Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 25, Radosław Chrapkiewicz, Filip Ozimek

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 25, Radosław Chrapkiewicz, Filip Ozimek"

Transkrypt

1 Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 25, wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner

2 Wykład 24 - przypomnienie stan koherentny stan koherentny vs pojedyncze fotony na płytce światłodzielącej 2 fotony na płytce światłodzielącej 2 identyczne fotony na płytce światłodzielącej doświadczenie Hong-Ou-Mandela polaryzacja fotonu w różnych nieortogonalnych bazach kryptografia kwantowa stany splątane, przykład 2 fotony splątane w polaryzacji korelacje kwantowe stany splątane na płytce światłodzielącej

3 XIX wiek: promienie katodowe i anodowe 1859 Plücker, rurki wyładowcze, promienie katodowe 1886 Goldstein, promienie kanalikowe rura wyładowcza promienie katodowe = elektrony promienie kanalikowe = dodatnie jony atomowe (1897, Thompson) (1900, Wien)

4 Promieniowanie X, W.K.Roentgen 1912 M. Laue promieniowanie hamowania e e + γ energia kin. elektr. przed zderzeniem energia kin. elektr. po zderzeniu h max min hc hc eu min eu h K K ' K ' 0 h K eu min max kv nm U napięcie na lampie promieniowanie charakterystyczne przejścia pomiędzy poziomami energetycznymi atomów katody

5 Promieniowanie X, 2 Ugięcie Bragga (na monokrysztale) (analogie: wykład 13, siatka dyfrakcyjna; wykład 20, modulator akusto-optyczny) Δ = AB + BC AE = 2AB AE = AD = d tan Θ Δ = 2d sin Θ = nλ 2d 2AD cos Θ sin Θ

6 Promieniowanie X, 3 Metoda Debye a-scherrera (metoda proszkowa) 2d sin Θ = nλ d1 1 d2 2 d3 3

7 Hipoteza de Broglie a 1924 L. de Broglie Oczekujemy symetrii: jeśli fale elektromagnetyczne są cząstkami to cząstki powinny być falami λ = h p = h mυ Dla swobodnej cząstki o energii E = ħω mamy: Ψ z, t = e i 2π λ z ωt. Podobnie jak dla fotonu z płaskiej fali monochromatycznej (wykład 23) dokładnie znamy energię i pęd cząstki ale kompletnie nieokreślone jest jej położenie oraz własności czasowe. Jeśli chcemy zdefiniować położenie oraz czas potrzebujemy pakiety falowe w przestrzeni (np. wiązka gaussowka) i czasie (np. impuls gaussowski).obowiązuje zasada nieoznaczoności Hesienberga ΔxΔp x ħ 2 gdzie Δx oraz Δp x należy rozumieć jako wariancje położenia i pędu. Podobna nierówność obowiązuje dla czasu i energii: Liczby: ΔtΔE ħ 2 1. elektron, energia 100 ev p = 2m e E kg m s, λ = h/p 0.12nm 2. atom sodu, T=10-8 K E = kt J, p = mkt kg m s, λ = h/p 0.12μm 3. kulka, 1g, 100m/s λ = h/ Mυ m

8 dyfrakcja i interferencja elektronów Dyfrakcja na krawędzi E = ev, λ = m Dyfrakcja na drucie 2 μm E = ev włókno ma dodatni potencjał

9 Interferencja atomów He dysza wytwarzająca strugę helu A szczelina 2 μm B 2 szczeliny 1 μm odległe o 8μm PM - fotopowielacz O. Carnal, J. Mlynek, PRL 66, 2689 (1991) Physical Review Letters

10 BEC - fale materii Kondensat Bosego-Einsteina (ang. Bose Einstein Condensate BEC) 12 m 6 10 cm 8 3 tworzenie kondensatu interferencja 2 kondensatów laser atomowy

11 BEC - fale materii Eric A. Cornell Wolfgang Ketterle Carl E. Wieman The Nobel Prize in Physics 2001 was awarded jointly to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman "for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates".

12 konsekwencje lokalizacji cząstki przykład: elektron w atomie E = E kin + E pot E = p2 2m e2 4πε 0 r Załóżmy, że elektron krąży po orbicie o promieniu r. Lokalizacja elektronu skutkuje rozmyciem jego pędu pęd nie może być mały. Z zasady nieoznaczoności Heisenberga mamy: Δp ħ 2Δx = ħ r 1 r 2 Przyjmijmy: p = ħ r wtedy: E = ħ2 2mr 2 e2 4πε 0 r szukamy minimum energii: de dr = ħ2 mr 3 + e2 4πε 0 r 2 = 0 skąd r = 4πε 0ħ 2 me 2 oraz E min = 1 me 4 2 4πε 2 0 ħ 2 1 r E

13 Równanie Schrodingera, E. Schrodinger, cząstce przypisujemy zespoloną funkcję (funkcję falową) Ψ(z, t) Postulaty: 1. Spełnione są równania : λ = h, ν = E/h p 2. Energia cząstki: E = p 2 2m + V długość fali de Broglie a 3. Równanie musi być liniowe w Ψ - możliwa interferencja częstość fali de Broglie a i ωt kz 4. Dla V = const dostajemy funkcję falową swobodnej cząstki Ψ sw z, t = e oznaczenia: k = 2π/λ, ω = 2πν wstawiamy do r-nia na energię i dostajemy ħ 2 k 2 + V z, t 2m = ħω Postulat 3 dopuszcza tylko funkcję Ψ oraz jej pochodne. Stąd równanie próbne α 2 Ψ dψ + V z, t Ψ = β z2 dt Postulat 4: 2 Ψ sw z 2 = k 2 Ψ sw Ψ sw, z = iωψ sw co daje αk 2 + V = iωβψ sw

14 Równanie Schrodingera, 2 αk 2 + V = iωβψ sw Porównując ostatnie r-nie z ħ 2 k 2 + V z, t 2m = ħω dostajemy α = ħ 2 2m β = ħ i i ωt kz Ψ sw z, t = e Ostatecznie,1D r-nie Scrodingera to ħ2 2 Ψ dψ + V z, t Ψ = iħ 2m z2 dt Uwaga: powyższe rozumowanie wcale nie dowodzi poprawności r-nia Schrodingera. Znaleźliśmy jedynie takie r-nie różniczkowe, które spełnia postulaty 1-4. O poprawności r-nia Schrodingera wnioskujemy na podstawie zgodności jego przewidywań z doświadczeniem

15 Interpretacja funkcji falowej, 1 według M. Borna Rozważamy zagadnienie 1-D: Ψ(z, t) Funkcja falowa Ψ(z, t) kompletnie opisuje układ fizyczny nie możemy mieć więcej informacji o układzie gęstość prawdopodobieństwa P z, t = Ψ(z, t) 2 interferencja Ψ = Ψ 1 + Ψ 2, Ψ 2 = Ψ Ψ Re Ψ 1 Ψ 2 normalizacja f.f. Ψ(z, t) 2 dz = 1 prąd prawdopodobieństwa t ΨΨ = = z ħ 2im dψ Ψ dψ Ψ dz dz P z, t + j z, t = 0 t z prąd prawdopodobieństwa zachowanie prawdopodobieństwa z 2 z 1 P z, t dz = = j z 1, t j z 2, t Oczekujemy, że prąd prawdopodobieństwa będzie różniczkowalną funkcją zmiennych przestrzennych. Stąd wynika ciągłość funkcji falowej i jej pochodnych.

16 Interpretacja funkcji falowej, 2 Stany stacjonarne Nadal rozważamy zagadnienie 1-D: Ψ(z, t) Potencjał nie zależy o czasu. Załóżmy, że da się rozdzielić zmienne Ψ z, t Wstawiamy do r-nia Schrodingera ħ2 2 ψ df f + V z ψf = iħψ 2m z2 dt skąd mamy ħ2 2 ψ 2m z 2 + Vψ ψ Obie strony równania muszą być stałą. Nazwijmy ją E = iħ df dt f = ψ z f(t) dostajemy 2 równania: ħ2 2 ψ + Vψ = Eψ 2m z2 iħ df dt = Ef Potrafimy rozwiązać 2. r-nie: f t = e iet/ħ = e iωt Porównując z funkcją falową swobodnej cząstki widzimy, że E = ħω to energia cząstki Ostatecznie: Ψ z, t = ψ(z)e iet/ħ Ψ z, t 2 = ψ z 2 gęstość prawd. nie zależy od czasu stan stacjonarny o zadanej energii

17 Od rozwiązań stacjonarnych do dynamiki załóżmy, że (dla danego układu) potrafimy znaleźć stany stacjonarne oraz opowiadające im energie ψ n z, E n gdzie n oznacza indeks bądź zbiór indeksów (niekoniecznie dyskretnych) Wtedy wiemy, że: Ψ n z, t = ψ n (z)e ie nt/ħ Mechanika kwantowa dopuszcza superpozycje. Rozważmy najprostszą z nich: Ψ z, t = a 1 ψ 1 z e ie1t/ħ + a 2 ψ 2 (z)e ie 2t/ħ i policzmy gęstość prawdopodobieństwa Ψ z, t 2 = a 1 ψ 1 z e ie1t/ħ + a 2 ψ 2 (z)e ie 2t/ħ a 1 ψ 1 z e ie1t/ħ + a 2 ψ 2 z e ie2t/ħ = = a 1 ψ 1 z 2 + a 1 a 2 ψ 1 z ψ 2 z e i E 1 E 2 t/ħ + a 2 a 1 ψ 2 z ψ 1 z e i E 1 E 2 t/ħ + a 2 ψ 2 z 2 dudnienia z częstością ω = E 2 E 1 ħ

18 Uwaga: w tym zagadnieniu nie żądamy ciągłości pochodnych f.f. bo mamy nieskończony skok potencjału nieskończona studnia 1-D, 1 Cząstka o masie m zamknięta w jednowymiarowym pudełku. Długość pudełka: a V z V z = 0 dla a 2 < z < a 2 dla z a 2 Dla z a mamy ψ z = 0 2 W obszarze a < z < a trzeba znaleźć rozwiązanie r-nia 2 2 Schrodingera ħ2 d 2 ψ 2m dz 2 = Eψ czyli d 2 ψ dz 2 + k2 ψ = 0 gdzie k 2 = 2mE ħ 2 z Rozwiązania to ψ z = A cos kz + B sin kz Funkcja falowa musi być ciągła: A cos ka/2 + B sin ka/2 = 0 A cos ka/2 + B sin ka/2 = 0

19 Nieskończona studnia 1-D, 2 ψ z = A cos kz + B sin kz + równania ciągłości dają dyskretny zbiór funkcji falowych i energii cząstki z cos a a ψ n z = 2 a ψ n z = 2 a cos nπz a sin nπz a funkcje falowe są orto-normalne ψ m ψ m dz = δ nm dla n = 1,3,5, dla n = 2,4,6, z sin a a 2 z cos a a E n = ħ2 k 2m n 2 = ħ2 E n = n 2 E 1 π 2 2m a 2 n2 nieskończona liczba dyskretnych poziomów energetycznych

20 cząstka w jamie (o skończonej głębokości) Cząstka o masie m umieszczona w jednowymiarowej jamie (studni) potencjału. Szerokość studni: a V z V 0 studnia 1-D o skończonej głębokości I II III V 0 dla z a 2 V z = 0 dla a 2 < z < a 2 V 0 dla z a 2 a 2 a 2 z Rozważamy ruch cząstki oddzielnie w każdym z obszarów I III ħ2 d 2 ψ 2m ħ2 d 2 ψ 2m ħ2 d 2 ψ 2m dz 2 = E V 0 ψ z a 2 dz 2 = Eψ a 2 < z < a 2 dz 2 = E V 0 ψ z a 2 (1) (2) (3)

21 cząstka w skończonej jamie, 2 W obszarze II korzystamy z gotowych rozwiązań dla nieskończenie głębokiej studni ψ II z = A cos kz + B sin kz z k = 2mE ħ 2 V z V 0 studnia 1-D o skończonej głębokości I II III W obszarach I i III mamy dwie możliwości 1. E > V 0 cząstka swobodna 2. E < V 0 cząstka uwięziona w jamie Zajmiemy się przypadkiem 2. a 2 a 2 z W obszarze I r-nie Schrodingera: d 2 ψ I dz 2 α2 ψ I = 0 gdzie α 2 = 2m V 0 E ħ 2 ma rozwiązania wykładnicze ψ I z = Ce αz + De αz Analogicznie, ψ III z = Ee αz + Fe αz Wybieramy rozwiązania zanikające: ψ I z = De αz ψ III z = Ee αz Żądamy ciągłości funkcji falowej i jej pochodnej na granicach obszarów ψ I a/2 = ψ II a/2 dψ I dz a/2 = dψ II dz a/2 To samo dla granicy w a/2.

22 cząstka w skończonej jamie, 3 Dzielimy rozwiązania na parzyste i nieparzyste. Zajmiemy się pierwszymi. Ciągłość funkcji falowej i jej pochodnej w a/2 daje A cos ka/2 = De αa/2 ka sin ka/2 = αde αa/2 Dzieląc powyższe r-nia stronami dostajemy k tan ka/2 = α i przekształcamy do ka/2 tan ka/2 = αa/2 Dla modów niesymetrycznych analogiczne rachunki dają ka/2 cot ka/2 = αa/2 V z V 0 studnia 1-D o skończonej głębokości I II III a 2 a 2 z Nowe, bezwymiarowe, zmienne: u = αa/2 v = ka/2 pozwalają zapisać r-nia wyżej w postaci u = v tan v rozw. symetryczne u = v cot v rozw. niesymetryczne Jednocześnie, z poprzedniej transparencji, wyliczamy u 2 + v 2 = mv 0a ħ 2

23 cząstka w skończonej jamie, 4 u 2 + v 2 = mv 0a ħ 2 u = v tan v rozw. symetryczne u = v cot v rozw. niesymetryczne Taki zestaw równań już raz rozwiązywaliśmy przy okazji analizy dielektrycznego płaskiego falowodu symetrycznego (wykład 6). Wystarczy zrobić podstawienie v h 2 d, u h 1 d oraz mv 0a V aby skorzystać z gotowych rozwiązań ħ 2 Wnioski: 1. Liczba rozwiązań n max jest zawsze skończona i zależy od wartości parametru mv 0a. W szczególności dla mv 0 a ħ 2 < π 2 ħ 2 istnieje tylko jedno rozwiązanie pojedynczy stan związany w studni. 2. Rozwiązania możemy ponumerować poczynając od 1 do n max 3. Energie kolejnych stanów rosną numerem indeksu V

24 cząstka w skończonej jamie, 5 V z studnia 1-D o skończonej głębokości Wnioski: V 0 1. Funkcja falowa cząstki wypełnia jamę potencjału cząstka jest równocześnie w całej jamie choć prawdopodobieństwo znalezienia jej w poszczególnych obszarach nie jest takie samo. 2. Funkcje falowe mają niezerową amplitudę także w obszarach gdzie E < V 0. W obrazie klasycznym nie ma takiej możliwości. 3. Głębokość wnikania funkcji falowej w obszar klasycznie zabroniony jest różna dla różnych rozwiązań generalna zasada: im bliżej V 0 jest energia cząstki tym głębiej penetruje ona obszary poza studnią a 2 1 a 2 E 1 E 0 z

25 Półprzewodnikowe studnie kwantowe Przykład: laser na studniach kwantowych L. Zeng, et al. APL (1998)

26 Nieskończona studnia 3-D, 1 Cząstka o masie m zamknięta w prostopadłościennym pudełku o wymiarach a b c V x, y, z = 0 dla a 2 < x < a 2, b 2 < y < b 2, c 2 < z < c 2 wszędzie indziej Funkcja falowa zeruje się poza pudełkiem. Wewnątrz pudełka szukamy rozwiązań iloczynowych ψ x, y, z = ψ x (x)ψ y (y)ψ z (z) Wstawiamy do r-nia Schrodingera ħ2 ψ = Eψ 2m i przekształcamy do 1 d 2 ψ x ψ x dx d 2 ψ y ψ x dy d 2 ψ z ψ x dz 2 + k2 = 0 gdzie, ponownie, k 2 = 2mE. ħ 2 Ostatnia równość jest równoważna 3 r-niom d 2 ψ i dx 2 + k i 2 ψ i = 0, i = x, y, z, k i 2 i = k 2

27 Nieskończona studnia 3-D, 2 Dla każdego wymiaru stosujemy znane rozwiązania studni 1-D: E ψ xl x = 2 lπx cos a a ψ xl x = 2 a sin lπx a a > b > c dla l = 1,3,5, dla l = 2,4,6, ψ ym y = 2 b ψ ym y = 2 b ψ zn z = 2 c ψ zn z = 2 c cos mπy b sin mπy b cos nπz c sin nπz c dla m = 1,3,5, dla m = 2,4,6, dla n = 1,3,5, dla n = 2,4,6, n = 3 l = 3 l = 2 l = 1 m = 3 m = 2 m = 1 n = 2 n = 1 ψ lmn x, y, z = ψ xl x ψ ym y ψ zn z E lmn = ħ2 π 2 l 2 2m a 2 + m2 b + n2 c 2 układ jest opisany przez 3 liczby kwantowe l, m, n = 1,2,3

28 kropki kwantowe, 1 Studnia 3-D o skończonej głębokości Im mniejsze kropki kwantowe tym bardziej niebieskie świecenie

29 kropki kwantowe, 2 CdSe jelito myszy, różne markery: actina laminina jądro komórki czerwony - zielony - niebieski

30 Schodek potencjału E V 0 cząstka pada od lewej strony na barierę potencjału. Oddzielnie wypisujemy r-nie Schrodingera dla obu obszarów d 2 ψ dz 2 + k 1 2 ψ = 0 d 2 ψ dz 2 k 2 2 ψ = 0 k 1 2 = 2mE ħ 2 > 0, k 2 2 = 2m V 0 E ħ 2 > 0 ψ z = 0 fala padająca fala obita Ae ik 1z + Be ik 1z dla z < 0 Ce k 2z dla z > 0 z penetracja bariery (fala ewanescencyjna) Ciągłość f.f. i jej pochodnej A + B = C ik 1 A B = k 2 C B = 1 i k 1 k i k 1 k 2 B 2 = A 2 cząstka odbija się od schodka głębokość wnikania 1/k 2 analogia z całkowitym wewn. odbiciem (wykład 5)

31 tunelowanie 1928 G. Gamov, emisja α U Th He He E V 0 0 a z rozwiązania: ψ z = k 1 2 = 2mE ħ 2 k 2 2 = 2m V 0 E ħ 2 Ae ik 1z + Be ik 1z dla z < 0 Ce k 2z dla 0 < z < a A e ik 1z + B e ik 1z dla z > a ciągłość f.f. i jej 1. pochodnej + rachunki T = A 2 1 = A k 1 + k 2 2 sinh 4 k 2 k 2 k 2 a 1 Słabe tunelowanie k 2 a 1 T 16 E V 0 1 E V 0 e 2k 2a

32 Scanning Tunelling Microscope (STM) PZT 1. generacja 4. generacja ka 2 1 Czerwone - atomy Cs na GaAs (110) - niebieskie

33 oscylator harmoniczny, klasyczny V z Potencjał i siła F z V z = K 2 z2 = dv dz = Kz z Równanie ruchu m d2 z dt 2 = Kz d 2 z dt 2 + ω2 z = 0, ω 2 = K m Rozwiązanie z t = A cos ωt + φ υ t = dz = ωa sin ωt + φ dt energia E = m 2 υ2 + K 2 z2 = K 2 A2 gęstość prawdopodobieństwa 1 P cl = A 2 z 2 Pcl z z

34 oscylator harmoniczny, kwantowy, 1 Stacjonarne równanie Schrodingera d 2 ψ + K dz 2 2 z2 ψ = Eψ ħ2 2m d2 ψ + ω2 dz 2 ħ 2 z2 ψ = 2mE ψ ħ 2 d 2 ψ = dz 2 ζ2 λ ψ, ζ 2 = mω ħ z, λ = 2E ħω Potencjał V z = K 2 z2 Rozwiązania: rozwiązanie ψ n ζ = H n ζ e ζ2 2, n = 0,1,2 wielomian Hermite a E n = ħω n Normalizacja ψ m ζ ψ m ζ dζ = δ nm

35 wzbudzenie laserowe oscylator harmoniczny, kwantowy, v = 0 SiH 2 SiD 2... fluorescencja v = 0 ω = K m M. Fukushima, S. Mayama, and K. Obi, J.Chem.Phys. 96, (1992)

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 26, 28.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 25 - przypomnienie

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Dualizm korpuskularno falowy

Dualizm korpuskularno falowy Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

V. RÓWNANIA MECHANIKI KWANTOWEJ

V. RÓWNANIA MECHANIKI KWANTOWEJ V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II. Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 12 Janusz Andrzejewski Światło Falowa natura Dyfrakcja Interferencja Załamanie i odbicie Korpuskuralna natura Teoria promieniowania ciała doskonale czarnego Zjawisko fotoelekryczne Zjawisko

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

falowa natura materii

falowa natura materii 10 listopada 2016 1 Fale de Broglie a Dyfrakcja promieni X 1895 promieniowanie X dopiero w 1912 dowód na ich falowa naturę - to promieniowanie elektromagnetyczne zjawiska falowe: ugięcia, dyfrakcji - trudne:

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Rozdział 4 Równanie Schrödingera

Rozdział 4 Równanie Schrödingera Rozdział 4 Równanie Schrödingera 4.1 Równanie falowe Schrödingera 4. Obserwable, stany stacjonarne, wartości średnie 4.3 Nieskończona studnia potencjału 4.4 Skończona studnia potencjału 4.5 Trójwymiarowa

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga

Zasada nieoznaczoności Heisenberga Fale materii paczki falowe o różnej szerokości Dwa gaussowskie rozkład amplitud fal armonicznc o różnc szerokościac σ p i różnc wartościac średnic pędu p. Części rzeczwista ReΨ i urojona mψ funkcji falowc

Bardziej szczegółowo

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Schrödingera, zasada nieoznaczoności Heisenberga, ruch cząstki swobodnej,

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Podstawy mechaniki kwantowej. Jak opisać świat w małej skali?

Podstawy mechaniki kwantowej. Jak opisać świat w małej skali? Podstawy mechaniki kwantowej Jak opisać świat w małej skali? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 10-1 10-10 10-8 4 x 10-7

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy

Bardziej szczegółowo

Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja

Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga 1801 Thomas Young Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga c.d. fotodetektor + głośnik fala ciągły sygnał o zmiennym

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Ładunek elektryczny jest skwantowany

Ładunek elektryczny jest skwantowany 1. WSTĘP DO MECHANIKI KWANTOWEJ 1.1. Budowa materii i kwantowanie ładunku Materia w skali mikroskopowej nie jest ciągła lecz zbudowana z atomów mówimy, że jest skwantowana Powierzchnia platyny Ładunek

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie

Bardziej szczegółowo

Własności falowe materii

Własności falowe materii Część 3 Własności falowe materii 1. Rozpraszanie promieni X 2. Fale De Brogliea 3. Rozpraszanie elektronu 4. Ruch falowy 5. Transformata Fouriera 6. Zasada nieokreśloności 7. Cząsteczka w pudle 8. Prawdopodobieństwo,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 20, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 20, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 20, 07.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 19 - przypomnienie

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Numeryczne rozwiązanie równania Schrodingera

Numeryczne rozwiązanie równania Schrodingera Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Wykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 12. Mechanika kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Mechanika kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MECHANIKA KWANTOWA Podstawę mechaniki kwantowej stanowi

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

wartość oczekiwana choinki

wartość oczekiwana choinki wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera

Bardziej szczegółowo

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie

Bardziej szczegółowo

Podstawy mechaniki kwantowej

Podstawy mechaniki kwantowej Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

FIZYKA II. Podstawy Fizyki Współczesnej 15h (R.Bacewicz) Fizyka Urządzeń Półprzewodnikowych 15 h (M.Igalson) Laboratorium Fizyki II 15h

FIZYKA II. Podstawy Fizyki Współczesnej 15h (R.Bacewicz) Fizyka Urządzeń Półprzewodnikowych 15 h (M.Igalson) Laboratorium Fizyki II 15h FIZYKA II Podstawy Fizyki Współczesnej 15h (R.Bacewicz) Fizyka Urządzeń Półprzewodnikowych 15 h (M.Igalson) Laboratorium Fizyki II 15h (35 pkt., min. 17 pkt.) (35 pkt) (30 pkt) Podstawy Fizyki Współczesnej

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Podstawy mechaniki kwantowej

Podstawy mechaniki kwantowej Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 0-0

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -2

Wykład 18: Elementy fizyki współczesnej -2 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Studnie i bariery. Fizyka II, lato

Studnie i bariery. Fizyka II, lato Studnie i bariery Fizyka II, lato 017 1 Nieskończona studnia potencjału Nieskończenie duży potencjał na krawędziach studni nie pozwala elektronom opuścić obszaru 0

Bardziej szczegółowo

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni

Bardziej szczegółowo