o E) 90 0 Wkłd /2016, zim 50

51 6. Dw wekto ( 3m i (2m) j 2m i + (3m) j wznczją jednozncznie płszczznę. Któ z wektoów jest postopdł do tej płszczzn: ( 4m ) i + (6 m) j + (13m) k A) D) ) ( ) (2m) k ( 4m) i + (6 m) j (13m) k B) ( 4 m i + (6m) j + (13m) k E) ) ( 4 m ) i + (6m) j C) ( 4m ) i (6m) j + (13m) k 7. Wtość i o ( j k ) wnosi: A) zeo B) +1 C) -1 D) 3 E) 3 Wkłd /2016, zim 51

52 TEST 2A 1. A vecto of mgnitude 3 CANNOT e dded to vecto of mgnitude 4 so tht the mgnitude of the esultnt is: A) zeo B) 1 C) 3 D) 5 E) 7 2. A vecto hs mgnitude of 12. When its til is t the oigin it lies etween the positive x xis nd negtive xis nd mkes n ngle of 30 o with the x xis. Its component is: A) 6 3 B)-6 3 C) 6 D) -6 E) A vecto hs component of 10 in the +x diection, component of 10 m in the + diection, nd component of 5 m in the +z diection. The mgnitude of this vecto is: A) zeo B) 15 m C) 20 m D) 25 m E) 225 m Wkłd /2016, zim 52

53 4. Two vectos hve mgnitudes of 10 nd 15. The ngle etween them when the e dwn with thei tils t the sme point is 65 o. The component of the longe vecto long the line of the shote is: A) 0 B) 4.2 C) 6.3 D) 9.1 E) If the mgnitude of the sum of two vectos is less thn the mgnitude of eithe vecto, then: A) the scl poduct of the vectos must e negtive B) the scl poduct of the vectos must e positive C) the vectos must e pllel nd in opposite diections D) the vectos must e pllel nd in the sme diection E) none of the ove Wkłd /2016, zim 53

54 Pzedmiot: Fizk Podsumownie Dziłnie Wnik Metod postępowni Zstosownie dodwnie wekto wpdkowe pzemieszczenie, + eguł wpdkow sił odejmownie wekto ównoległooku lge wektoów, dowodzenie twiedzeń ozkłd wekto wekto skłdowe ówni pochł, zut ukośn, itp. Wkłd /2016, zim 54

55 Pzedmiot: Fizk Dziłnie Wnik Definicj Wzó w ukłdzie ktezj. W fizce iloczn skln o iloczn wektoow mnożenie wekto pzez liczę k Wkłd 2 skl wekto wekto o cosϕ sin ϕn 1. kieunek 2. zwot 3.wtość k 1. kieunek 2. zwot 3.wtość k o + + x k k k x i x x x j x z k z z z W mtemtce postopdłość wektoów pc, enegi np.kinetczn ównoległość wektoów ównoległość wektoów moment pędu, moment sił, sił Loentz pęd, II zsd dnmiki 2015/2016, zim z z 55

RACHUNEK WEKTOROWY W FIZYCE

RACHUNEK WEKTOROWY W FIZYCE Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik RACHUNEK WEKTOROWY W FIZYCE Mteił do wkłdu 2 2010/2011, im 1 Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik Pln Pojęcie wekto Diłni ni n wektoch Wekto w ktejńskim

Bardziej szczegółowo

ZASADY ZALICZANIA PRZEDMIOTU:

ZASADY ZALICZANIA PRZEDMIOTU: WYKŁADOWCA: dr h. inż. Ktrn ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, pw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 k@gh.edu.pl http://home.gh.edu.pl/~k 2010/2011, im 1 ZASADY ZALICZANIA

Bardziej szczegółowo

ZASADY ZALICZANIA PRZEDMIOTU:

ZASADY ZALICZANIA PRZEDMIOTU: WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1 Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,

Bardziej szczegółowo

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Prędkość i przyspieszenie punktu bryły w ruchu kulistym

Prędkość i przyspieszenie punktu bryły w ruchu kulistym Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Ruch dwu i trójwymiarowy

Ruch dwu i trójwymiarowy Wkład z fizki. Piot Posmkiewicz 1 W Y K Ł A D Ruch dwu i tójwmiaow 3-1 Wekto pzemieszczenia. JeŜeli uch odbwa się w dwu lub tzech wmiaach, to pzemieszczenie ma okeśloną zaówno watość, jak i kieunek w pzestzeni.

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe

Bardziej szczegółowo

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu 9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)

Bardziej szczegółowo

Przykład 2.5. Figura z dwiema osiami symetrii

Przykład 2.5. Figura z dwiema osiami symetrii Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

magnetycznym. Rozwiązanie: Na elektron poruszający się z prędkością υ w polu B działa siła Lorentza F L, wektorów B i υ.

magnetycznym. Rozwiązanie: Na elektron poruszający się z prędkością υ w polu B działa siła Lorentza F L, wektorów B i υ. Zdni do ozdziłu 8. Zd.8.. Elekton (o msie 3 9 m 9, 0 kg i łdunku elektycznym e.6 0 C ) wpd z pędkością υ 0 7 m / s w obsz jednoodnego pol mgnetycznego o indukcji B 0 T postopdle do linii sił tego pol.

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

Opiniodawca prof. dr hab. inż. Wiesław Buczkowski. Redaktor merytoryczny prof. dr hab. inż. Włodzimierz Czamara

Opiniodawca prof. dr hab. inż. Wiesław Buczkowski. Redaktor merytoryczny prof. dr hab. inż. Włodzimierz Czamara Wocłw 004 Opiniodwc pof. d hb. inż. Wiesłw uczkowski Redkto metoczn pof. d hb. inż. Włodzimiez Czm Opcownie edkcjne i koekt: mg Elżbiet Winisk-Gbosz Jnin Szdłowsk Łmnie Tees licj Chmu ojekt okłdki Romuld

Bardziej szczegółowo

Sieć odwrotna. Fale i funkcje okresowe

Sieć odwrotna. Fale i funkcje okresowe Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Elektcność i mgnetm II ok, III semest Cs twni: wkłd 60 god., ćwiceni 60 god. Zlicenie pedmiotu licenie ćwiceń min.30 pkt: egmin testow 25 pkt egmin ustn 25 pkt Powdąc: d Jcek Semnik Litetu 1. R.P. Fenmn,

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty.

3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty. 3 Kinemk uchu jednosjnego zmiennego jednosjnie zmiennego zu Wbó i opcownie zdń 3-3: Bb Kościelsk zdń 33-35: szd J Bczński 3 Zleżność dogi pzebej pzez punk meiln od czsu możn opisć ównniem: () A B C 3 gdzie

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Momenty bezwładności figur płaskich - definicje i wzory

Momenty bezwładności figur płaskich - definicje i wzory Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

Zasady dynamiki ruchu obrotowego

Zasady dynamiki ruchu obrotowego DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Pojęcia Działania na macierzach Wyznacznik macierzy

Pojęcia Działania na macierzach Wyznacznik macierzy Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ . RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii

Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

A. Zaborski, Rozciąganie proste. Rozciąganie

A. Zaborski, Rozciąganie proste. Rozciąganie . Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Zasady zachowania, zderzenia ciał

Zasady zachowania, zderzenia ciał Naa -Japonia -7 (Jaoszewicz) slajdów Zasady zachowania, zdezenia ciał Paca, oc i enegia echaniczna Zasada zachowania enegii Zasada zachowania pędu Zasada zachowania oentu pędu Zasady zachowania a syetia

Bardziej szczegółowo

= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny.

= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny. Z 6 sei I ozszezone Chce znleźć to ch cił n któe ził sił centln: F, pz złożeni iż wtość oent pę cił jest óżn o ze: Do ozwiązni ożn wkozstć np wzó l ównowżn je wzó const ± spowzjąc pole po wpowzeni postwini

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki

Podstawy Elektrotechniki i Elektroniki Postw ektotechniki i ektoniki Definicj po eektomgnetcznego z v Pzestzeń w któej n łunek eektczn ził ił Loentz v ntężenie po eektcznego [V/m] inukcj po mgnetcznego [T] v pękość łunku [m/s] Poe eektczne

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

1 Ułamki zwykłe i dziesiętne

1 Ułamki zwykłe i dziesiętne Liczby wymierne i niewymierne Liczby wymierne i niewymierne - powtórzenie Ułmki zwykłe i dziesiętne. Rozszerznie ułmków Rozszerz ułmki b c b c 6 8. Skrcnie ułmków c b c b 8 0 Liczby wymierne i niewymierne

Bardziej szczegółowo

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i .. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

Fizyka I (mechanika), ćwiczenia, seria 1

Fizyka I (mechanika), ćwiczenia, seria 1 Fizka I (mechanika), ćwiczenia, seria 1 Układ współrzędnch na płaszczźnie. Zadanie 1 Odcinek o stałej długości porusza się tak, że jego punkt końcowe A i B ślizgają się po osiach odpowiednio x i pewnego

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Treść programu (sem. I)

Treść programu (sem. I) 7-9-7 FIZYKA konsultcje: śod 5-7 Josłw Rutkowski pok. 63/S tel. 6 83 97 8 Teść pogmu (sem. I) Element chunku wektoowego. Ruch postoliniow. Pojęcie pochodnej. Ruch w kilku wmich. Mechnik ównni uchu(cłkownie).

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna ktestki geometcze Mecik teoetcz Wkłd 9, i ktestki geometcze figu płskic. Główe cetle osie ezwłdości. Pole powiezci Momet sttcz współzęde śodk ciężkości. Momet ezwłdości Momet odśodkow główe cetle osie

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 2. Układy liniowe i niezmienne w czasie (układy LTI) y[n] x[n]

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 2. Układy liniowe i niezmienne w czasie (układy LTI) y[n] x[n] Toi Sgłów II ok Goizki III ok Ioki Sosowj Wkłd Ukłd liiow i izi w czsi ukłd LTI Kilk uwg: LTI jpopulijsz odl ilcji LTI odl pocsów izczch [] Ukłd liiow [] gdzi ozcz sgł wjściow do ukłdu zś sgł wjściow.

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo