5.6 Klasyczne wersje Twierdzenia Stokes a
|
|
- Grzegorz Kowal
- 5 lat temu
- Przeglądów:
Transkrypt
1 Ostatecznie f = 1 r 2 f ) r 2 r r + ctg ϑ f r 2 ϑ f r 2 ϑ f r 2 sin 2 ϑ ϕ 2 56 Klasyczne wersje Twierdzenia Stokes a Odpowiedniość między polami wektorowymi i jednoformami lub n 1)-formami pozwala zinterpretować poniższe klasyczne wzory analizy wektorowej jako wersje Twierdzenia Stokes a: i) S n rot X)dσ = t X)dl ii) div X dv = n X)dσ D D Analizując wzory i) i ii) używać powinniśmy pojęcia gęstości, która odpowiada tradycyjnemu elementowi objętości dv, elementowi powierzchni dσ czy elementowi długości dl Nie dyskutowaliśmy jednak form nieparzystych oraz gęstości, dlatego posłużymy się dotychczas wprowadzonym językiem Na potrzeby wzoru i) założyć trzeba, że S jest dwuwymiarową zwartą powierzchnią z brzegiem zanurzoną w trójwymiarowej zorientowanej rozmaitości M z metryką Na potrzeby wzoru ii) założyć należy, że D jest n-wymiarową zwartą rozmaitością z brzegiem zanurzoną w n-wymiarowej zorientowanej rozmaitości M Zajmiemy się najpierw wzorem ii) W naszym języku element objętości to forma objętości zgodna z orientacją i związana z metryką, zatem napisać możemy D div X dv = D,ı) div X)Ω = Dalej używamy definicji dywergencji i stosujemy twierdzenie Stokes a = D,ı) dı X Ω) = D, ı) ı X Ω = Korzystając z układów współrzędnych typu opisanego w definicji rozmaitości z brzegiem oraz ze stosownego rozkładu jedności na brzegu D α i ) i I, rachunek możemy kontynuować następująco = α i Xi 1 det G i dx 2 i dx n i 11) i I Õi,+) W powyższym wzorze całkujemy po dziedzinie układu współrzędnych ϕ i = x 2 i,, x n i ) na brzegu z orientacją zgodną z kolejnością współrzędnych x 2,, x n ) Xi 1 jest pierwszą współrzędną pola wektorowego w układzie współrzędnych ϕ = x 1 i, x 2 i,, x n i ) zaś G i to macierz iloczynu skalarnego wyrażona w bazie związanej z układem współrzędnych Po prawej stronie równości ii) dσ odpowiada formie objętości na brzegu zapisanej dla metryki g obciętej do brzegu W układzie współrzędnych ϕ forma ta ma postać det S i dx 2 i dx n i Macierz S i jest podmacierzą macierzy G i odpowiadającą współrzędnym od 2 wzwyż, tzn G i = G 11 G 12 G 1n G 12 S i G 1n 76
2 Poszukajmy teraz wektora normalnego do powierzchni D skierowanego na zewnątrz Niech n = a k k dla uproszczenia notacji wektor oznaczać będziemy x k k Pomijać także będziemy indeks numerujący układy współrzędnych Warunek skierowania na zewnątrz oznacza, że a 1 > 0 Wektor n ma być prostopadły do j dla j > 1, czyli Jednocześnie wektor n ma być długości 1, czyli 0 = g n, j ) = G ik a i δ k j = G ij a i j > 1 12) 1 = g n, n) = G ij a i a j = j i G ij a i )a j = i G i1 a i a 1 13) Wyrażenia 12) i 13) można razem zapisać macierzowo G 11 G 12 G 1n G 21 G 22 G 2n G n1 G n2 G nn a 1 a 2 a n = 1/a ) Macierz G jest odwracalna Wyrazy macierzowe macierzy odwrotnej oznaczamy tradycyjnie G ij Używając macierzy odwrotnej rozwiążemy równanie 14) Obliczmy teraz g n, X) a 1 = G 1j δ 1 j /a 1 = a 1 = G 11 a j = G jk δ 1 k/a 1 = a j = G j1 / G 11, j > 1 g n, X) = G ij a i X j = G i1 a i X 1 = X 1 G i1 G i1 / G 11 = X 1 / G 11 Po prawej stronie wzoru ii) we współrzędnych mamy więc skłdanik pochodzący od jednego układu współrzędnych) Õ,+) αx 1 / G 11 ) det S dx 2 dx n 15) Potrzebujemy związek między det G a det S W tym celu rozważmy przejście od bazy e = 1, 2,, n ) do bazy f = n, 2,, n ) Macierz przejścia [id] e f ma postać [id] e f = a a a a n Macierz iloczynu skalarnego w bazie f to S 0, 77
3 a operacja zmiany bazy daje S = 0 a a a a n T G a a a a n Liczymy wyznacznik i pierwiastek ale a 1 = G 11, zatem det S = a 1 ) 2 det G det S = a 1 det G det S = G 11 det G Po podstawieniu powyższego związku do 15) prawa strona ii) przyjmuje postać Õ,+) αx 1 / G 11 ) det S dx 2 dx n = i jest równa lewej stronie 11) Õ,+) αx 1 / G 11 ) G 11 det G dx 2 dx n = Zajmiemy się teraz wzorem i) Analizując ii) ustaliliśmy, że całka n X)dσ = ı X Ω Skorzystamy z tego przekształcając lewą stronę i): n rot X)dσ = ı rot X Ω = dg X) = S Zapiszmy teraz formę pod całką w układzie współrzędnych Jeśli jest parametryzacją brzegu to Jednostkowy wektor styczny to D S S D G X = G ij X i dx j I r x 1 r), x 2 r), x 3 r) ) G X = I G ij r)x i r)ẋ j dr t = 1 r r 78 Õ,+) αx 1 det G dx 2 dx n G X 16)
4 natomiast r = ẋ ẋ ẋ 3 3 Iloczyn skalarny pod całką można zapisać jako G ij X i ẋ j = gx, r) = gx, t) r Jeśli weźmiemy pod uwagę, że dl = r dr rachunek 16) można kontynuować G X = G ij X i ẋ j dr = X t) r dr = X t)dl I I 57 Gwiazdka Hodge a W bardzo podobny sposób do tego, w jaki definiowaliśmy wieloformy na przestrzeni wektorowej, zdefiniować można wielowektory Skorzystamy tu z prawdziwego dla skończenie-wymiarowych przestrzeni wektorowych faktu iż V ) jest kanonicznie izomorficzna z V Możemy zamienić rolami V i V traktując V jako zbiór funkcji liniowych na V i rozważać także zbiór funkcji wieloliniowych antysymetrycznych na V, czyli k V Swój odpowiednik wektorowy ma też konstrukcja iloczynu zewnętrznego W języku tensorowym mamy oraz v 1 v 2 v k = v w = w w w v σ S k sgn σv σ1) v σ2) v σk) Ponieważ V V ) V V możemy obliczyć α β na v w: α β, v w = α β β α, v w w v = αv)βw) αw)βv) βv)αw) + βw)αv) = 2[αv)βw) αw)βv)] i ogólnie α 1 α 2 α k, v 1 v 2 v n = k! σ S k sgn σ α 1 v σ1) ) α k v σk) ) Oznacza to, że jeśli e i ɛ są parą baz dualnych w V i V to układy e i1 e i2 e ik, ɛ j 1 ɛ j 2 ɛ j k dla i 1 < i 2 < < i k, j 1 < j 2 < < j k prawie są parą baz dualnych Prawie, bo gdzieś trzeba podzielić przez k! Mając iloczyn skalarny g na V możemy utożsamiać wektory z kowektorami przy pomocy izomorfizmu G Iloczyn skalarny możemy wprowadzić także na V : gv, w) = v w) = Gv), w = G ij v i v j gα, β) = α β) = α, G 1 β) = G ij α i β j 79
5 Zgodnie z konwencją, G ij to wyrazy macierzowe macierzy odwrotnej do G Izomorfizmy G i G 1 możemy rozszerzyć na dowolne iloczyny tensorowe Na przykład jeśli α β V V to G 1 α β) = G 1 α) G 1 β) V V Zakładając, że rozszerzenie jest liniowe otrzymujemy G 1 α i1 i 2 i k ɛ i 1 ɛ i 2 ɛ i k ) = α i1 i 2 i k G i 1j 1 G i 2j2 G i kj k e j1 e j2 e jk Korzystając z rozszerzenia G i G 1 definiujemy iloczyn skalarny na przestrzeni k-form k V wzorem α 1 α 2 α k β 1 β 2 β k ) = 1 k! G 1 α 1 ) G 1 α 2 ) G 1 α k ), β 1 β 2 β k, na dowolne wieloformy niekoniecznie proste) rozszerzamy poprzez warunek liniowości Rys 34: Sir William Vallance Douglas Hodge Gwiazdka Hodge a: Na rozmaitości M z metryką g mamy iloczyn skalarny na każdej przestrzeni stycznej, zatem wszystko o czym była mowa powyżej prawdziwe jest punkt po punkcie Jeśli dodatkowo rozmaitość jest zorientowana i w związku z tym wyposażona w kanoniczną formę objętości, zdefiniować można przydatne odwzorowanie : Ω k M) Ω n k M) wzorem α = 1 k! ı G 1 α)ω Mamy tu do czynienia z pewną kolizją oznaczeń: Ω k oznacza zbiór k-form ma M i jednocześnie Ω jest formą objetości Myślę jednak, że damy radę odróżniać o którą omegę kiedy chodzi 80
6 Sprawdźmy najpierw jak nasza definicja działa w praktyce Zaczniemy od najprostszego przypadku: M = R 3, orientacja kanoniczna, iloczyn skalarny kanoniczny, G = 1, Ω = dx 1 dx 2 dx 3 dx 1 = ı G 1 dx 1 )dx 1 dx 2 dx 3 = ı 1 dx 1 dx 2 dx 3 = dx 2 dx 3 dx 2 = ı G 1 dx 2 )dx 1 dx 2 dx 3 = ı 2 dx 1 dx 2 dx 3 = dx 1 dx 3 dx 3 = ı G 1 dx 3 )dx 1 dx 2 dx 3 = ı 3 dx 1 dx 2 dx 3 = dx 1 dx 2 dx 1 dx 2 ) = 1 2 ı G 1 dx 1 dx 2 )dx 1 dx 2 dx 3 = ı 1 2 dx 1 dx 2 dx 3 = dx3 Popatrzmy teraz na rachunki w układzie sferycznym: Ω = r 2 sin ϑ dr dϑ dϕ, G = dr = ı r Ω = r 2 sin ϑ dϑ dϕ r r 2 sin 2 ϑ dϑ = ı 1 r 2 rω = 1 r 2 ı ϑ Ω = sin ϑdr dϕ dϕ = 1 ı r 2 sin 2 ϑ ϕ Ω = 1 dr dϑ sin ϑ dr dϑ = 1 1 ı 2 r 2 r ϑ Ω = sin ϑdϕ Zauważmy, że dx 1 = dx 2 dx 3 = dx 1, dr dϕ = 1 ) sin ϑ dϑ = dr dϕ Z drugiej strony na R 2 dx 1 = dx 2, dx 2 = dx 1, dx 1 = dx 2 = dx 1 Wydaje się więc, że złożenie jest równe identyczności z dokładnością do znaku Znak ten musi mieć coś wspólnego z rzędem formy i wymiarem przestrzeni Fakt 11 Zachodzą następujące równości 1 1 = Ω 2 Ω = 1 3 α = 1) kn k) α, α Ω k M) 4 α β = α β)ω α, β Ω k M) Dowód: Zauważmy, że jest operacją punktową, zatem można wybrać wygodny układ współrzędnych W tym przypadku jest to taki układ współrzędnych, dla którego w ustalonym punkcie baza 1, 2,, n ) jest ortonormalna Pracować będziemy w takim układzie współrzędnych 81
7 Wtedy G 1 dx i ) = i Zaczynamy od dowodu punktu 3) Każda k-forma jest kombinacją liniową form bazowych dx i 1 dx i k z funkcyjnymi współczynnikami jest liniowa nad funkcjami, więc można sprawdzić tylko na formach bazowych Załóżmy, że i 1 < i 2 < < i k dx i 1 dx i k = 1 k! ı i1 i2 ik dx 1 dx n = sgn σ dx i k+1 dx i k+2 dx in, gdzie i k+1 < i k+2 < < i n oraz σ jest permutacją 1 2 k k + 1 n σ = i 1 i 2 i k i k+1 i n ) Aplikujemy drugi raz dx i 1 dx i k = sgn σ dx i k+1 dx i k+2 dx in = sgn σ sgn ρ dx i 1 dx i k Permutacja ρ ma postać 1 2 n k n k + 1 n ρ = i k+1 i k+2 i n i 1 i k ) Pozostaje do obliczenia sgn σ sgn ρ: Pamiętając, że znak jest homomorfizmem grupy permutacji w grupę { 1, 1} z mnożeniem zauważamy, że sgn σ sgn ρ = sgn ρ sgn σ = sgn ρ sgn σ 1 = sgn ρ σ 1 ) Ostatnie złożenie jest permutacją ρ σ 1 i1 i = 2 i k n i k n+1 n i k+1 i k+2 i n i 1 i k ), której znak jest równy 1) kn k) Dla dowodu punktu 2) zauważmy, że G 1 Ω) = 1 2 n, dalej Ω = 1 n! ı 1 2 n )Ω = 1 n! n! = 1 Punkt 1) wynika z 3) i 2), a właściwie jest jedyną sensowną definicją gwiazdki zero-formy, która pasuje do pozostałych wzorów W punkcie 4) zauważmy, że obie strony są dwuliniowe, można więc sprawdzać na formach bazowych Niech więc α = dx i 1 dx i k i β = dx j 1 dx j 2 dx j k Forma β jest, z dokładnością do znaku, iloczynem zewnętrznym różniczek dx j k+1 dx j k+2 dx j n, gdzie {j 1, j 2,, j k, j k+1,, j n } = {1, 2,, n} W tej sytuacji α β jest różna od zera jedynie gdy {i 1,, i k } = {j 1,, j k } Jeśli dodatkowo założymy naturalne uporządkowanie indeksów oznacza to, że i l = j l dla l = 1,, k and α = β Podobnie α β) jest różna od zera jedynie gdy α = β, gdyż α β) = 1 k! ı i1 ik dx j 1 dx j 2 dx j k 82
8 Ostatecznie, gdy α = β prawa strona to α α)ω = Ω a lewa α α = sgn σ dx i 1 dx i k dx i k+1 dx i k+2 dx in = sgn σ) 2 Ω Dla porządku zapiszmy, że σ jest permutacją 1 2 k k + 1 n σ = i 1 i 2 i k i k+1 i n ) 6 Różniczkowanie pól i form W geometrii różniczkowej interesuje nas często jak dane pole tensorowe zmienia się od punktu do punktu na rozmaitości A właściwie częściej chodzi o to, czy są jakieś kierunki w których się nie zmienia Tu jednak napotykamy na pierwszą pojęciową trudność: zazwyczaj nie wiadomo jak porównywać wartości rozmaitych pól pól wektorowych, form różniczkowych) w różnych punktach na rozmaitości Możemy porównywać wartości funkcji w różnych punktach, ale nie możemy porównywać wartości pola wektorowego w różnych punktach Wiadomo co to znaczy funkcja f jest stała na M, ale nie wiadomo co to jest stałe pole wektorowe Na przykład na sferze dwuwymiarowej we współrzędnych ϑ, ϕ) pole wektorowe X = ϕ bylibyśmy być może skłonni uznać za stałe, ale to samo pole wektorowe we współrzędnych stereograficznych wygląda już zupełnie inaczej ϕ = x y + y x i pomysł z nazwaniem go stałym polem wydaje się cokolwiek dziwny Różnica polega na tym, że wiązka M R M, której cięciem jest funkcja jest trywialna, więc wartości funkcji w rożnych punktach należą do tej samej przestrzeni Wiązka, której cięciem jest pole wektorowe τ M : TM M już trywialna nie jest wartości w różnych punktach należą do różnych przestrzeni stycznych Przestrzenie te są co prawda izomorficzne, ale nie kanonicznie Żeby porównywać wartości pola wektorowego w różnych punktach potrzebujemy albo dodatkowej struktury która nazywa się, zgodnie z tym do czego służy, powiązaniem lub z łaciny koneksją) albo jakiejś metody na sprowadzanie wartości z otoczenia do jednego punktu Zaczniemy od tego drugiego sposobu Do sprowadzania wartości pól wektorowych albo kowektorowych do jednego punktu posłuży nam potok pola wektorowego Operacja badania zmienności różnych pól tensorowych, czyli obliczania pochodnych tych pól, odbywać się będzie wzdłuż ustalonego pola wektorowego 61 Pochodna Liego Podstawowym pojęciem potrzebnym do zdefiniowania pochodnej Liego jest potok pola wektorowego Odwozorowanie różniczkowalne ϕ : R M M nazywamy grupą dyfeomorfizmów, jeżeli spełnione są dwa warunki 1 q M ϕ0, q) = q, 83
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 30 grudnia 2013 1 Całkowanie form różniczkowych 11 Klasyczne wersje Twierdzenia Stokes a W tej części zajmiemy się interpretacją poniższych
z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony
Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie
Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011
Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 17 listopada 2013 1 Wielokowektory i wieloformy na powierzchni Poprzedni wykład zakończyliśmy na sformułowaniu następującego faktu:
3. Iloczyn zewnętrzny w ogólności nie jest przemienny, ale zachodzi wzór:
2 Iloczyn zewnętrzny jest łączny, tzn: (α β) γ α (β γ) 3 Iloczyn zewnętrzny w ogólności nie jest przemienny, ale zachodzi wzór: α β ( 1) kl β α Dowód: Punkt (1) wynika łatwo z definicji Dowód punktu (2)
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 6 stycznia 014 1 Różniczkowanie pól i form 1.1 Pochodna kowariantna Zobaczmy jak we współrzędnych wyglądać będzie równanie różniczkowe
Geometria Różniczkowa II wykład piąty
Geometria Różniczkowa II wykład piąty Wykład piąty poświęcony będzie pojęciu całkowalności dystrybucji oraz fundamentalnemu dal tego zagadnienia twierdzeniu Frobeniusa. Przy okazji postanowiłam sprawdzić
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Geometria Różniczkowa I
Geometria Różniczkowa I wykład ósmy Orientacja przestrzeni wektorowej. Mówimy, że dwie bazy e i f w skończenie-wymiarowej przestrzeniwektorowejv mająjednakowąorientacjęjeślimacierzprzejścia[id] f e madodatni
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego
[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 11 listopada 013 1 Alternatywne spojrzenie na wektory styczne Definicja 1 Algebrą nazywamy przestrzeń wektorową A wyposażoną w działanie
5 Wielokowektory i wieloformy na powierzchni
5 Wielokowektory i wieloformy na powierzchni Poniższe notatki powstały z użyciem notatek do wykładów Matematyka II i Matematyka III, więc mogą Państwo mieć czasami wrażenie, że autor niepotrzebnie rozdziela
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.
Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni
Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Całki powierzchniowe w R n
Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
= f. = df(d1 t, d 2 t,..., d n t) D γ(0) = df γ. x i. Biorąc funkcję f postaci f(q) + x i g i stwierdzamy, że f (q) = g
Skoro funkcja f jest gładka, to funkcje g i także są gładkie (twierdzenia o całkach z parametrem na odcinku zwartym) Wracamy teraz do dyskusji różniczkowań algebry C (M) względem ewaluacji w punkcie q
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Macierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Wykład 2. . = n x k y k
Wykład 2 Matematyka 2, semestr letni 2/2 Kontynuujemy przygotowanie do studiowania rachunku różniczkowego funkcji wielu zmiennychwiedząjużpaństwo,żepochodnafunkcjif: R n Rwpunkciex R n jestodwzorowaniemliniowymdziałającymnawektorachzaczepionychwx
Geometria Różniczkowa I
Geometria Różniczkowa I wykład trzeci NiechC (M)oznaczazbiórwszystkichgładkichfunkcjinarozmaitościM.C (M)jestrzeczywistą, przemienną algebrą z jedynką. Istotną rolę w geometrii różniczkowej odgrywają homomorfizmy
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Symetrie i prawa zachowania Wykład 6
Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym