2. Określenie składowych tensora naprężenia i odkształcenia
|
|
- Zbigniew Mazur
- 5 lat temu
- Przeglądów:
Transkrypt
1 Górnicto i Geoinżynieria ok Zesyt /1 9 Marek Cała*, Marian Paluch*, Antoni Tajduś* NIELINIWA DEFMACJA IZTPWEJ SFEY GUBŚCIENNEJ 1. Wproadenie Palia ciekłe i gaoe lub inne płyny mogą być magaynoane naiemnych lub podiemnych biornikach o różnych kstałtach. Tutaj ajęto się biornikami o kstałcie kulistym. Założono, że ściany (obudoa) biornika ykonane są materiału opisanego pre potencjał Mooney a. W prypadku biornikó naiemnych, ich ściany będą podlegały obciążeniu enętrnemu pochodącemu od magaynoanego płynu. bciążenie enętrne biornika naiemnego (ciśnienie atmoserycne) będie stosunkoo nieielkie. Dla biornikó podiemnych, aróno obciążenie enętrne (od magaynoanego płynu) jak i obciążenie enętrne (od górotoru) mogą pryjmoać różnicoane artości. W ależności od lokaliacji biornika, jego gabarytó ora pierotnego stanu naprężenia górotore, obciążenie enętrne może być iękse lub mniejse od obciążenia enętrnego. Z tych ględó, reeracie predstaiono roiąanie ogólne dla cterech prypadkó różniących się obciążeniem biornika.. kreślenie składoych tensora naprężenia i odkstałcenia W trójymiaroej prestreni Euklidesa roażamy grubościenną serę, która naturalnym niedeormoanym stanie koniguracja pocątkoa B ma ymiary: promienie a, b rysunek 1. W koniguracji odkstałconej cyli aktualnej B jej ymiary są a i b rysunek. Grubościenna sera może być obciążona ciśnieniem enętrnym q lub enętrnym q. Możliy jest też prypadek, gdy oba obciążenia diałają rónoceśnie. Jest ona ykonana materiału opisanego pre potencjał Mooney a. W pracy dla pryjętych rónań * Wydiał Górnicta i Geoinżynierii, Akademia Górnico-Hutnica, Krakó 5
2 deormacyjnych ynacone ostaną: rokład naprężeń punktach ciała ora elementy tensora odkstałcenia jak rónież promienioe premiescenia. ys. 1. Koniguracja pocątkoa ciała B ys.. Koniguracja odkstałcona B Tak sormułoany technicnie problem grubościennej sery należy ująć kategoriach ormalnych mechaniki. W tym celu ykorystamy rónania nielinioej geometrycnie i iycnie teorii ośrodkó odkstałcalnych. 6
3 .1. Komplet rónań nielinioej teorii sprężystości opisie konekcyjnym [] ónania deormacyjne mają postać: i i x = x ( θ, θ, θ ) y i = y θ θ θ i (,, ) i = 1,, (1) ónania geometrycne można apisać jako: γ 1 ( G g ) ( u u u = = α β + β α + α uρ β ) α, β, ρ= 1,, () ónania iycne (konstytutyne) dla ciała Mooney a mają postać: τ = Cg + CB + pg α, β= 1,, I = 1 () gdie: C 1, C są stałymi materiałoymi, p nienanym ciśnieniem hydrostatycnym, α I 1, I, I niemiennikami tensora γ. ónania rónoagi mają postać: β β τ + b = α, β = 1,, () α Warunki bregoe typu naprężenioego można apisać jako: α βα q =τ n =τ n α, β= 1,, (5) β β.. Wynacenie postaci unkcji opisującej deormację ciała Zgodnie rysunkiem 1, B pryjęto układ spółrędnych kartejańskich{ x i } iąany e spółrędnymi serycnymi (konekcyjnymi){ θ α }(rys. ) ależnością: x1 = ( )sinϑcosϕ r : x = ( )sinϑsinϕ x = ( )cosϑ (6) 7
4 ys.. Układ spółrędnych serycnych koniguracji pocątkoej B Pryjęto tutaj spółrędne konekcyjne θ 1 =, θ = ϑ, θ =ϕ. W koniguracji aktualnej B spółrędne kartejańskie{ y i } iąane są e spółrędnymi serycnymi (rys. ) ależnością: y1 = sin ϑcos ϕ : y = sinϑsinϕ y = cos ϑ (7) ys.. Układ spółrędnych serycnych koniguracji aktualnej B 8
5 Funkcja ( ) opisująca deormację ciała będie ynacona arunku nieściśliości I = 1. Tensory metrycne koniguracji aktualnej B G α yi yi θ θ =, G = i θ θ y y α β β i =, = ( G ) ( G ) sin ϑ 1 sin ϑ (8) G G = det = sin ϑ Tensory metrycne B α β xi xi θ θ g =, g =, g = detg α β i i θ θ x x ( ) 1 =, = ( g ) ( g ) 1 ( ) sin ϑ 1 sin ϑ (9) g g = det = ( ) sin ϑ Z arunku nieściśliości: I G = = (1) g 1 otrymujemy rónanie różnickoe: d = d (11) 9
6 oiąaniem rónania (8) jest unkcja: ( ) C = + (1) Stałą C ynacamy arunku: ( ) = (1) C = = a a Zatem: a a ( ) = 1+ 1 a (1) nacmy: a a b =λ, =δ (15) b Stąd: ( ) 1 1 ( ) a = + λ (16) a ( a) = = a λ (17) a = δ + λ = (18) ( b) (1 ) b b b We ore (18) artość pod pieriastkiem jest róna 1, cego ynika, że achodi: ( λ 1) a = ( δ 1) b (19) b a 1 ( 1), 1 ( 1) a b λ= + δ δ= + λ () 5
7 Ponieaż: d = = d (1) to: 1 =, = sin ϑ 1 sin ϑ ( g ) ( g ) () Niemienniki tensora odkstałcenia można ynacyć e oru: 1 γ = g G δ ( ) α αφ α β φβ β I1 = g G = + I G G g g g g I G I = = 1 g φψ αφ βψ = φψ ( ) = + = 1 () Tensor geometrii B ( B ) = można predstaić postaci: ( ) B = G g g g g ϕψ αϕ βψ ϕψ ( B ) = sin ϑ () 51
8 .. Wynacenie elementó tensora naprężenia τ dla ciała Mooney a Korystając e oru () oblicamy: C C p 11 τ =σ 11 = τ =σ = C + C p + + ϑτ = σ = sin CC p (5) Poostałe elementy tensora naprężenia e spółrędnych iycnych są róne ero. ónania rónoagi () układie spółrędnych serycnych można apisać jako: τ τ τ ϑ ϕ τ τ τ ϑ+τ ϑ = 1 τ τ τ sin ϑ 1 sin ctg + + +τ ctg ϑ τ + τ = ϑ ϕ τ 1 τ τ τ + τ ctgϑ = ϑ ϕ (6) Z rónań (6) ynika p (, ϑϕ, ) = p ( ). Nienane ciśnienie hydrostatycne p ( ) ynacymy piersego rónania rónoagi (6): dp = C 1 C 5 d (7) Poostałe da rónania (6) są spełnione tożsamościoo. Po precałkoaniu rónania (7) po miennej otrymujemy: p ( ) = C C + + p 1 (8) We ore (8) p jest stałą która będie ynacona dla adanego obciążenia arunku naprężenioego. 5
9 Podstaiając (8) do (5) najdujemy ostatecną postać oró na naprężenia: 11 τ =σ 11 = C1 + C p + + τ =σ = CC p sin ϑτ = σ = C1 + + C + p σ ij =, i j (9) Naprężeniom (9) odpoiadają składoe tensora odkstałcenia γ : γ =ε = γ =ε = γ sin ϑ a ( ) = 1 + (1 λ ) =ε =, () Tensory τ i γ ostały ynacone dla iąkó deormacyjnych: a x1 = 1+ ( 1 λ ) sinϑcosϕ a x = 1+ ( 1 λ ) sinϑsinϕ a a x = 1+ ( 1 λ ) cos ϑ, λ = a (1) 5
10 Premiescenie promienioe yraża się ależnością: u = λ ( ) a ().. Prypadek 1 grubościenna sera obciążona ciśnieniem enętrnym q rysunek 5 Z arunku naprężenioego τ 11 = ynacamy stałą p : = a ( a) ( a) ( a) a p = C1 + C + = a a a ( a) 1 ( ) C ( ) = C λ λ + λ + λ ys. 5. Prekrój środkoy grubościennej sery obciążeniem enętrnym q Zatem składoe iycne tensora naprężenia yrażają się następująco: 1 σ 11 = C1 + λ λ + C λ + λ 1 σ =σ = C1 + λ λ + C λ + λ 5
11 Warunek τ 11 b = q iąże ciśnienie enętrne q parametrami deormacji λi δ : = ( 1 1 ) ( ) q = C λ + λ δ δ + C λ λ δ + δ.5. Prypadek grubościenna sera obciążona ciśnieniem enętrnym q rysunek 6 Z arunku naprężenioego τ 11 = ynacamy stałą p : = b ( b) ( b) ( b) b p = C1 + C + = b b b ( b) 1 ( ) C ( ) = C δ δ + δ + δ ys. 6. Prekrój środkoy grubościennej sery obciążeniem enętrnym q Zatem składoe iycne tensora naprężenia yrażają się następująco: 1 σ 11 = C1 + δ δ C + δ + δ 1 σ =σ = C1 + δ δ + C δ + δ Warunek τ 11 = a = q iąże ciśnienie enętrne q parametrami deormacji λi δ : ( 1 1 ) ( ) q = C δ + δ λ λ + C δ δ λ + λ 55
12 .6. Prypadek i grubościenna sera obciążona rónoceśnie ciśnieniem enętrnym q i enętrnym q Z arunkó naprężenioych dla bregu = a i = b ynacymy stałą p ora ależność pomiędy ciśnieniami q i q. τ 11 = a= q τ 11 = b= q 11 τ = C1 + + C + p ( a) ( a) ( a) a q = C1 + + C + p a a a ( a) ( b) ( b) ( b) b q = C1 + + C + p b b b ( b) 1 q = C1( λ + λ ) + C( λ λ ) + p 1 q = C1( δ + δ ) + C( δ δ ) + p ( 1 ) ( ) q q = C δ λ λ + C δ λ δ+ λ Stąd dla adanego q ynacamy q ( 1 1 ) ( ) q = q + C δ λ + δ λ + C δ λ δ+ λ ( 1 ) ( ) ( 1 ) ( ) p = q C λ + λ C λ λ = q C δ + δ C δ δ Wymiary a, b, a, b ynikające nieściśliości materiału: a b = a b Załóżmy, że prypadku ystępuje: q > q (rys. 7). 56
13 ys. 7. Prekrój sery grubościennej obciążonej ciśnieniem enętrnym i enętrnym, q > q Wtedy otrymujemy: 1 σ 11 = C1 + δ δ + C δ + δ q 1 σ =σ = C1 + δ δ + C δ + δ q Załóżmy, że prypadku ystępuje: q > q(rys. 8). Wtedy otrymujemy 1 σ 11 = C1 + λ λ + C λ + λ q 1 σ =σ = C1 + λ λ + C λ + λ q ( 1 1 ) ( ) q = q C δ λ + δ λ C δ λ δ+ λ 57
14 ys. 8. Prekrój sery grubościennej obciążonej ciśnieniem enętrnym i enętrnym, q > q. Podsumoanie Poyżej predstaiono roiąanie amknięte poalające na określenie składoych stanu naprężenia i premiescenia dla kulistych biornikó naiemnych i podiemnych. Problem roiąano oparciu o rónania nielinioej teorii sprężystości dla cterech prypadkó obciążenia. Zapreentoane roiąania mogą naleźć astosoania e stępnych stadiach projektoania naiemnych i podiemnych kulistych biornikó magaynoych. LITEATUA [1] Green A.E., Adkins J.E.: Large Elastic Deormations. Clarendon Press, xord, 196 [] Paluch M.: Podstay teorii sprężystości i plastycności prykładami. Wyd. P.K., Krakó, 6 [] ymar C.: Mechanika ośrodkó ciągłych. PWN, Warsaa, 199 [] Wesołoski Z., Woźniak C.: Podstay nielinioej teorii sprężystości. PWN, Warsaa,
2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])
P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się
ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ
Górnictwo i Geoinżynieria Rok 3 Zesyt 008 Marian Paluch*, Antoni Tajduś* ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ. Wstęp Zajmować będiemy
Zginanie Proste Równomierne Belki
Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie
Funkcje pola we współrzędnych krzywoliniowych cd.
Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =
MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE
Górnictwo i Geoinżynieria ok 33 Zesyt 1 9 Jan Gasyński* MIESZANY POBLEM POCZĄKOWO-BZEGOWY W EOII EMOKONSOLIDACJI. ZAGADNIENIE POCZĄKOWE 1. Wstęp Analia stanów naprężenia i odkstałcenia w gruncie poostaje
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane
W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6
achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo
W płaszczowo-rurowych wymiennikach ciepła pęczek rur umieszczany jest w płaszczu najczęściej o przekroju kołowym.
Wnikanie ciepła pry opłyie pęcka rur 1. Wdłużny opły pęcka W płascoo-ruroych ymiennikach ciepła pęcek rur umiescany jest płascu najcęściej o prekroju kołoym. Rys. 1-1. Wymiennik płascoo-ruroy, rónoległo
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Przykład 6.3. Uogólnione prawo Hooke a
Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.
TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy
DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W.
DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wynacanie ooró ry rełyie łynó [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] oracoanie: A.W. rys.. Rokład rędkości rekroju rury dla rełyu laminarnego i turbulentnego LICZBY KRYTERIALNE:
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Podstawy Konstrukcji Maszyn
Podsta Konstrukcji Masn kład Podsta oliceń elementó masn Dr inŝ. acek Carnigoski OciąŜenia elementu OciąŜeniem elementu (cęści lu całej masn) są oddiałania innc elementó, środoiska ora ociąŝeń enętrnc
Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej
Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.
Wykład 9. Stateczność prętów. Wyboczenie sprężyste
Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem
2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie
05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy
BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ
LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćiceie 0 BADANIE ODKSZTAŁCEŃ SRĘŻYNY ŚRUBOWEJ 0.. Wproadeie Sprężyy, elemety sprężyste mają bardo różorode astosoaie ielu kostrukcjach mechaicych. Wykorystuje się je
>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski
Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl
PRZESTRZEŃ WEKTOROWA (LINIOWA)
PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład IV Twierdzenia całkowe
4. Twierdenie Greena. Wykład IV Twierdenia całkowe Płascyną orientowaną będiemy określać płascynę wyróżnionym na nie obrotem, wanym obrotem dodatnim. Orientację płascyny preciwną wględem danej orientacji
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)
Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje
Układy równań - Przykłady
Układy równań - Prykłady Dany układ równań rowiąać trea sposobai: (a) korystając e worów Craera, (b) etodą aciery odwrotnej, (c) etodą eliinacji Gaussa, + y + = y = y = (a) Oblicy wynacnik deta aciery
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót
Naprężenia w ośrodku gruntowym
Naprężenia w ośrodku gruntowym Naprężenia geostatycne (pierwotne, bytowe) Wpływ wody gruntowej na naprężenia pierwotne Naprężenia wywołane siłą skupioną rowiąanie oussinesq a Naprężenia pochodące od obciążenia
MOSTKI NIEZRÓWNOWAŻONE PRĄDU STAŁEGO
Ćicenie 2 MOSTKI NIEZÓWNOWAŻONE PĄD STAŁEGO I. Cel ćicenia Celem ćicenia jest badanie łaściości metrologicnych mostkó nierónoażonych prądu stałego układach spółpracy ybranymi modelami cujnikó reystancyjnych.
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Wielokryteriowa optymalizacja liniowa (WPL)
arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t
Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n
Empiryczny model osiadania gruntów sypkich
mpirycny model osiadania gruntów sypkich prof. dr hab. inż. Zygmunt Meyer, Zachodniopomorski Uniwersytet Technologicny w cecinie, Katedra Geotechniki, al. Piastów 5, 7-3 cecin dr hab. Marek Tarnawski,
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
DOBÓR WSPÓŁCZYNNIKÓW KOREKCJI W PRZEKŁADNIACH PLANETARNYCH SELECTION OF MODIFICATION COEFFICIENTS IN PLANETARY GEAR TRANSMISSION
JAN RYŚ, TOMASZ KASPEREK * DOBÓR WSPÓŁCZYNNIKÓW KOREKCJI W PRZEKŁADNIACH PLANETARNYCH SELECTION OF MODIFICATION COEFFICIENTS IN PLANETARY GEAR TRANSMISSION S t r e s c e n i e A b s t r a c t Celem niniejsej
Wycena europejskiej opcji kupna model ciągły
Henyk Kogie Uniesytet ceciński Wycena euopejskiej opcji kupna model ciągły tescenie elem tego atykułu jest ukaanie paktycnego ykoystania metody matyngałoej dla pocesó ciągłych do yceny euopejskiej opcji
PROCES SEPARACJI MIESZANINY TECHNOLOGICZNEJ NA GÓRCE PALCOWEJ KOMBAJNU DO ZBIORU ZIEMNIAKÓW
InŜynieria Rolnica 1/006 Wojciech Tanaś, Marcin Zawierucha Katedra Masynonawstwa Rolnicego Akademia Rolnica w Lublinie PROCES SEPARACJI MIESZANINY TECHNOLOGICZNEJ NA GÓRCE PALCOWEJ KOMBAJNU DO ZBIORU ZIEMNIAKÓW
Sekantooptyki owali i ich własności
Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy
3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni
3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy
TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1
ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Pręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
Przykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krzywej temperatura-czas
Dokument Ref: SX043a-PL-EU Strona 1 5 Prykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krywej temperatura-cas Wykonał Z. Sokol Data styceń 006 Sprawdił F. Wald Data styceń
ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU
Zastosowanie granicnych agadnień INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 9/2008, POLSKA AKADEMIA NAUK, Oddiał w Krakowie, s. 217 226 Komisja Technicnej
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
PRZYKŁAD: Wyznaczyć siłę krytyczną dla pręta obciążonego dwiema siłami, jak na rysunku. w k
ZYKŁAD: Wyznaczyć siłę rytyczną dla pręta ociążonego diema siłami, ja na rysunu. (c) A K c B, a m,. ónania rónoagi A c c / () Y () X H ( c ) (3). ónanie ugięć przedziale BK ( ) (4) ( ) () (6) (7) E I -
Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
W siła działająca na bryłę zredukowana do środka masy ( = 0
Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka
PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.
CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej
Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Modelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania.
Modeloanie rozoju pożaru pomieszczeniach zamkniętych. Cz.. Model spalania. Dr hab. inż. Tadeusz Maciak prof. SGSP, mgr inż. Przemysła Czajkoski, Spis ażniejszych oznaczeń stosoanych modeloaniu pożaru:
Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe
Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia
Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,
Uderzenie dźwiękowe (ang. sonic boom)
Dr inż. Antoni Tarnogrodzki Politechnika Warszawska Uderzenie dźwiękowe (ang. sonic boom) to zjawisko polegające na rozchodzeniu się na dużą odległość silnego zaburzenia fal wywołanego przez samolot naddźwiękowy.
LICEALIŚCI LICZĄ ph różnych roztworów < materiały pomocnicze do sprawdzianu nr 2 > Przykładowe zadania:
LICEALIŚCI LICZĄ ph różnyh rotoró < materiały pomonie do spradianu nr > Spradian będie obejmoał 5 typó adań:. Oblianie artośi ph rotoró monyh kasó i asad uględnieniem spółynnika aktynośi jonó H + /OH -
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM
MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika
Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne
Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa
Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia
A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!
Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo
Kolokwium z mechaniki gruntów
Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie
UKŁADY TENSOMETRII REZYSTANCYJNEJ
Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek
Zginanie ze ściskaniem
Zginanie ze ściskaniem sformułoanie probemu przkład roziązań przkład obiczenioe Sformułoanie probemu W probemach tego tpu nie można stosoać zasad zesztnienia - konstrukcję naeż rozpatrać konfiguracji odkształconej
ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE
1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł
1. Dane Droga klasy technicznej G 1/2, Vp = 60 km/h poza terenem zabudowanym Prędkość miarodajna: Vm = 90 km/h (Vm = 100 km/h dla krętości trasy = 53,40 /km i dla drogi o szerokości jezdni 7,0 m bez utwardzonych
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Ekran 1 - Dane wejściowe Materiały Beton Klasa betonu: C 45/55 Wybór z listy rozwijalnej
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
UOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM
ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM JAN AWREJCEWICZ, YURIY PYRYEV Politechnika Łódzka, Katedra Automatyki i Biomechaniki, 9-94 Łódź, ul. Stefanoskiego /5, e-mail:
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR IMT - Wkład Nr 0 Złożon stan naprężeń - wtężenie materiału stan krtcn materiału pojęcie wtężenia cel stosowania hipote wtężeniowch naprężenie redukowane pregląd hipote
Może tak? Definicja robocza. Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków Literatura FIZYKA POWIERZCHNI I NANOSTRUKTURY
FIZYKA POWIERZCNI I NANOSTRUKTURY Literatura dr hab. Zbigniew Postawa Zakład Fiyki Doświadcalnej pok. 16 (nie 016!!) Tel. 5626 e-mail: p@castor.if.uj.edu.pl Sala 328, poniediałek 12 15 Be egaminu Zalicenie
TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1
TRANSFORMATORY Transformator jednofaowy Zasada diałania E E Z od Rys Transformator jednofaowy Dla mamy Cyli e ω ( t) m sinωt cosωt ω π sin ωt + m m π E ω m f m 4, 44 f m E 4, 44 f E m 4, 44 f m E, a E