Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM"

Transkrypt

1 Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

2 Spis treści 11 Promieniowanie Promieniowanie dipolowe

3 11 Promieniowanie 11.1 Promieniowanie dipolowe Czym jest promieniowanie? r źródło

4 P r) = S da = 1 µ 0 E B) da moc przechodząca przez powierzchnię

5 P r) = S da = 1 µ 0 E B) da moc przechodząca przez powierzchnię P rad lim r P r) moc wypromieniowana

6 Promieniowanie elektryczne dipolowe z R + +q r d θ R y q

7 Promieniowanie elektryczne dipolowe z R + +q r d θ R y q qt) = q 0 cost) ładunek przepływa

8 Promieniowanie elektryczne dipolowe z R + +q r d θ R y q qt) = q 0 cost) ładunek przepływa pt) = p 0 cost)ẑ, p 0 q 0 d drgający dipol

9 Potencjał opóźniony V r, t) = 1 { q0 cost R + /c)] 4πɛ 0 R + q 0 cost R /c)] R }

10 Potencjał opóźniony V r, t) = 1 { q0 cost R + /c)] 4πɛ 0 R + q 0 cost R /c)] R } R ± = r 2 rd cos θ + d/2) 2 z twierdzenia cosinusów

11 przybliżenie 1: d r dipol doskonały

12 przybliżenie 1: d r dipol doskonały R ± = r 1 d2r cos θ ) przybliżenie liniowe ze względu na d

13 przybliżenie 1: d r dipol doskonały R ± = r 1 d2r cos θ ) przybliżenie liniowe ze względu na d 1 1 = R ± r 1 ± d2r cos θ )

14 przybliżenie 1: d r dipol doskonały R ± = r 1 d2r cos θ ) przybliżenie liniowe ze względu na d 1 1 = R ± r 1 ± d2r cos θ ) cos = cos t R ± c ) ] = cos t r c ) ] cos t r ) c ) d 2c cos θ ] ± d 2c cos θ sin t r ) ] ) d sin c 2c cos θ

15 przybliżenie 2: d c d λ) dipol doskonały

16 przybliżenie 2: d c d λ) dipol doskonały cos t R ) ] ± = cos c t r ) ] d c 2c cos θ sin t r ) ] c

17 przybliżenie 2: d c d λ) dipol doskonały cos t R ) ] ± = cos c t r ) ] d c 2c cos θ sin t r ) ] c V r, θ, t) = p 0 cos θ 4πɛ 0 r c sin t r ) ] + 1 c r cos t r ) ] c

18 przybliżenie 2: d c d λ) dipol doskonały cos t R ) ] ± = cos c t r ) ] d c 2c cos θ sin t r ) ] c V r, θ, t) = p 0 cos θ 4πɛ 0 r c sin t r ) ] + 1 c r cos t r ) ] c V = p 0 cos θ 4πɛ 0 r 2 dla 0, granica statyczna

19 przybliżenie 3: r c r λ) strefa promieniowania

20 przybliżenie 3: r c r λ) strefa promieniowania V r, θ, t) = p 0 4πɛ 0 c cos θ r ) sin t r ) ] c

21 z R dz +q θ r y q

22 z R dz +q θ r y q It) = dq dt ẑ = q 0 sint)ẑ prąd płynący w drucie

23 z R dz +q θ r y q It) = dq dt ẑ = q 0 sint)ẑ prąd płynący w drucie Ar, t) = µ 0 4π d/2 d/2 q 0 sint R/c)]ẑ R dz potencjał wektorowy

24 Ar, θ, t) = µ 0p 0 4πr sin t r c ) ] ẑ

25 Ar, θ, t) = µ 0p 0 4πr sin t r c ) ] ẑ Obliczamy pola: V = V r ˆr + 1 V r θ ˆθ = p 0 4πɛ 0 c cos θ 1 r 2 sin sin θ r 2 sin t r ) ] ˆθ c = p 0 2 ) cos θ 4πɛ 0 c 2 cos r t r ) ] c rc cos t r c ) ] ˆr t r c ) ] ˆr

26 A t = µ 0p 0 2 4πr cos t r c ) ] cos θ ˆr sin θ ˆθ) }{{} ẑ

27 A t = µ 0p 0 2 4πr cos E = V A t = µ 0p 0 2 4π t r c ) ] cos θ ˆr sin θ ˆθ) }{{} ẑ ) sin θ cos r t r c ) ] ˆθ

28 A t = µ 0p 0 2 4πr cos E = V A t = µ 0p 0 2 4π t r c ) ] cos θ ˆr sin θ ˆθ) }{{} ẑ ) sin θ cos r t r c ) ] ˆθ A = 1 r = µ 0p 0 2 4πr r ra θ) A ] z θ c sin θ cos ˆφ t r ) ] + sin θ c r sin t r ) ] c ˆφ

29 A t = µ 0p 0 2 4πr cos E = V A t = µ 0p 0 2 4π t r c ) ] cos θ ˆr sin θ ˆθ) }{{} ẑ ) sin θ cos r t r c ) ] ˆθ A = 1 r = µ 0p 0 2 4πr r ra θ) A ] z θ c sin θ cos ˆφ t r ) ] + sin θ c r sin t r ) ] c ˆφ B = A = µ 0p 0 2 4πc ) sin θ r cos t r c ) ] ˆφ

30 S = 1 µ 0 E B) = µ 0 c p 0 2 4π sin θ r ) cos t r c ) ] 2 ˆr

31 S = 1 µ 0 E B) = µ 0 c p 0 2 4π sin θ r ) cos t r c ) ] 2 ˆr S = µ0 p π 2 c ) sin 2 θ r 2 ˆr natężenie promieniowania

32 S = 1 µ 0 E B) = µ 0 c p 0 2 4π sin θ r ) cos t r c ) ] 2 ˆr S = µ0 p π 2 c ) sin 2 θ r 2 ˆr natężenie promieniowania P = S da = µ 0p π 2 c sin 2 θ r 2 r 2 sin θ dθ dφ = µ 0p πc

33 S = 1 µ 0 E B) = µ 0 c p 0 2 4π sin θ r ) cos t r c ) ] 2 ˆr S = µ0 p π 2 c ) sin 2 θ r 2 ˆr natężenie promieniowania P = S da = µ 0p π 2 c sin 2 θ r 2 r 2 sin θ dθ dφ = µ 0p πc Wynik nie zależy od promienia sfery

34 d P dω = µ 0p π 2 c sin2 θ moc wypromieniowana w kąt bryłowy dω

35 d P dω = µ 0p π 2 c sin2 θ moc wypromieniowana w kąt bryłowy dω promieniowanie elektryczne dipolowe charakterystyka kierunkowa

36 z y promieniowanie elektryczne dipolowe charakterystyka kierunkowa

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3) VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Zadania z Elektrodynamiki

Zadania z Elektrodynamiki Zadania z Elektrodynamiki literatura: 1. J.D. Jackson, Elektrodynamika klasyczna, PWN 1987 2. D.J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 3. M. Suffczyński, Elektrodynamika, PWN 1980 4. W. Panofsky,

Bardziej szczegółowo

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina /28 A. Odrzywołek Dziura w Statycznym Wszechświecie Einsteina Seminarium ZTWiA IFUJ, Środa, 26..22 2/28 A. Odrzywołek 3-sfera o promieniu R(t): Równania Einsteina: Zachowanie energii-pędu: Równanie stanu

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

Zadania na zaliczenie ćwiczeń z Elektrodynamiki

Zadania na zaliczenie ćwiczeń z Elektrodynamiki Zadania na zaliczenie ćwiczeń z Elektrodynamiki semest letni 2009 literatura: J. D. Jackson, Elektrodynamika klasyczna, PWN 1987 D. J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 M. Suffczyński, Elektrodynamika,

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Zjawiska falowe. Wstępne wiadomości o drganiach i falach

Zjawiska falowe. Wstępne wiadomości o drganiach i falach Zjawiska falowe Wstępne wiadomości o drganiach i falach Ruch oscylacyjny, drgania harmoniczne proste Ruch, w którym położenie ciała x(t) powtarza się, nazywamy drganiem. W ruchu harmonicznym prostym położenie

Bardziej szczegółowo

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

ver magnetyzm

ver magnetyzm ver-2.01.12 magnetyzm prądy proste prądy elektryczne oddziałują ze soą. doświadczenie Ampère a (1820): F ~ 2 Ι 1 Ι 2 siła na jednostkę długości przewodów prądy proste w próżni jednostki w elektryczności

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Fizyka Kolokwium Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 Fizyka w poprzednim odcinku Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM dt B Siła elektromotoryczna

Bardziej szczegółowo

Obliczanie indukcyjności cewek

Obliczanie indukcyjności cewek napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Wydajność konwersji energii słonecznej:

Wydajność konwersji energii słonecznej: Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego

Bardziej szczegółowo

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i) (3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech

Fizyka 2 Wróbel Wojciech Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Dozymetria promieniowania jonizującego

Dozymetria promieniowania jonizującego Dozymetria dział fizyki technicznej obejmujący metody pomiaru i obliczania dawek (dóz) promieniowania jonizującego, a także metody pomiaru aktywności promieniotwórczej preparatów. Obecnie termin dawka

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 5 Janusz Andrzejewski Janusz Andrzejewski 2 Janusz Andrzejewski 3 Pole wytworzone przepływem prądu Wektor d indukcji magnetycznej pola wywołanego przepływem prądu wynosi: r r r µ 0 Ids

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Rozdział 8. Fale elektromagnetyczne

Rozdział 8. Fale elektromagnetyczne Rozdział 8. Fale elektromagnetyczne 208 Spis treści Widmo fal elektromagnetycznych Równanie falowe Rozchodzenie się fal elektromagnetycznych Wektor Poyntinga Podsumowanie z indukcji EM i fal EM Zadania

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

10 Udowodnić, że rozwiązanie równania Laplace a nie może posiadać lokalnych ekstremów we wnętrzu obszaru na którym może być określone.

10 Udowodnić, że rozwiązanie równania Laplace a nie może posiadać lokalnych ekstremów we wnętrzu obszaru na którym może być określone. 1 Elektrostatyka 1 Z prawa Coulomba obliczyć pole elektryczne od jednorodnie naładowanego odcinka. Wykonać przejście graniczne l 0 (przy ustalonym ładunku odcinka) oraz l (przy ustalonej gęstości liniowej

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Wielomiany Legendre a

Wielomiany Legendre a grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane

Bardziej szczegółowo

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

EGZAMIN Z ANALIZY II R

EGZAMIN Z ANALIZY II R EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny 58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola

Bardziej szczegółowo

Ramka z prądem w jednorodnym polu magnetycznym

Ramka z prądem w jednorodnym polu magnetycznym Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F

Bardziej szczegółowo

Dygresja: moment pędu a obroty

Dygresja: moment pędu a obroty 3. Atom 3 Dygresja: moment pędu a obroty weźmy np. atom wodoru c 1 jp 1 i + c 0 jp 0 i + c 1 jp 1 i Y1 0 (µ; ') = 1 r 3 ¼ cos µ Y 1 1(µ; ') = 1 r 3 ¼ sin µ e i' Obrót: oś, kąt ~ c 0 m = hp m 0jR(~ )jp

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z) v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d

Bardziej szczegółowo

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Wiadomości wstępne. Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji

Wiadomości wstępne. Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji Wiadomości wstępne Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990 000 Bevatron PS AGS

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 Niech r ( t ) [ x( t), y( t), z( t)], t I ( r ( t ) x( t) i y( t) j z( t) k, t I ) będzie równaniem wektorowym krzywej w R 3. Definicja Krzywą o równaniu r ( t ) [ a cost,

Bardziej szczegółowo

Światło widzialne a widmo elektromagnetyczne

Światło widzialne a widmo elektromagnetyczne Światło widzialne a widmo elektromagnetyczne 10 3 λ [nm] λ 10 6 10 12 fale radiowe 1 mm 10 9 10 12 10 9 10 6 mikrofale 100 µm 10 µm 10 15 10 18 10 21 10 3 1 10 3 widmo optyczne prom. X promienie gamma

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd

Bardziej szczegółowo

19 Własności iloczynu skalarnego: norma, kąt i odległość

19 Własności iloczynu skalarnego: norma, kąt i odległość 19 Własności iloczynu skalarnego: norma, kąt i odległość Załóżmy, że V jest przestrzenią liniową z iloczynem skalarnym.,.. Definicja 19.1 Normą (długością) wektora v V nazywamy liczbę v = v, v. Uwaga 1

Bardziej szczegółowo

Rozdział 1 Wiadomości wstępne. Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji

Rozdział 1 Wiadomości wstępne. Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji Rozdział 1 Wiadomości wstępne Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1 POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej

Bardziej szczegółowo

7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.

7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7. Lecture 8 & 9 7, r f(x) =lim f(x) (7.) r r f(x) =lim f(x) +lim f(x) (7.) r r r 7. f(z) I = f(x) (7.) f(z), z ( argz π), zf(z) [ R, R], : z = R Jordan C f(z). C f(z)dz = R R f(x) + f(z)dz =πi i Res z=zi

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Pole magnetyczne Linie pola magnetycznego analogiczne do linii pola elektrycznego Pole magnetyczne jest polem bezźródłowym (nie istnieje monopol magnetyczny!) Prawo Gaussa dla pola

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

magnetyzm ver

magnetyzm ver e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo