PŁYTY WIELOKIERUNKOWO ZBROJONE
|
|
- Maja Marszałek
- 8 lat temu
- Przeglądów:
Transkrypt
1 W. Bierut: Płt wielokierunkowo zginane 1 PŁYTY WIELOKIERUNKOWO ZBROJONE Prz obliczaniu łt rostokątnch, którch boki na kierunkach l i l znacznie różnią się długością rzjęto, że racują one tlko w jednm kierunku (wzdłuż mniejszej roziętości), tzn. omija się włw sztwności łt na dłużnm kierunku. Tego rodzaju uroszczenie nie może bć stosowane, jeżeli mam do cznienia z łtami rostokątnmi o niewielkiej różnic długości l i l. Na odstawie doświadczeń i dociekań teoretcznch ustalono, że w łtach rostokątnch oartch na całm obwodzie należ uwzględniać dwukierunkowe zginanie, gd stosunek długości boków zawiera się w granicach: l 0, 5, 0. l Obliczanie łt rzerowadza się rz założeniach: grubość jest niewielka w orównaniu z ozostałmi wmiarami, ugięcia są nieznaczne w stosunku do grubości, środkowa owierzchnia łt nie ulega wdłużeniom, a normalne (rostoadłe) do niej rzed jej ugięciem ozostają normalnmi i o ugięciu. Obliczane łt wg teorii srężstości srowadza się do rozwiązania równania różniczkowego odkształconej środkowej owierzchni łt, jako funkcji ugięcia: δ w δ w + δ δ δ δ w 1(1 ν ) + = δ Eh gdzie: h - grubość łt, ν - wsółcznnik Poissona ( ν =1/6), = g + q. Równanie całkuje się z uwzględnieniem kształtu łt, sosobu ich odarcia oraz obciążenia Płt jednorzęsłowe obciążone równomiernie Rozróżnia się sześć rzadków sosobu oarcia łt na bokach obwodu: l 1 3 l 5 6 Rs Najczęściej sotkane schemat łt dwukierunkowo zginanch, oartch w sosób ciągł na obwodzie
2 W. Bierut: Płt wielokierunkowo zginane Pracę łt o bokach l i l od równomiernm obciążeniem traktuje się jako zesół krzżującch się asm, na które działają składowe i całkowitego obciążenia (kn/m ):, I l I 0, I II l Rs. 1.. Schemat do wrowadzenia wzorów do obliczania łt dwukierunkowo zginanch Określim składowe obciążenia i, zginające wdzielone asma I i II. Punkt 0 jest wsóln dla obu asm, a ugięcie obu asm jest jednakowe. Otrzmam zatem dwa równania z dwiema niewiadommi i. ugięcie obciążenie = I =. (1.1) II = + Oznaczając rzez I i I moment bezwładności, a rzez k 1 i k wsółcznniki zależne od rodzaju obciążenia i sosobu odarcia asm I i II o długościach l i l, otrzmam: k1 = E I = +, k = E I rz założeniu I =I otrzmam: = k 1 = k + k = (1 χ), (1.) = χ. (1.3) Znając obciążenia i możem obliczć wartości momentów rzęsłowch: =, m = m, m, m - wsółcznniki zależne od sosobu odarcia asm jako belek jednorzęsłowch. (1.) m = m = 8 m = m = 18 9 m = m =
3 W. Bierut: Płt wielokierunkowo zginane 3 Ponieważ oszczególne asma nie racują niezależnie od siebie, owstające w związku z tm moment skręcające międz asmami, zmniejszą moment zginające w rzęśle. Włw ten, określon rzez arcusa za omocą wsółcznnika ν, zależn jest od stosunku roziętości l i l oraz sosobu oarcia łt na obwodzie. = m = m ν ν = = χ m ν (1 χ) m ϕ, ϕ, χ - odane w tablic 1.1. = ν ϕ = ϕ, (1.5) oment odorowe oblicza się ze wzorów analogicznch do wzorów dla łt zginanch jednokierunkowo: - rz obustronnm zamocowaniu 1 = 1 1 = 1 χ =, 1 (1 χ) = 1, (1.6) - rz jednostronnm zamocowaniu 1 = 8 1 = 8 χ =, 8 (1 χ) = 8. (1.7) Gd łta jest częściowo zamocowana wzdłuż krawędzi, traktujem to oarcie jako rzegubowe, uwzględniając częściowe zamocowanie rzez właściwe uzbrojenie asma rzodorowego: χ =, 16 (1 χ) = 16. (1.8)
4 W. Bierut: Płt wielokierunkowo zginane Tablica 1.1 Wsółcznniki do obliczania łt dwukierunkowo zginanch od obciążeniem ciągłm równomiernm 1 1 Kobiak J., Stachurski W.: Konstrukcje żelbetowe tom. Arkad, Warszawa 1987.
5 W. Bierut: Płt wielokierunkowo zginane 5 c.d. tablic 1.1
6 6 W. Bierut: Płt wielokierunkowo zginane c.d. tablic 1.1
7 W. Bierut: Płt wielokierunkowo zginane 7.0. Płt wielorzęsłowe obciążone równomiernie Prz ciągłm równomiernm obciążeniu stałm można rzjąć założenie, że rzekroje na odorach ośrednich nie ulegną obrotowi, czli że moment odorowe na krawędziach odarcia łt są równe momentom całkowitego zamocowania. ożna zatem odzielić łtę ciągłą na łt jednorzęsłowe i tak ją obliczać (tablica 1.1 łt jednorzęsłowch). Jeżeli orócz obciążenia stałego g działa również obciążenie równomiernie zmienne można również korzstać z tablic dla łt jednorzęsłowch. Należ tlko odowiednio rozdzielić obciążenie całkowite, ab dla składowch tego obciążenia można bło rzjąć odowiednie schemat łt jednorzęsłowch.. Uzskuje się to rzez odział obciążenia na i : = + = g + q Obciążenie, = q. (.1) uważam za rozłożone w sosób ciągł we wszstkich rzęsłach, można więc ostęować tak samo jak rz łtach, na które działa obciążenie równomierne stałe (czli rzjmując odowiednie schemat łt). Obciążenie jest obciążeniem antsmetrcznm. Prz takim rozkładzie obciążenia moment odorowe są równe zeru, a więc łtę dla obciążenia można traktować jako zesół łt jednorzęsłowch swobodnie odartch na obwodach (schemat 1). Suma i tworz najniekorzstniejsz układ obciążeń dla maksmalnch momentów rzęsłowch, które oblicza się sumując moment rzęsłowe od składowch obciążeń odowiednich schematów łt jednorzęsłowch. q = g + = q + q = g Rs..1. Sosób odziału obciążeń rz obliczaniu momentów rzęsłowch w wieloolowch łtach dwukierunkowo zginanch i i ± ϕ ± ϕ 1 1 ), (.) ) w którch: ϕi, ϕ i wsółcznniki odcztane z tablic 1.1 dla rzeczwistego schematu danej łt, ϕ1, ϕ1 wsółcznniki odcztane z tablic 1.1 dla schematu 1, niezależnie od rzeczwistego schematu danej łt.
8 8 W. Bierut: Płt wielokierunkowo zginane oment odorowe wznacza się (z rzbliżeniem) w założeniu całkowitego obciążenia wszstkich rzęseł łt obciążeniem = g + q z tm, że rzekroje odorowe ól, z którmi graniczą ola rzległe, uważane są za utwierdzone. N. dla kierunku, w zależności od schematów sąsiadującch łt: z lewej l, l l z rawej, l l = ψ l l ψ ψ l = 16 ψ = ψ l = 16 ψ = 16 ψ l = ψ = Sosób ostęowania na kierunku jest analogiczn. Przkład 1: Jednorzędowa, ięcioolowa łta ciągła l a l l b l l l oment rzęsłowe w olach skrajnch (ola ) ± ϕ ± ϕ 1 1 ) ) oment rzęsłowe w olach środkowch (ola 3) 3 3 ± ϕ ± ϕ 1 1 ) ) oment odorowe a b χ χ3 = ( + ) 16 χ3 χ3 = ( + ) χ3 = 1
9 W. Bierut: Płt wielokierunkowo zginane 9 Przkład : Dwurzędowa, ięcioolowa łta ciągła a c d l l b b l l l l l oment rzęsłowe (ole ) ± ϕ ± ϕ 1 1 oment rzęsłowe (ole 5) 5 5 oment odorowe a c b d ± ϕ ± ϕ ) ) 1 1 ) ) χ χ5 = ( + ) 16 (1 χ ) (1 χ ) (1 χ ) = ( + ) = χ5 χ5 χ5 = ( + ) = 1 (1 χ5 ) (1 χ5 ) (1 χ5 ) = ( + ) = Płt rostokątne jednorzęsłowe od obciążeniem trójkątnm l l b 0, 5, 0 a Rs Schemat do obliczania łt dwukierunkowo zginanch od obciążeniem trójkątnm Obliczanie łt wg tablic 3.1 i 3. : dla,5 l l 1: = k, 0 < dla l l : 1 < = k, = k, = k, Kobiak J., Stachurski W.: Konstrukcje żelbetowe tom. Arkad, Warszawa 1987.
10 10 W. Bierut: Płt wielokierunkowo zginane Tablica 3.1 Wsółcznniki do obliczania momentów zginającch w łtach dwukierunkowo zginanch od obciążeniem trójkątnm
11 W. Bierut: Płt wielokierunkowo zginane 11 c.d. tablic 3.1
12 1 W. Bierut: Płt wielokierunkowo zginane Tablica 3. Wsółcznniki do obliczania sił orzecznch w łtach rostokątnch oartch na obwodzie, od obciążeniem trójkątnm
13 W. Bierut: Płt wielokierunkowo zginane 13. Płt odarte na trzech krawędziach Płt rostokątne od obciążeniem ciągłm równomiernm lub trójkątnm na całej owierzchni należ obliczać jako krzżowo zbrojone, jeżeli stosunek boków zawiera się w granicach: l 0, 3 l l - długość krawędzi nieodartej i rzeciwległej. I II l l Rs..1. Schemat łt dwukierunkowo zginanch oartch na trzech krawędziach oment rzęsłowe i odorowe obliczam wg ogólnch wzorów: i = k i. = k i i W tablic.1 i. zamieszczono wsółcznniki do obliczania łt dwukierunkowo zginanch oartch na trzech krawędziach Sił orzeczne Sił orzeczne dla łt obciążonch w sosób ciągł równomiern, będące reakcjami łt na odierające krawędzie, można obliczać w sosób rzbliżon wg schematów rozkładu obciążeń rzedstawionch na rs Płt oarte na czterech krawędziach 5 o l =l 5 o l l >l l l l l Płt oarte na trzech krawędziach l 5 Rs Schemat do obliczania sił orzecznch w łtach dwukierunkowo zginanch 3 Kobiak J., Stachurski W.: Konstrukcje żelbetowe tom. Arkad, Warszawa 1987.
14 1 W. Bierut: Płt wielokierunkowo zginane Tablica.1 Wsółcznniki do obliczania łt dwukierunkowo zginanch oartch na trzech krawędziach
15 W. Bierut: Płt wielokierunkowo zginane 15 c. d. tablic.1
16 16 W. Bierut: Płt wielokierunkowo zginane Tablica. Wsółcznniki do obliczania sił orzecznch w łtach dwukierunkowo zginanch oartch na trzech krawędziach od obciążeniem trójkątnm 6. Obliczanie belek odorowch l =l l >l 5 o l l / 5 o l l l z = 0,65 l l l l -l z l / l / 1 1 l z = (1 + ), α = 3 α 8α l
Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grua nr: Ocena:
Metoda pasm skończonych płyty dwuprzęsłowe
etoda pasm skończonch płt dwuprzęsłowe Dla płt przedstawionej na rsunku należ: 1. Dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p obliczć ugięcia w punktach A i B oraz moment, i w punktach A,B
40 dla płyt wolnopodpartych, jednokierunkowo zbrojonych. 50 dla płyt zamocowanych i ciągłych oraz dwukierunkowo zbrojonych. w = = q.
Płt dwukierunkowo zbrojone l Płt zazwczaj są oparte na czterech krawędziach. Jeśli ma to przjmujem, że płta wmaga zbrojenia w lmin dwóch kierunkach (krzżowe zbrojenia). Płt krzżowo zbrojone mogą bć jedno
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
ŻELBETOWE ZBIORNIKI NA CIECZE
ŻELBETOWE ZBIORNIKI NA CIECZE OGÓLNA KLASYFIKACJA ZBIORNIKÓW Przy wyborze kształtu zbiornika należy brać pod uwagę następujące czynniki: - przeznaczenie zbiornika, - pojemność i wymiary, - stosowany materiał
[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Imperfekcje globalne i lokalne
Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.
rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów
1. METODA PRZEMIESZCZEŃ
.. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
ŁĄCZENIA CIERNE POŁĄ. Klasyfikacja połączeń maszynowych POŁĄCZENIA. rozłączne. nierozłączne. siły przyczepności siły tarcia.
POŁĄ ŁĄCZENIA CIERNE Klasyfikacja ołączeń maszynowych POŁĄCZENIA nierozłączne rozłączne siły sójności siły tarcia siły rzyczeności siły tarcia siły kształtu sawane zgrzewane lutowane zawalcowane nitowane
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Ć w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach
Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
f x f y f, jest 4, mianowicie f = f xx f xy f yx
Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
SKRĘCANIE WAŁÓW OKRĄGŁYCH
KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami
Mechanika teoretyczna
Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
Mechanika ogólna Obliczanie sił wewnętrznych c w układach prętowych. Kratownice. Kratownica
Mechanika ogólna Wykład nr 7 Obliczanie sił wewnętrznych w układach rętowych. Kratownice. 1 Kratownica Układ rętów w rostoliniowych: ołą łączenia rzegubowe w węzłach; w obciąż ążenia w ostaci sił skuionych
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
Stropy TERIVA - Projektowanie i wykonywanie
Stropy TERIVA obciążone równomiernie sprawdza się przez porównanie obciążeń działających na strop z podanymi w tablicy 4. Jeżeli na strop działa inny układ obciążeń lub jeżeli strop pracuje w innym układzie
Przykład 7.2. Belka złożona. Obciążenie poprzeczne rozłożone, trapezowe.
rzkład 7.. Beka złożona. Obciążenie orzeczne rozłożone, traezowe. a oniższej beki zaisać funkcje sił rzekrojowch i sorządzić ich wkres. α Rozwiązanie Oznaczam unkt charakterstczne, składowe reakcji i rzjmujem
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
Wykład Analiza jakościowa równań różniczkowych
Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Mechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql
Narysować wykresy momentów i sił tnących w belce jak na rysunku. q l Określamy stopień statycznej niewyznaczalności: n s = r - 3 - p = 5-3 - 0 = 2 Przyjmujemy schemat podstawowy: X 2 X Zakładamy do obliczeń,
Zestaw pytań z konstrukcji i mechaniki
Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku
ZAJĘCIA 3 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY
DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY PRZYKŁADY OBLICZENIOWE WYMIAROWANIE PRZEKROJÓW ZGINANYCH PROSTOKĄTNYCH POJEDYNCZO ZBROJONYCH ZAJĘCIA 3 PODSTAWY PROJEKTOWANIA KONSTRUKCJI
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
Ć w i c z e n i e K 1
kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie
atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego
Rodzaje drgań na przykładzie układu o jednym stopniu swobody
Rdzaje drgań na rzkładzie układu jednm stniu swbd Układ jednm stniu swbd Ssin t m k C m S sint Przkład układu jednm stniu swbd Schemat układu jednm stniu swbd Zestawienie sił w układzie jednm stniu swbd
12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Badania zginanych belek
Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
WARIANTOWANIE ROZWIĄZAŃ ZBIORNIKÓW PODZIEMNYCH STOSOWANYCH W GOSPODARSTWACH ROLNO HODOWLANYCH
WRINTOWNIE ROZWIĄZŃ ZIORNIKÓW POZIEMNYH STOSOWNYH W GOSPORSTWH ROLNO HOOWLNYH nna ŻKOWIZ Wdział udownictwa i Inżnierii Środowiska, Politechnika iałostocka, ul. Wiejska 45, 15-351 iałstok Streszczenie:
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne:
- str.10 - POZ.2. STROP NAD KLATKĄ SCHODOWĄ Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: 1/ Grubość płyty h = 15cm 2/ Grubość otulenia zbrojenia a = 2cm 3/
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET
- 1 - Kalkulator Elementów Żelbetowych 2.1 OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET Użytkownik: Biuro Inżynierskie SPECBUD 2001-2010 SPECBUD Gliwice Autor: mgr inż. Jan Kowalski Tytuł: Poz.4.1. Elementy żelbetowe
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH
ECHANIKA I WYTRZYAŁOŚĆ ATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH ZAD. 1. OBLICZYĆ SIŁY TNĄCE ORAZ OENTY ZGINAJĄCE W BELCE ORAZ NARYSOWAĆ WYKRESY TYCH SIŁ Wyznaczamy siły reakcji. Obciążenie ciągłe
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Analiza stanu przemieszczenia oraz wymiarowanie grupy pali
Poradnik Inżyniera Nr 18 Aktualizacja: 09/2016 Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Program: Plik powiązany: Grupa pali Demo_manual_18.gsp Celem niniejszego przewodnika jest przedstawienie
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. Badanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
KURS FUNKCJE WIELU ZMIENNYCH
KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
Zaprojektować zbrojenie na zginanie w płycie żelbetowej jednokierunkowo zginanej, stropu płytowo- żebrowego, pokazanego na rysunku.
Zaprojektować zbrojenie na zginanie w płycie żelbetowej jednokierunkowo zginanej, stropu płytowo- żebrowego, pokazanego na rysunku. Założyć układ warstw stropowych: beton: C0/5 lastric o 3cm warstwa wyrównawcza
e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2
OBLICZENIA STATYCZNE POZ.1.1 ŚCIANA PODŁUŻNA BASENU. Projektuje się baseny żelbetowe z betonu B20 zbrojone stalą St0S. Grubość ściany 12 cm. Z = 0,5x10,00x1,96 2 x1,1 = 21,13 kn e = 1/3xH = 1,96/3 = 0,65
WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO
WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO Ściany obciążone pionowo to konstrukcje w których o zniszczeniu decyduje wytrzymałość muru na ściskanie oraz tzw.
3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci
.. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam
MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ
Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Konstrukcje betonowe Wykład, cz. II
Konstrukcje betonowe Wykład, cz. II Dr inż. Jacek Dyczkowski Studia stacjonarne, KB, II stopień, rok I, semestr I 1 K. Kopuły Rys. K-1 [5] 2 Obciążenia i siły od ciężaru własnego kopuły, pokazanej na rys.
Ruch po równi pochyłej
Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Całkowanie przez podstawianie i dwa zadania
Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,
W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t
J. Szantr Wkład nr 3 Przepłw potencjalne 1 Jeżeli przepłw płn jest bezwirow, czli wszędzie lb prawie wszędzie w pol przepłw jest rot 0 to oznacza, że istnieje fnkcja skalarna ϕ,, z, t), taka że gradϕ.
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
ELEMENTY MECHANIKI TECHNICZNEJ, STATYKI I WYTRZYMAŁOŚĆ MATERIAŁÓW
D o u ż t k u w e w n ę t r z n e g o Katedra Inżnierii i Aparatur Przemsłu Spożwczego LMNTY MCHANIKI TCHNICZNJ, STATYKI I WYTRZYMAŁOŚĆ MATRIAŁÓW Ćwiczenia projektowe Opracowanie: Maciej Kabziński Kraków,
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Dr inż. Janusz Dębiński
r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą
Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1
Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna
Projekt 9 Obciążenia płata nośnego i usterzenia poziomego
Projekt 9 Obciążenia łata nośnego i usterzenia oziomego Niniejszy rojekt składa się z dwóch części:. wyznaczenie obciążeń wymiarujących skrzydło,. wyznaczenie obciążeń wymiarujących usterzenie oziome,
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET
Użtkownik: Biuro Inżnierskie SPECBUD Autor: mgr inż. Jan Kowalski Ttuł: Poz.4.1. Element żelbetowe Przkład 1 - Obliczenia przkładowe programu KEŻ Belka - zginanie - 1 - Kalkulator Elementów Żelbetowch