D Y N A M I K A. DYNAMIKA: badanie ruchu ciał materialnych oraz związków pomiędzy siłami i ruchem, korzystając z pojęć kinematyki.

Wielkość: px
Rozpocząć pokaz od strony:

Download "D Y N A M I K A. DYNAMIKA: badanie ruchu ciał materialnych oraz związków pomiędzy siłami i ruchem, korzystając z pojęć kinematyki."

Transkrypt

1 Y N A M I K A YNAMIKA: badanie ruhu iał aterialnh ora wiąków poięd siłai i ruhe korstają pojęć kineatki. SIŁA pojęie pierwotne SIŁA wnik wajenego ehaninego oddiałwania na siebie o najniej dwóh iał. Oddiałwania te prejawiają się pre wprowadenie iała e stanu sponku lub ianę paraetrów ruhu iała już porusająego się. RAWA NEWTONA (687) I prawo Newtona (prawo bewładnośi) II prawo Newtona (prawo iennośi ruhu) III prawo Newtona (prawo akji i reakji) rawa Newtona są słusne pr ałożeniu istnienia NIERU- HOMEGO UKŁAU ONIESIENIA wiąanego ABSO- LUTNĄ RZESTRZENIĄ ora asu nieależnego od układu odniesienia - ZASU ABSOLUTNEGO. Układ Galileusa układ bewładnośiow (inerjn) W ZAGANIENIAH TEHNIZNYH UKŁAEM ONIESIENIA EST ZIEMIA (w pewnh prpadkah SŁOŃE). Uwaga sersa definija pojęia sił ostała predstawiona we wprowadeniu do ehaniki (rod. ). 5 naika.do 63

2 YNAMIZNE RÓWNANIE RUHU UNKTU MATERIALNEGO MASA (stał współnnik proporjonalnośi) a RZYSIESZENIE UNKTU wwołane oddiałwanie sił SKALARNIE: a = SIŁA ZIAŁAĄA NA UNKT MATERIALNY MASA [kg] RZYSIESZENIE [/s ] SIŁA: = a = kg = NEWTON (niuton) s ZASAA NIEZALEŻNOŚI ZIAŁANIA SIŁ rspiesenie punktu aterialnego na któr diałają sił... n równe jest suie geoetrnej prspieseń które iał ten punkt gdb każda th sił diałała na niego osobno. 5 naika.do 64

3 ZAGANIENIE (ZAANIE) ROSTE OBIEKT (punkt iało) Znane skutki nienane prn Rowiąwanie agadnień prosth: ane: równania ruhu (t) (t) (t) Sukane: sił (t)(t)(t) Wpadkowa wartość sił: osinus kierunkowe wpadkowej: os( ) os( ) os() ZAGANIENIE (ZAANIE) OWROTNE Znane prn nienane skutki Rowiąwanie agadnień odwrotnh: (t ane: sił ) współrędne położenia ( ) prędkość (t ) Sukane: równania ruhu (t) (t) (t) METOY NUMERYZNE ZAŁOŻENIE: = onst 5 naika.do 65

4 RUH SWOBONY Ruh swobodn nie jest ogranion diałanie więów: a Opis ruhu punktu aterialnego w ruhu swobodn we współrędnh kartejańskih pr stałej sile nnej = onst dla a(t) a (t)a (t) (t)(t) : nanego prspiesenia Y (t) r(t) (t) unkt aterialn o asie Tor punktu (t) Współrędne ruhu punktu: (t) X X Składowe sił : (t) (t). (t) Warunki poątkowe: dla t = punkt startuje położenia =( ) prędkośią poątkową v (v v ). v v X Y X t t t t. RUH ROSTOLINIOWY UNKTU MATERIALNEGO: Y a II prawo Newtona: a a Zależnośi kineatki: v a v naika: (t) (t ) = (t ) Warunki poątkowe: ( ) () v t t 5 naika.do 66

5 RUH KRZYWOLINIOWY UNKTU MATERIALNEGO. RZUT UKOŚNY W RÓŻNI Równania dnaine ruhu dla osi X i Y: = v t Warunki poątkowe: (v ) () t t v Stałe ałkowania: os v 3 = G = g g gt gt 3t 4 (v ) () t t v sin v os 3 v sin 4 v v sin gt v v os (v os) t gt (v sin) t Równanie toru: Analia ruhu: a a tg v a h g os v v sin aa dla g g h 45 v v sin ha dla g g (rut pionow w górę) 9 5 naika.do 67

6 RUH NIESWOBONY Ruh swobodn ogranion diałanie więów i ih reakji. a R RUH ROSTOLINIOWY UNKTU MATERIALNEGO: Sheat sił w ruhu nieswobodn prostoliniow ( uwględnienie sił taria) rkład ruhu prostoliniowego nieswobodnego: Równanie dnaine ruhu dla osi X: Gsin T Równanie dnaine ruhu dla osi Y: N Gos N Gos T N G os rspiesenie iała w ruhu nieswobodn: a G(sin os) a g(sin os). 5 naika.do 68

7 SIŁA BEZWŁANOŚI a a a Fikjna siła Siłę równą o do wartośi ilonowi as i prspiesenia punktu aterialnego skierowaną preiwnie do prspiesenia nawa się siłą bewładnośi lub siłą d Aleberta. SIŁA BEZWŁANOŚI Wpadkowa sił nnh diałająh na punkt ZASAA ALEMBERTA odas ruhu punktu aterialnego w każdej hwili wsstkie sił rewiste diałająe na punkt aterialn ora jego siła bewładnośi poostają w równowade. iałanie sił d Aleberta ięki asadie d Aleberta równanio różnikow ruhu punktu aterialnego nadana ostaje postać równań równowagi (równań statki) 5 naika.do 69

8 ZASTOSOWANIE ZASAY ALEMBERTA rkład: re gładki krążek preruono lekki doskonale wiotki snur do którego jednego końa proowano iało o asie a drugi konie proowano do iała o asie leżąego na hropowatej poioej płasźnie o współnniku taria. Wnać siłę napięia S w linie ora wartość prspiesenia a jaki porusać się będą oba iała. Równania dnaine ruhu: a g S a S T N N g T g g( ) a T g( ) S Równania statki astosowanie sił d Aleberta: () () () S a () S T a () () N Q Q a g Q Q( ) S Q Q g g 5 naika.do 7

9 YNAMIKA UKŁAU IAŁ SZTYWNYH Układ punktów aterialnh la układu punktów aterialnh w jednorodn polu grawitajn środek as pokrwa się e środkie iężkośi. SIŁY ZEWNĘTRZNE I WEWNĘTRZNE W UKŁAZIE IAŁ SIŁY ZEWNĘTRZNE ZYNNE I BIERNE Sił ewnętrne nne wwołują ruh. Sił ewnętrne bierne (reakje więów) preiwdiałają ruhowi. Układ (biór) iał stwnh układ ehanin SIŁY WEWNĘTRZNE W UKŁAZIE MEHANIZNYM sił oddiałwania ięd eleentai układu (sił ewnętrne dla danego eleentu). ZASAA RUHU ŚROKA MASY Środek as iała (układu iał) porusa się jak punkt o asie równej asie ałego układu do którego prłożono wsstkie sił ewnętrne diałająe na iało (układ iał). 5 naika.do 7

10 Ę I OĘ rędkość iała w ruhu jednostajnie prspieson: v = v + at. Na podstawie II prawa Newtona: v - v = Ft. Ę IAŁA (ilość ruhu): ilon as i prędkośi v. OĘ IAŁA (ipuls): ilon sił i asu jej diałania Ft. TWIERZENIE O ĘZIE I OĘZIE: rrost pędu iała równa się popędowi udieloneu teu iału. ZASAA ZAHOWANIA ĘU: eżeli w układie dwóh iał diałają tlko sił wewnętrne wówas sua pędów th iał poostaje awse stała. Sił wewnętrne sił wewnątr układu (poija się sił pohodąe od iał nie należąh do układu). ęd iała : p = v ęd iała : p = v Sił wwołująe ianę pędu: F F III prawo Newtona: F + F = Stąd: v + v = onst. 5 naika.do 7

11 RAA SIŁY raą sił stałej o do wartośi i kierunku na prostoliniow presunięiu punktu prłożenia tej sił nawa się ilon wartośi bewględnej presunięia i iar rutu tej sił na kierunek tego presunięia. L s L (os ) s s os Gd = L = s [N] kg kg L] N s s L s s s s [ L s i n i i s s s n s ra wpadkowej sił prłożonh do danego punktu jest równa suie pra posególnh sił. RAA SIŁY W RUHU OBROTOWYM raa sił w ruhu obrotow równa jest ilonowi oentu sił wględe osi obrotu i kąta o jakie obrói się iało: L t [rad] M L M L oent sił wględe osi obrotu ω prędkość kątowa [rad/s] 5 naika.do 73

12 RAA SIŁ IĘŻKOŚI ednorodne pole sił iężkośi (w obsare o roiarah ałh w porównaniu proienie Ziei R = 6 37 k). raa wdłuż łuku A A : L ( d d d) raa wkonana pre siłę iężkośi g diałająą na punkt aterialn o asie pr prejśiu punktu A do A. A A L A A Założenie: g raa sił na skońon odinku łuku A A : ( d d d) g d g( ) AA L gh raa L nie ależ od kstałtu toru po któr porusa się punkt aterialn. raę L w jednorodn polu sił iężkośi (grawitajnh) nawa się energią potenjalną. L g( ) gh 5 naika.do 74

13 MO Mo praa wkonana pre urądenie w jednoste asu. Mo jest iara prdatnośi silnika (asn). dl ds ds dl ds v N v dt dt dt N v v os gd N v kg [ N] W WAT jednostka o 3 s s W prakte o asn ier się w kw (kilowatah kw = = 3 W) i MW (egawatah MW = 3 kw = 6 W).) W prakte stosuje się tak e podawanie o w koniah ehaninh ( KM = 7355 kw kw = 36 KM). KM jednostka spoa układu SI. eżeli o N wrażona jest w kw prędkość obrotowa n [obr/in] to wtwaran oent obrotow wnosi: N M N n 3 N 9555 n [N ] rkład: Oblić praę wkonana w t = 5 in pre koło pasowe o r = 8 wkonująe n = obr/in. Sił naiągu w pasah wnosą: S = 36 N S = 7 N. Oblić o wkonwaną pre koło pasowe. M M L M (S S ) r (7 36) N RAA: droga w asie t = 5 in: n t rad L 7 M N MO = RAA/ZAS t = 5 6 = 3 s 7 L N 843 W 843 kw t 3 M n 648 Inaej: N M W. 5 naika.do 75

14 SRAWNOŚĆ L praa (energia) dostarona do urądenia (asn) L u praa użtena L s strat pra (energii) tarie opor L = L u + L s Sprawnośią asn nawa się stosunek: L Lu u % L L. Masna idealna: =. Sprawność asn łożonej: = 3. n. efinija sprawnośi oparta o o: N Nu u % N N Mo użtena asn: N u = N. ENERGIA KINETYZNA Z prawa pędu i popędu dla v = : Ft = v -. roga prebta pre iało w asie t równa się ilonowi średniej prędkośi v śr i asu: v v s v śr t t v t. raa wkonana na ropędenie iała i nadanie prędkośi v: v v t L F s v v v. t W ruhu postępow iało o asie i prędkośi v posiada energię kinetną E k równą nagroadonej pra: Ek v. 5 naika.do 76

15 ENERGIA KINETYZNA Energia kinetna i tego punktu aterialnego: E i i vi. Energia kinetna układu punktów aterialnh: i vi E Ei. i i Energia kinetna iała w ruhu postępow: vs E asa iała v S prędkość środka as iała Energia kinetna iała w ruhu obrotow: L E L oent bewładnośi iała wględe osi obrotu prędkość kątowa iała Energia kinetna iała stwnego w ruhu ogóln: vs L E. v S prędkość środka as L oent bewładnośi iała wględe osi hwilowego obrotu prehodąej pre środek as hwilowa prędkość kątowa wokół osi hwilowego obrotu. 5 naika.do 77

16 TWIERZENIE O RÓWNOWAŻNOŚI RAY I ENERGII KINETYZNE rrost energii kinetnej iała stwnego w skońon prediale asu jest równ suie pra które wkonał w t sa asie wsstkie sił ewnętrne diałająe na to iało. E E L E energia kinetna w hwili t E energia kinetna w hwili t t > t ENERGIA MEHANIZNA: sua energii kinetnej i potenjalnej E +. W asie ruhu punktu aterialnego w ahowaw polu sił energia ehanina poostaje wielkośią stałą. ole ahowawe (potenjalne) pole sił w któr praa ależ od położenia poątkowego i końowego nie ależ od postai toru punktu (patr: praa sił iężkośi). ZASAA ZAHOWANIA ENERGII MEHANIZNE odas ruhu punktu aterialnego w ahowaw polu sił jego energia ehanina jest wielkośią stałą. E E E E SIŁY ZAHOWAWZE I NIEZAHOWAWZE SIŁY ZAHOWAWZE (OTENALNE) praa wkonana pre te sił nad punkte aterialn porusają się po dowolnej drode akniętej jest równa eru (sił iężkośi). SIŁY NIEZAHOWAWZE praa wkonana pre te sił nad punkte aterialn porusają się po dowolnej drode akniętej nie jest równa eru (opór powietra sił taria). 5 naika.do 78

17 MOMENTY BEZWŁANOŚI Moent bewładnośi harakterują rokład w prestreni as danego układu punktów aterialnh lub brł. Brła jednorodna Brła niejednorodna RUH OSTĘOWY RUH ŁASKI (postępow + obrotow) Na skutek nierównoiernego rokładu as pr tej saej asie wstępują różne rodaje ruhu. d d d d d d asowe oent statne d d gęstość iała [kg/ 3 ] Moent bewładnośi harakterują rokład w prestreni as iała aterialnego. entralne osie bewładnośi osie wględe środka as. 5 naika.do 79

18 Mślowo wdielon eleent iała EFINIA MOMENTÓW BEZWŁANOŚI WZGLĘEM OSI UKŁAU XYZ: Z h d h d X Y d d d Z X Y d d d d d d EFINIA MOMENTÓW BEZWŁANOŚI WZGLĘEM ŁASZZYZN UKŁAU XYZ: d d d d d Wiar oentu bewładnośi: kg. Moent bewładnośi wględe osi równ jest suie oentów wględe dowolnh dwóh wajenie prostopadłh płasn preinająh się wdłuż tej osi. BIEGUNOWY MOMENT BEZWŁANOŚI: r d d X Y Z. EWIAYNE MOMENTY BEZWŁANOŚI w układie osi XYZ: d d d Moent osiowe i biegunow są awse dodatnie oent dewiajne ogą bć dodatnie ujene lub równe eru (prpadek sególn GŁÓWNE MOMENTY BEZWŁANOŚI). 5 naika.do 8

19 5 naika.do 8 HARAKTERYSTYKI GEOMETRYZNO-MASOWE WYBRANYH ENORONYH FIGUR ŁASKIH ORAZ BRRYŁ Y Y Z Z (X ) X L/ L/ Masa: = L gęstość liniowa pręta [kg/] L 3 L Z Y r (X ) Masa: = L gęstość powierhniowa as [kg/ ] L 4 r Y Z Z (X ) Y b/ b/ h/ h/ Masa: = bh b 3 h 3 ) h (b b h (X ) Y Y Z Z /3h /3h /3b /3b bh : Masa bh 36 ) h (b 8 b 8 h 8 Y Y Z Z X X a b Masa: = ab gęstość objętośiowa as [kg/ 3 ] b a b a Z Z Y Y r h/ h/ X X O h r Masa : r r 4

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

ZASADY ZACHOWANIA W FIZYCE

ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWAIA: ZASADY ZACHOWAIA W FIZYCE Energii Pędu Moentu pędu Ładunku Liczb barionowej ZASADA ZACHOWAIA EERGII Praca sił zewnętrznej W = ΔE calk Ziana energii całkowitej Jeżeli W= to ΔE calk = ZASADA

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

v! są zupełnie niezależne.

v! są zupełnie niezależne. Zasada ekwiartyji energii 7-7. Zasada ekwiartyji energii ównowaga termizna układów Zerowa zasada termodynamiki Jeżeli układy A i B oraz A i są arami w równowadze termiznej, to również układy B i są w równowadze

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Jeśli m = const. to 0 P 1 P 2

Jeśli m = const. to 0 P 1 P 2 1 PRAWA NEWTONA Prawo perwse. Każde cało trwa w spocnku lub ruchu jednostajn prostolnow, dopók sł nań dałające tego stanu ne eną. Prawo druge. Zana lośc ruchu (pędu) jest proporcjonalna wględe sł dałającej

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Nara -Japonia. Yokohama, Japan, September 2014

Nara -Japonia. Yokohama, Japan, September 2014 Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu

Bardziej szczegółowo

Dynamika Newtonowska trzy zasady dynamiki

Dynamika Newtonowska trzy zasady dynamiki Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Elementy szczególnej teorii względności

Elementy szczególnej teorii względności Elementy szzególnej teorii względnośi Podstawowe założenia szzególnej teorii względnośi: Albert Einstein 195 Prawa fizyzne są takie same dla wszystkih obserwatorów któryh kłady odniesienia porszają się

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

Podwaliny szczególnej teorii względności

Podwaliny szczególnej teorii względności W-6 (Jarosewi) 7 slajdów Na podsawie preenaji prof. J. Rukowskiego Podwalin sególnej eorii wględnośi asada wględnośi Galileusa ekspermen Mihelsona i Morle a ransformaja Lorena pierwsa spreność współesnej

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

MECHANIKA II. Dynamika układu punktów materialnych

MECHANIKA II. Dynamika układu punktów materialnych MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Mechanika ogólna II Kinematyka i dynamika

Mechanika ogólna II Kinematyka i dynamika Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

14. Teoria względności

14. Teoria względności . Teoria wzglęnośi.. Prękość w ukłaah inerjalnyh. Y Z Z Y V V V X X Wzglęe ukłau O unkt aterialny a szybkość x t' Natoiast wzglęe ukłau O a szybkość x t. Skoro x γ (x t ) to x γ (x t ) Natoiast x' x' t

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Dynamika układu punktów materialnych

Dynamika układu punktów materialnych Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł

Bardziej szczegółowo

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 MECHANIKA OGÓLNA Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Licba godin: sem. II *) - wkład 30 god., ćwicenia 30 god. sem. III *) - wkład 30 god., ćwicenia 30 god., ale dla kier.

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

ZASADY ZACHOWANIA ENERGII MECHANICZNEJ, PĘDU I MOMENTU PĘDU

ZASADY ZACHOWANIA ENERGII MECHANICZNEJ, PĘDU I MOMENTU PĘDU ZASADY ZACHOWANIA ENERGII MECHANICZNEJ PĘDU I MOMENTU PĘDU Praca W fiyce racą eleentarną dw nayway wielkość dw Fd Fdr (4) gdie F jet iłą diałającą na drode d d F Pracę eleentarną ożna także redtawić w

Bardziej szczegółowo

Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta

Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta 5 Oblizanie harakterystyk geometryznyh przekrojów poprzeznyh pręta Zadanie 5.. Wyznazyć główne entralne momenty bezwładnośi przekroju poprzeznego dwuteownika o wymiarah 9 6 m (rys. 5.. Rozpatrywany przekrój

Bardziej szczegółowo

f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując

f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując Wykład z fizyki. Piotr Posmykiewiz 63 s = ma s = m v f vi = mvi 7- f W równaniu powyŝszym zastosowano równanie Porównują równania 7-0 i 7- otrzymamy: i a s = v f v i v f = 0 ( Patrz równanie -). f s =

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną! Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

Dynamika układu punktów materialnych

Dynamika układu punktów materialnych Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł

Bardziej szczegółowo

Wykład 30 Szczególne przekształcenie Lorentza

Wykład 30 Szczególne przekształcenie Lorentza Wykład Szzególne przekształenie Lorentza Szzególnym przekształeniem Lorentza (właśiwym, zahowująym kierunek zasu) nazywa się przekształenie między dwoma inerjalnymi układami odniesienia K i K w przypadku

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynaiki Maszyn Politechniki Łódzkiej MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Praca wprowadza oenty bezwładności ciała

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO Wielkościami liczbowymi charakteryzującymi pracę silnika są parametry pracy silnika do których zalicza się: 1. Średnie ciśnienia obiegu 2. Prędkości

Bardziej szczegółowo

Równoważne układy sił

Równoważne układy sił Równoważne układ sił Równoważnmi układami sił nawam takie układ, którch skutki diałania na ten sam obiekt są jednakowe. Jeżeli układ sił da się astąpić jedną siłą, to siłę tą nawam siłą wpadkową. Wpadkowa

Bardziej szczegółowo

Definicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ...

Definicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ... Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany v zmiana stężenia zas potrzebny do zajśia dx

Bardziej szczegółowo

Projekt: Data: Pozycja: A ch = 0,5 20, ,40 = 5091,1 cm 4

Projekt: Data: Pozycja: A ch = 0,5 20, ,40 = 5091,1 cm 4 Pręt nr 4 Wniki wmiarowania stali wg P-E 993 (Stal993_3d v..4) Zadanie: Hala stalowa suwnicą - P-E.rm3 Prekrój:,9 Z Y 50 Wmiar prekroju: h00,0 s76,0 g5, t9, r9,5 e0,7 Charakterstka geometrcna prekroju:

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna

Bardziej szczegółowo

MECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA

MECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA Wdiał EAIiE Kierunek: ELEKTRONIKA I TELEKOMUNIKACJA Predmio: Fika II MECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA 0/0, lao SZCZEGÓLNA TEORIA WZGLĘDNOŚCI Fika relawisna jes wiąana pomiarem miejsa i asu

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Gaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą

Gaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą Terodynaika 16-1 16 Terodynaika Założenia teorii kinetycno oekuarnej Ga doskonały ode ideanego układu bardo wieu cąstecek, które: i ają asę w najprostsy prypadku wsystkie taką saą, ii nie ają objętości

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fia dla Inforai Sosowanej Jae Gola Seesr iow 16/17 Wład nr Na pierws władie podane osał wielośi służąe do opisu ruhu ora prład ruhów. Tera asanowi się nad prawai rądąi ruhe na raie dla prpadu punu aerialnego.

Bardziej szczegółowo