Teoria pola elektromagnetycznego
|
|
- Edyta Popławska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl w temacie wiadomości proszę wpisywać STUDENT TP pokój A310 tel strona www: ks.zut.edu.pl/tp
2 Ćwiczenia: 15 godzin 3 kolokwia na ocenę 0 5, + niezapowiedziane wejściówki na ocenę 0 5, ocena końcowa: średnia ważona ze wszystkich ocen (minimum 2).
3 Laboratoria: 15 godzin 6 wejściówek testy punktowane w skali 0 10, + ewentualnie sprawozdania punktowane w skali od -5 do +5*. nieobecność = 0 punktów z testu Testów nie poprawiamy Ocena końcowa: suma punktów dzielona przez 12. SPRAWOZDANIA przesyłane przez SIWE: - w terminie do 7 dni od ćwiczenia, - w pliku PDF, 1 sprawozdanie na grupę laboratoryjną. *punkty otrzymuje student, który sprawozdanie wykonał (0 5 p) i ewentualnie student, który je sprawdził (od -5 do +5).
4 Równania elektromagnetyzmu w polu elektrostatycznym rot E=0 div D= E= grad V D=ε E ε =ε ε 0 r - równania Maxwella w elektrostatyce E wektor natężenia pola elektrycznego D wektor indukcji pola elektrycznego V potencjał pola elektrycznego (skalar) - przenikalność dielektryczna środowiska ε 0 =8, F m - przenikalność dielektryczna próżni Elektrotechnika, Teoria pola elektromagnetycznego 4
5 Równania elektromagnetyzmu w polu elektrostatycznym rot E=0 div D= E= grad V w zapisie z operatorem nabla: E=0 D= E= V operator nabla symboliczny wektor, wyrażany w kartezjańskim układzie współrzędnych: = x, y, lub: z = x 1 x + y 1 y + z 1 z Elektrotechnika, Teoria pola elektromagnetycznego 5
6 GRADIENT E= V GRADIENT - operator różniczkowy, który polu skalarnemu przyporządkowuje pole wektorowe. Pole to ma kierunek i zwrot największego wzrostu funkcji w danym punkcie, a wartość jest proporcjonalna do szybkości wzrostu funkcji. SKALAR WEKTOR W układzie współrzędnych kartezjańskich: grad V = V =[ V x 1 x V y 1 y V z 1 z ] Elektrotechnika, Teoria pola elektromagnetycznego 6
7 GRADIENT w układzie współrzędnych kartezjańskich Zadanie 1 W układzie współrzędnych kartezjańskich potencjał elektryczny wyrażony jest wzorem: V(x,y,z) = 5x 2 3y 2. Oblicz natężenie pola elektrycznego w punkcie o współrzędnych (4,2,5). E= grad V grad V = V =[ V x 1 x V y 1 y V z 1 z ] E= 10 x 1 x 3 1 y 0 1 z = 40 1 x 3 1 y Elektrotechnika, Teoria pola elektromagnetycznego 7
8 GRADIENT w układzie współrzędnych kartezjańskich Zadanie 2 W układzie współrzędnych kartezjańskich potencjał elektryczny wyrażony jest wzorem: V(x,y,z) = 4x 2 2y 3 sin(πz). Oblicz natężenie pola elektrycznego w punkcie o współrzędnych (1,2,3). E= grad V grad V = V =[ V x 1 x V y 1 y V z 1 z ] E= 8 x 1 x 6 y 2 1 y cos z 1 z E= 8 1 x 24 1 y 1 z Elektrotechnika, Teoria pola elektromagnetycznego 8
9 GRADIENT w układzie współrzędnych kartezjańskich Zadanie 3 W układzie współrzędnych kartezjańskich potencjał elektryczny wyrażony jest wzorem: V(x,y,z) = cos(1.75πx 2 ) y 2z. Oblicz natężenie pola elektrycznego w punkcie o współrzędnych (0.5, 1, 1). E= grad V grad V = V =[ V x 1 x V y 1 y V z 1 z ] Elektrotechnika, Teoria pola elektromagnetycznego 9
10 GRADIENT w układach współrzędnych: walcowym r,φ,z oraz sferycznym r,θ,φ w układzie współrzędnych walcowym r,φ,z grad V = V = V r 1 r 1 r V 1 V z 1 z w układzie współrzędnych sferycznym r,θ,φ grad V = V = V r 1 r 1 r V 1 1 r sin V 1 Elektrotechnika, Teoria pola elektromagnetycznego 10
11 DYWERGENCJA D=ρ div D= D = Dywergencja operator różniczkowy, który danemu polu wektorowemu przypisuje pole skalarne. Jeżeli polem wektorowym jest pole prędkości płynięcia nieściśliwego płynu, to dywergencja większa od zera oznacza, że w tym punkcie do układu ciecz dopływa (tu jest jej źródło), jeśli zaś mniejsza od zera, to tu następuje jej odpływ (ma tu swoje ujście). Gdy dywergencja jest równa zeru, to w danym punkcie nie ma ani dopływu, ani odpływu albo oba są sobie równe. Pole wektorowe o zerowej dywergencji nazywamy bezźródłowym. WEKTOR SKALAR Elektrotechnika, Teoria pola elektromagnetycznego 11
12 DYWERGENCJA w układzie współrzędnych kartezjańskich div D= D= D x x D y y D z z Zadanie 1 Dana jest indukcja elektryczna. Oblicz objętościową gęstość ładunku w punkcie (1,1,1). D= 3x 2 2y z 3 1 x 5x 3 sin y 3z 2 1 y x tg y 2z 1 z = div D = 6x cos y 2 = 6 0,54 2 = 4,54C /m 3 Elektrotechnika, Teoria pola elektromagnetycznego 12
13 DYWERGENCJA w układzie współrzędnych kartezjańskich div D= D= D x x D y y D z z Zadanie 2 Dana jest indukcja elektryczna. Oblicz objętościową gęstość ładunku w punkcie (2,3,0). D= 3x 2 2y z 3 1 x 5x 3 cos y 3z 1 y x sin y 2z 5 1 z = div D = 12xy sin y 3z 2x sin y = 72 0,56 = 72,56C /m 3 Elektrotechnika, Teoria pola elektromagnetycznego 13
14 ROTACJA E=0 ROTACJA - operator różniczkowy, który jednemu polu wektorowemu przyporządkowuje inne pole wektorowe. Pole wynikowe ma kierunek prostopadły do danego pola w danym punkcie (przykład: wektor gęstości prądu i wektor natężenia pola magnetycznego). WEKTOR WEKTOR W układzie współrzędnych kartezjańskich: rot H = H z y H y z 1 x H x z H z x 1 y H y x H x y 1 z Elektrotechnika, Teoria pola elektromagnetycznego 14
15 ROTACJA ROTACJA w literaturze angielskojęzycznej czasami określana jest słowem rotation, ale najczęściej występuje jako curl (również w równaniach). WEKTOR WEKTOR W układzie współrzędnych kartezjańskich: rot H = H z y H y z 1 x H x z H z x 1 y H y x H x y 1 z Elektrotechnika, Teoria pola elektromagnetycznego 15
16 ROTACJA W układzie współrzędnych cylindrycznych (walcowych): rot H = 1 r A z A 1 z A r r z A z 1 r 1 r A A r 1 r r z W układzie współrzędnych sferycznych: rot H = 1 r sin A sin A 1 r 1 r 1 sin A r r r A 1 1 r r r A A r 1 Elektrotechnika, Teoria pola elektromagnetycznego 16
17 ELEKTROSTATYKA Pojedynczy, nieruchomy, odosobniony ładunek elektryczny div D= w postaci całkowej: S D ds=q S powierzchnia zamknięta, wewnątrz której znajduje się ładunek q Φ D = D ds strumień indukcji elektrycznej Prawo Gaussa S +q r ds D S E ds= q ε Elektrotechnika, Teoria pola elektromagnetycznego 17 Carl Friedrich Gauss sformułował to prawo już w roku 1835, a opublikował w 1867.
18 ELEKTROSTATYKA Pojedynczy, nieruchomy, odosobniony ładunek elektryczny div D= w postaci całkowej: S D ds=q S powierzchnia zamknięta, wewnątrz której znajduje się ładunek q D S ds=q S +q r ds D D 4 π r 2 =q 1 r D= q 4 π r 2 1 r Elektrotechnika, Teoria pola elektromagnetycznego 18
19 ELEKTROSTATYKA Pojedynczy, nieruchomy, odosobniony ładunek elektryczny D= E E= grad V V = q 4 r S +q r ds E D E= D= q 4 r 2 1 r q 4 π r 2 1 r Elektrotechnika, Teoria pola elektromagnetycznego 19
20 ELEKTROSTATYKA Dwa nieruchome ładunki elektryczne D, E D= D 1 D 2 D 2, E 2 E= E 1 E 2 F 21 S 1 +q1 r 1 D 1, E 1 d +q 2 r 2 V =V 1 V 2 F = F 21 = F 12 F =q 2 E 1 = q 1 E 2 S 2 F 12 F = q 1 q 2 4 d 2 1 d Elektrotechnika, Teoria pola elektromagnetycznego 20
21 Równania elektromagnetyzmu w polu elektrostatycznym rot E=0 div D= E= grad V D=ε E ε =ε ε 0 r S S E ds= q ε D ds=q F =q 2 E 1 F = q 1 q 2 4 d 2 1 d V = E= D= q 4 r q 4 r 2 1 r q 4 π r 2 1 r grad V = V =[ V x 1 x V y 1 y V z 1 z ] Elektrotechnika, Teoria pola elektromagnetycznego 21
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Analiza wektorowa. Teoria pola.
Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Różniczkowe prawo Gaussa i co z niego wynika...
Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni
Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13
Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy
Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Teoria Pola Elektromagnetycznego
Teoria Pola Elektromagnetycznego Wykład 3 Pole elektryczne w środowisku przewodzącym 19.05.2006 Stefan Filipowicz 3.1. Prąd i gęstość prądu przewodzenia Jeżeli w przewodniku istnieje pole elektryczne,
cz.3 dr inż. Zbigniew Szklarski
Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella
Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego
cz. 2. dr inż. Zbigniew Szklarski
Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie
Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni
Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Indukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
Fizyka 2 Podstawy fizyki
Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html
Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Fale elektromagnetyczne
Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych
Podstawy fizyki sezon 2 6. Indukcja magnetyczna
Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne.
Elementy teorii pola - Wydział Chemiczny - 1 Wielkości fizyczne można klasyfikować na podstawie różnych kryteriów. Istnieją wielkości, które przy wyznaczonej jednostce miary są w zupełności określone przez
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,
dr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający
Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E
Elektrostatyka Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D=ϱ E=0 D= E Źródłem pola elektrycznego są ładunki, które mogą być: punktowe q [C] liniowe [C/m] powierzchniowe
[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
Linie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot realizowany od roku akademickiego 2014/2015
Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot realizowany od roku akademickiego 01/015 Przedmiot: Teoria pola elektromagnetycznego Kod przedmiotu: E17_D Typ przedmiotu/modułu:
Część IV. Elektryczność i Magnetyzm
Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.) Dialogi, II/15 Wykład 10 Wprowadzenie
Fale elektromagnetyczne Katarzyna Weron
Fale elektromagnetyczne Katarzyna Weron Matematyka Stosowana Kiedy mówimy myślimy Mechanika klasyczna Isaac Newton (1687) Elektrodynamika James Clerk Maxwell (1861) Teoria względności Albert Einstein (1905)
Podstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Wybrane elementy analizy wektorowej, teorii pola, teorii potencjału i ich zastosowania w elektrodynamice
Antonina Orlicz-wiłło Wybrane elementy analizy wektorowej, teorii pola, teorii potencjału i ich zastosowania w elektrodynamice b D R r a r a r a L L r Wydawnictwo Politechniki Gdańskiej PRZEWODNICZĄCY
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
Rozdział 6. Równania Maxwella. 6.1 Pierwsza para
Rozdział 6 Równania Maxwella Podstawą elektrodynamiki klasycznej są równania Maxwella, które wiążą pola elektryczne E i magnetyczne B ze sobą oraz z ładunkami i prądami elektrycznymi. Pola E i B są funkcjami
Opis poszczególnych przedmiotów (Sylabus)
Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Fizyka Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr VII (studia II stopnia)
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Wykład 7: Pola skalarne i wektorowe Katarzyna Weron
Wykład 7: Pola skalarne i wektorowe Katarzyna Weron WPPT, Matematyka Stosowana Zwykła pochodna Pytanie: Mam funkcję jednej zmiennej f(x). O czym mówi pochodna df? dx Odpowiedź: Jak szybko zmienia się f(x),
Indukcja elektromagnetyczna
ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów
J. Szantyr -ykład Poważne wprowadzenie do Mechaniki Płynów Stany skupienia materii: ciała stałe płyny, czyli ciecze i gazy -Ciała stałe przenoszą obciążenia zewnętrzne w taki sposób, że ulegają deformacji
Bardziej formalnie, wektor to wielkość, której współrzędne zmieniają się w określony sposób przy obrót prostokątnego układu współrzędnych.
Rachunek wektorowy (fragmenty z Wikipedii) Zastosowanie wektorów w matematycznym opisie pola elektromagnetycznego umożliwia przedstawienie równań w postaci bardzo zwięzłej i niezależnej od przyjętego układu
Lekcja 40. Obraz graficzny pola elektrycznego.
Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
Równania Maxwella i równanie falowe
Równania Maxwella i równanie falowe Prezentacja zawiera kopie folii omawianch na wkładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wkorzstanie niekomercjne dozwolone pod warunkiem podania
Pojęcie ładunku elektrycznego
Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z
Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Pole magnetyczne Linie pola magnetycznego analogiczne do linii pola elektrycznego Pole magnetyczne jest polem bezźródłowym (nie istnieje monopol magnetyczny!) Prawo Gaussa dla pola
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 1. Rachunek niepewności pomiaru 1.1. W jaki sposób podajemy wynik pomiaru? Co jest źródłem rozbieżności pomiędzy wartością uzyskiwaną w eksperymencie
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
ver magnetyzm cd.
ver-10.01.12 magnetyzm cd. praca przemieszczenia obwodu w polu B B F F=ΙlB B j (siła Ampere a) dw =Fdx=Ι lbdx=ι BdS Φ B = B d S= BdS dφ B =BdS dw =ΙdΦ B =Ι B d S strumień dx dla obwodu: W =Ι dφ B =Ι Φ
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania
Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
opracował Maciej Grzesiak Analiza wektorowa
opracował Maciej Grzesiak Analiza wektorowa 1. Funkcje wektorowe 1.1. Funkcje wektorowe na płaszczyźnie Wektor r = x i + y j nazywamy wektorem wodzącym punktu (x, y). Jeśli x oraz y są funkcjami czasu,
Podstawy fizyki sezon 2 6. Równania Maxwella
Podstawy fizyki sezon 2 6. Równania Maxwella Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas pokazaliśmy:
Rok akademicki: 2013/2014 Kod: WGG s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Matematyka stosowana Rok akademicki: 2013/2014 Kod: WGG-1-304-s Punkty ECTS: 5 Wydział: Wiertnictwa, Nafty i Gazu Kierunek: Górnictwo i Geologia Specjalność: - Poziom studiów: Studia I stopnia
Efekt naskórkowy (skin effect)
Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Matematyka 2 Rok akademicki: 2012/2013 Kod: JFM-1-201-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma
dr inż. Krzysztof Stawicki
Wybrane zagadnienia teorii obwodów 1 dr inż. Krzysztof Stawicki e-mail: ks@zut.edu.pl w temacie wiadomości proszę wpisać tylko słowo STUDENT strona www: ks.zut.edu.pl/wzto 2 Wybrane zagadnienia teorii
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Podstawy fizyki sezon 2 5. Indukcja Faradaya
Podstawy fizyki sezon 2 5. Indukcja Faradaya Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prawo Gaussa dla
POLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
3. Mechanika punktu materialnego, kinematyka (opis ruchu), dynamika (przyczyny ruchu).
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2016/17 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych
Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.
Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych
Pole przepływowe prądu stałego
Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11
Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek elektryczny
Elektrodynamika #
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej