PRZYSTOSOWANIE przykład 2 - Nośność jest określona przez warunki zmęczeniowe
|
|
- Dariusz Zieliński
- 8 lat temu
- Przeglądów:
Transkrypt
1 PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow NOŚNOŚĆ RAMY ZE WZGĘDU NA PRZYSTOSOWANIE Dana jst ama pogam F obcążna ja na ysunu obo Oślć mnożn ganczny obcążna z względu na pzystosowan oaz spoządzć wys momntów sztowych obwdn momntów spężystych plastycznych I0 07 I0 Fµ F Fµ F µ F µ I0 Uwaga: Na ysunu powyżj, poza danym, oznaczono tż pzoj ytyczn wyóżnono włóna do znaowana momntów zgnających OBICZENIE CHARAKTERYSTYK PRZEKROJÓW PRĘTÓW b f Dla I 0 mnt bzwładnośc I = 060cm Wsaźn wytzymałośc na zgnan spężyst W = 78cm Pol pzoju A = 96cm t w Odlgłość śoda cężośc połów dwutowna od awędz stop = 8cm Odlgłość mędzy śodam cężośc połów dwutowna a = h = 8 = 6 6cm mnt ganczny z względu na nośność plastyczną 0 = 0 A a R = 0 96cm 66cm R = = 98cm R (gdz R ganca plastycznośc matału) mnt ganczny z względu na nośność spężystą 0 M = W R = 78cm R = 78cm R/ = 78 R/(98 R) = 0 88 Sztywność gętna 0 = N / m m = 67Nm Dla I 0 mnt bzwładnośc I = 0cm Wsaźn wytzymałośc na zgnan spężyst W = cm Pol pzoju A = 6cm Odlgłość śoda cężośc połów dwutowna od awędz stop = 09cm Odlgłość mędzy śodam cężośc połów dwutowna a = h = 09 = 7 8cm mnt ganczny z względu na nośność plastyczną 0 = 0 A a R = 0 6cm 78cm R = 07cm R = 07cm R/ = = 07cm R/(98 R) = 68, mnt ganczny z względu na nośność spężystą 0 M = W R = cm R = cm R/ = R/(98 R) = Sztywność gętna = N / m m = 87Nm = 87Nm / = = 87Nm / 67Nm = 889 Nośnośc pzojów,,, wynoszą odpowdno: momnty ganczn = = =, = = 68, momnty ganczn z względu na nośność spężystą M = M = M = 0 88, M = M = 098 h h/ h/ t f a=h
2 PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow ROZWIĄZANIA RAMY OD OBCIĄŻEŃ JEDNOSTKOWYCH Wyznaczając sły od obcążń słam można uwzględnać zczywst watośc sztywnośc, al tż 0 można pzyjąć dowolną watość za np =, co daj = =, 0 = 889 = 889 Wyna to z fatu, ż w pzypadu obcążna słam ozwązan w zas sł n zalży od watośc sztywnośc pętów, lcz od stosunów tych sztywnośc F = F = Rozwązana wyonano na omputz Wysy momntów zgnających pzdstawono ponżj M F= 0 M F= WYZNACZENIE RZĘDNYCH OBWIEDNI MOMENTÓW ZGINAJĄCYCH W PRZEKROJACH KRYTYCZNYCH Ja wdać na pzdstawonych powyżj wysach momntów zgnających stmaln watośc momntów zgnających mogą wystąpć w pzojach oznaczonych na ysunu pwszym numam,,,, Rzędn obwdn momntów zgnających oblczono w tabl ponżj ozystając z zalżnośc: masymalny mnmalny momnt zgnający w pzoju tym od sły tj = = F = = dolgan, 0 F M gdy M ( ) = max( M dolgan, M gógan ) = = = M gógan, gdy M 0 = = F = = dolgan, 0 F M gdy M mn M ( ) = mn( M dolgan, M gógan ) = = = M gógan, gdy M 0 masymalny mnmalny momnt zgnający w pzoju tym od obcążna wszystm słam = ( ), mn M = mn M ( ) ampltuda zman momntów w pzoju tym M = mn M Pzój MOMENTY EKSTREMANE RZĘDNE OBWIEDNI Fµ <=F<= Fµ µ <=F<= µ F= F F F= F F mnm M mnm maxm M mnm maxm maxm M Mnożn µ µ µ µ µ
3 PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow WYRAŻENIE MOMENTÓW RESZTKOWYCH PRZEZ ZMIENNE NIEZAEŻNE WYZNACZENIE STOPNIA STATYCZNEJ NIEWYZNACZANOŚCI Kozystamy z wzou = t n h t = = = = n h = = = UKŁAD PODSTAWOWY METODY SIŁ BEZ OBCIĄŻEŃ DANYCH ROZWIĄZANIA UKŁADU PODSTAWOWEGO OD JEDNOSTKOWYCH SIŁ HIPERSTATYCZNYCH Wysy momntów zgnających od = ( M ) od = ( M ) pzdstawono ponżj 07 M 066 = = M MOMENTY RESZTKOWE W PRZEKROJACH KRYTYCZNYCH j Wzó M = M j j Wyażna szczgółow = 0 7 = 0 7 = 0 66 = = 0 OGRANICZENIA NA PRZYSTOSOWANIE Uład pzystosuj sę, jśl dla ażdgo pzoju ytyczngo będą spłnon waun: waun pzyostow M M mn M waun zmęcznow mn M M Szczgółow postac waunów pzdstawono ponżj Waun pzyostow µ µ 07 µ µ µ
4 PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow µ µ 078 µ 0 0 µ µ Waun zmęcznow 77 µ 76 8 µ 86 9 µ 86 µ µ 76 6 ROZWIĄZANIE OGRANICZEŃ Poszuujmy najwęszj watośc mnożna µ, pzy tój spłnon są wszyst oganczna (uład pzystosuj sę) Jst to zadan pogamowana lnowgo żna wyozystać dowolny pogam omputowy ozwązujący ta zadana dla dowolnych watośc zmnnych Ntó pogamy (np MATHEMATICA) dopuszczają tylo dodatn watośc zmnnych a ch wyozystan jst możlw po wyonanu dodatowych pzształcń Dostępnym w laboatoum pogamam, tó ozwązują zadan dla dowolnych zmnnych jst Excl MAMI, tóy dodatowo ośla zmnn dualn (ąty odształcń w pzgubach plastycznych) Ponżj pzdstawono pzyładową tablę Excla pozwalającą na ozwązan tgo zadana PRZYSTOSOWANIE WARUNKI STATYCZNE Pzoj M M / maxm /µ / maxm / maxm / / maxm = = 070 <= maxm = = 7 <= 68 maxm = = 078 <= 68 maxm = = 0799 <= maxm = = 00 <= M M / mnm /µ / mnm / mnm / mnm = = 0976 <= mnm = = 0 <= 68 mnm = = 076 <= 68 mnm = = 06 <= mnm = = 067 <= M M / M /µ / M / M / M / M = 0 76 = 76 <= 76 M = = 769 <= 86 M = 0 = <= 86 M 0 0 = 0 0 = 0 <= 76 M = = 0707 <= 76 Nwadom Watośc Paamty fc Funcja clu Watośc uzysan z ozwązań "spężystych" amy Watośc po podstawnu za µ watośc gancznych / / m/ omó zmnan w Paw 0 0 stony stony =m/ oganczń oganczń Komóa (watość) funcj clu Szuamy masymalnj watośc funcj clu UWAGA: Spawdzć w opcjach Excla czy n są ustawon nujmn watośc zmnnych
5 PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow Upoządowan oganczń n wpływa na wyn ozwązana Do tabl wpsano w pwszj oljnośc oganczna dotycząc masymalnych momntów w dugj mnmalnych a w tzcj zmęcznow Ja wdać wyn ozwązana są następując: µ = 0 968, = 0 00, 069 Jdno oganczn zmęcznow dotycząc pzoju go (wytłuszczon) spłnon jst ównoścowo a pozostał oganczna spłnon są nównoścowo Oznacza to, ż o nośnośc amy dcyduj waun zmęcznowy dla pzoju Ja już wspomnano w laboatoum omputowym zanstalowany jst tż pogam o nazw MAMI, tóy jst pzystosowany do ozwązywana oganczń na pzystosowan a jgo zaltą jst to, ż jao wyn ozwązana podaj on poza watoścam zmnnych pwotnych ( µ, ) taż watośc zmnnych dualnych ( Y ), tó są odształcnam plastycznym w pzgubach plastycznych Ponżj pzdstawono wydu danych wynów uzysany dla ozwązywango pzyładu D A N E lo = lzs = lz = TABICA OGRANICZEN <= ww f 000E E E E0000 7E000 00E E000 00E0000 7E000 00E0000 E0000 7E E000 00E E000 7E E E E000 00E E E0000 E000 00E E000 00E E E E000 00E E000 7E E000 00E0000 8E000 7E E E E000 00E E E E000 00E E E E0000 7E E E0000 8E0000 9E E E0000 9E0000 9E E E0000 E0000 7E E E E000 7E0000 W Y N I K I K O N C O W E FUNKCJA CEU F = 96808E000 ZMIENNE PIERWOTNE = 07E000 = 660E000 m = 96808E000 ZMIENNE DUANE Y= 00000E0000 Y= 00000E0000 Y= 00000E0000 Y= 00000E0000 Y= 00000E0000 Y6= 00000E0000 Y7= 00000E0000 Y8= 00000E0000 Y9= 00000E0000 Y0= 00000E0000 Y= 60E000 Y= 00000E0000 Y= 00000E0000 Y= 00000E0000 Y= 00000E0000
6 PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow Wsz pwszy tablcy oganczń (f) stanową współczynn funcj clu ( paamty fc) z znam ujmnym a wsz następn są ogancznam ja w tabl Excla Watość funcj clu jst w ozwązywanym zagadnnu ówna mnożnow m (µ) Mnożn µ ma watość ja z ozwązana w tabl Excla, zaś zmnn mają watośc nn Śwadczy to o tym, ż w tym pzypadu zmnn t n są jdnoznaczn oślon (jst wl óżnych watośc, tó spłnają oganczna) Zmnn dualn są, z doładnoścą do stałj, ątam obotu w pzgubach plastycznych Pzy upoządowanu oganczń w pwszj oljnośc z, w dugj z mn M a w tzcj zmęcznow zmnn Y Y są dodatnm atam w pzojach od do, Y 6 Y0 są ujmnym ątam w pzojach od do a Y Y są ampltudam odształcń napzmnnych w pzojach od do Wyna stad, ż w pzoju mamy ampltudę napzmnnych odształcń plastycznych ϕ = Y = 06 Oznacza to, ż o nośnośc amy dcyduj waun zmęcznowy w pzoju Gdyby upoządować oganczna po dwa pzyostow z z mn M a następn zmęcznow zmnn Y npazyst ( Y, Y, Y, Y7, Y9 ) byłyby dodatnm atam w pzojach od do, zmnn Y pazyst ( Y, Y, Y6, Y8, Y0 ) byłyby ujmnym atam w pzojach od do a Y byłyby ampltudam odształcń napzmnnych w pzojach od do Y 7 OBICZENIE JEDNYCH Z MOŻIWYCH MOMENTÓW RESZTKOWYCH Kozystamy z wyażń oślonych w punc = ( 0069) = 0 07, = ( 0069) = 0 07, = ( 0069) = 0 08, = 000 ( 0069) = 0 09 = ( 0069) = / OBICZENIE RZĘDNYCH OBWIEDNI MOMENTÓW SPRĘŻYSTYCH I PASTYCZNYCH DA OBCIĄŻEŃ GRANICZNYCH 8 MOMENTY SPRĘŻYSTE W STANIE GRANICZNYM Wyozystujmy wyażna oślon w tabl w punc M max = = , mn M = = 08 = 0968 = 7, mn M = = 0 686, mn M = = 0 67, mn M = = 0 08, mn M
7 PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow Obwdna uposzczona M / w stan gancznym na pzystosowan MOMENTY W STANIE GRANICZNYM mnty w stan gancznym są sumą momntów sztowych (punt 7), tó są wynm odształcń plastycznych momntów spężystych (punt 8) = M ( µ = µ g ) mn M = M mn M ( µ = µ ) g = = 070 < = mn M = > = mn M = ( ) = 76 = M = = 7 < 68 = mn M = > 68 = mn M = (7 0) = 769 < 86 = M = = 078 < 68 = mn M = > 68 = mn M = ( ) = < 86 = M = = 0799 < = > = mn M = (067 09) = 0 < 76 = = 00 < = > = mn M = ( ) = < 76 = mn M = = mn M = M M Obwdna uposzczona M/ w stan gancznym na pzystosowan W ozwązywanym pzypadu o nośnośc dcydowały oganczna zmęcznow, węc pzdstawonmu wysow momntów zgnających n odpowada mchanzm plastyczngo płynęca 7
XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1
XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:
LINIA PRZESYŁOWA PRĄDU STAŁEGO
oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto
2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Rama płaska metoda elementów skończonych.
Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Stanisław Żukowski. Ocena bezpieczeństwa płaskich konstrukcji prętowych w aspekcie teorii przystosowania
Stansław Żukowsk Ocna bzpczństwa płaskch konstukcj pętowych w aspkc to pzystosowana Ofcyna Wydawncza Poltchnk Wocławskj Wocław 006 Rcnznc Nna JUZWA Wanda ŚLIWIŃSKA-ŁADZIŃSKA Opacowan dakcyjn aa IZBICKA
σ r z wektorem n r wynika
Wyład Napęża głów Pozuamy płazczyzy dowol achylo do o uładu wpółzędych o t właośc by wto apęża a t płazczyź był wpółoowy z wtom wtom tóy otu tę płazczyzę w pztz (wtom do omalym). a) pzypad ogóly b) płazczyza
NOŚNOŚĆ GRANICZNA
4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
2P 2P 5P. 2 l 2 l 2 2l 2l
Przykład 10.. Obiczenie obciażenia granicznego Obiczyć obciążenie graniczne P gr da poniższej beki. Przekrój poprzeczny i granica pastyczności są stałe. Graniczny moment pastyczny, przy którym następuje
ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY
zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Linie wpływu w belkach statycznie niewyznaczalnych
EHANIKA BUOWI inie wpływu w belach statycznie niewyznaczalnych Zadanie.: la poniższej beli naszicuj linie wpływu reacji A, B i. Za pomocą metody przemieszczeń wyznaczyć rzędne poszczególnych linii w połowie
exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B
Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego
Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc
Podsumowan W: Pzyblżn Pola Cntalngo: H H f +V H 0 +V nc V K Z + K > j V V c + V nc j H 0 h E E nl pozomy ng. Σ E nl (+ popawk) koljność zapłnana powłok lktonowych mpyczna guła Madlunga: nga gdy n+l Wojcch
Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:
Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny
Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E
I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E
Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony
9.0. Wspornik podtrzymujący schody górne płytowe
9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2
Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach
Przykład 1.9. Wyznaczanie obciąŝenia granicznego metodą kinematyczną
Przykład.9. Wyznaczanie obciąŝenia granicznego metodą kinematyczną Anaizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne da zadanych wartości przekrojów prętów A [m ] i napręŝeń
Rozwiązanie stateczności ramy MES
Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Statystyka Wykład 9 Adam Ćmiel A3-A4 311a
st hpotzy owj opaty a oaz waygodośc ozważay popzdo pob tstowaa hpotzy o ówośc watośc oczwaych w popuacjach o ozładach N =... jst szczgóy pzypad pwgo ogójszgo pobu tstowaa: od: =+ gdz jst wto obswacj Uwaga:
ϕ i = q 2 ϕ k = q 4 Macierzowa wersja metody przemieszczeń - belki 1. Wstęp. Koncepcja metody
Macrzowa wrsja mtody przmszczń - b. Wstęp. Koncpcja mtody Macrzow ujęc mtody przmszczń stanow jj wrsję ułatwającą omputryzację agorytmu obczń. W odnsnu do zastosowana w obczanu b, wszyst założna asycznj
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α
ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :
Metody energetyczne. Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii
Metody energetyczne Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii dv 1 N dx Ndu EA dv dv S 1 M dx M sdϕ GI 1 M gdx M gdϑ EI S Energia sprężysta układu prętowego
Równania Lagrange a II r.
Mechania Analityczna i Dgania Równania Lagange a II. pzyłay Równania Lagange a II. pzyłay mg inż. Sebastian Pauła Aaemia Góniczo-Hutnicza im. Stanisława Staszica w Kaowie Wyział Inżynieii Mechanicznej
Tradycyjne mierniki ryzyka
Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%
ANALIZA STATYCZNA BELEK ŻELBETOWYCH METODĄ SZTYWNYCH ELEMENTÓW SKOŃCZONYCH
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 4. -8 Gwc ANALIZA SAYCZNA BELEK ŻELBEOWYCH MEODĄ SZYWNYCH ELEMENÓW SKOŃCZONYCH MICHAŁ MUSIAŁ Katda Kontucj Btonowych Potchna Wocława -ma: mcha.mua@pw.woc.p Stzczn.
ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY
ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY 11 10 9 8 7 6 5 4 1 1 WĘZŁY: Nr: X [m]: Y [m]: Nr: X [m]: Y [m]: 1,7 1,41 7 1,6,17,968 1,591 8 1,07,46,658 1,759 9 0,688,54 4,4 1,916 10 0,46,609 5,00,061
Obciążenia. Wartość Jednostka Mnożnik [m] oblicz. [kn/m] 1 ciężar [kn/m 2 ]
Projekt: pomnik Wałowa Strona 1 1. obciążenia -pomnik Obciążenia Zestaw 1 nr Rodzaj obciążenia 1 obciążenie wiatrem 2 ciężar pomnika 3 ciężąr cokołu fi 80 Wartość Jednostka Mnożnik [m] obciążenie charakter.
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu
Opracowanie: Emilia Inczewska 1
Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
ANALIZA MOTYWACYJNIE ZGODNYCH DECYZJI WIELOKRYTERIALNYCH NA PRZYKŁADZIE PROBLEMU PRODUCENTA I KLIENTÓW 1
ANAIZA MOTYWACYJNIE ZGODNYCH DECYZJI WIEOKRYTERIANYCH NA PRZYKŁADZIE PROBEMU PRODUCENTA I KIENTÓW 1 ECH KRU Instytut Bada Systmowych PAN JAN SKORUPI SKI EUGENIUSZ TOCZYŁOWSKI Potchna Waszawsa Stszczn Paca
UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4
.9. Stalowy ustrój niosący. Poład drewniany spoczywa na dziewięciu belach dwuteowych..., swobodnie podpartych o rozstawie... m. Beli wyonane są ze stali... Cechy geometryczne beli: długość całowita: L
VI. MATEMATYCZNE PODSTAWY MES
Kurs na Studac Dotorancc Poltcn Wrocławsj (wrsja: luty 007) 40 I. MATEMATYCZE PODSTAWY MES. Problm abstracyjny Rozwązujmy problm lptyczny np. przstrznn zagadnn tor sprężystośc. Poszuujmy rozwązana u( nmatyczn
Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy
etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b
OBLICZENIE ZARYSOWANIA
SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA PRZYKŁAD OBLICZENIOWY. ZAJĘCIA 9 PODSTAWY PROJEKTOWANIA KONSTRUKCJI
Analiza nośności poziomej pojedynczego pala
Poradni Inżyniera Nr 16 Atualizacja: 09/016 Analiza nośności poziomej pojedynczego pala Program: Pli powiązany: Pal Demo_manual_16.gpi Celem niniejszego przewodnia jest przedstawienie wyorzystania programu
1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy
.7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Moduł. Belka stalowa
Moduł Belka stalowa 410-1 Spis treści 410. BELKA STALOWA...3 410.1. WIADOMOŚCI OGÓLNE...3 410.1.1. Opis programu...3 410.1.2. Zakres programu...3 410.1.3. O pis podstawowych funkcji programu...3 410.1.3.1.
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
Wyznaczenie współczynnika dyfuzji cieplnej κ z rozkładu amplitudy fali cieplnej
ace Instytutu Mechanii Góotwou AN Tom 15, n 3-, gudzień 13, s. 69-75 Instytut Mechanii Góotwou AN Wyznaczenie współczynnia dyfuzji cieplnej κ z ozładu amplitudy fali cieplnej JAN KIEŁBASA Instytut Mechanii
1. Wymiary główne maszyny cylindrycznej prądu przemiennego d średnica przyszczelinowa, l e długość efektywna. d w średnica wału,
1. Wyary główn azyny cyndrycznj prądu prznngo d śrdnca przyzcznowa, długość ftywna tojan wał wrn Wyary w przroju poprzczny d w śrdnca wału, d r śrdnca wwnętrzna wrna, Zwy: d w d r d r śrdnca zwnętrzna
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH
ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor
Przykład 2.3 Układ belkowo-kratowy.
rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene
Wytrzymałość Materiałów
Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ
Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.
13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE
Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera
MOBILNE ROBOTY KOŁOWE WYKŁAD 04 DYNAMIKA Maggie dr inż. Tomasz Buratowski. Wydział Inżynierii Mechanicznej i Robotyki Katedra Robotyki i Mechatroniki
MOBILNE ROBOY KOŁOWE WYKŁD DYNMIK Maggie d inż. oasz Buatowski Wydział Inżynieii Mechanicznej i Robotyki Kateda Robotyki i Mechatoniki Modeowanie dynaiki dwu-kołowego obota obinego W odeowaniu dynaiki
Raport wymiarowania stali do programu Rama3D/2D:
2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj
1/k Obliczenia statyczne.
/k Obliczenia statyczne. 48,0 8,7 94, 94, 94, A 0,0,4 4,9 4,9 4,9 78,7 798, B,0 0 7, 8,8 00,0 680,0 00,0 9,0 DANE: Szkic wiązaa A 0,0,4 48,0 8,7 94, 94, 94, 4,9 4,9 4,9 78,7 798, 00,0 680,0 00,0 9,0 B,0
( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją
..7. Płaskie ramy i łuki paraboiczne Wstęp W bieżącym podpunkcie omówimy kika przykładów zastosowania metody sił do obiczeń sił wewnętrznych w płaskich ramach i łukach paraboicznych statycznie niewyznaczanych,
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu
Moment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły
Moment ędu untu matealnego uładu untów matealnych, moment sły Dynama uchu obotowego były x Moment ędu untu matealnego L. O L α. α α A Oeślamy go względem ustalonego untu O v L mv -weto oeślający jego ołożene
Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011
Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH
Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu
Zasady wykonywania obliczeń statycznych wersja 0.11
Zasady wykonywania obliczeń statycznych wersja 0.11 1. Szata graficzna: (a) papier gładki formatu A4, (b) zapis ręczny jednostronny przy użyciu ołówka (miękkiego), (c) numeracja pozycji obliczeniowych
Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego
Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna
OBLICZENIA STATYCZNE
Rok III, sem. VI 14 1.0. Ustalenie parametrów geotechnicznych Przelot [m] Rodzaj gruntu WARIANT II (Posadowienie na palach) OBLICZENIA STATYCZNE Metoda B ρ [g/cm 3 ] Stan gruntu Geneza (n) φ u (n) c u
Wewnętrzny stan bryły
Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez
Dopuszczalne obciążenia zewnętrzne
Dopuszczane obciążenia zewnętrzne z uwzgędnieniem rozwartości rys i odwrotną strzałką ugięcia wmax =0,4 mm i amax=l/300 Dopuszczane obciążenia zewnętrzne (nośności z uwagi na ugięcia) wyznaczone przy założeniu,
Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś
Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
2.0. Dach drewniany, płatwiowo-kleszczowy.
.0. Dach drewniany, płatwiowo-kleszczowy..1. Szkic.. Charakterystyki przekrojów Własności techniczne drewna: Czas działania obciążeń: ormalny. Klasa warunków wilgotnościowych: 1 - Wilg. 60% (
e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2
OBLICZENIA STATYCZNE POZ.1.1 ŚCIANA PODŁUŻNA BASENU. Projektuje się baseny żelbetowe z betonu B20 zbrojone stalą St0S. Grubość ściany 12 cm. Z = 0,5x10,00x1,96 2 x1,1 = 21,13 kn e = 1/3xH = 1,96/3 = 0,65
KONSTRUOWANIE ENERGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULARNEGO
KONSTUOWANIE ENEGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULANEGO Dwa etay: "ozsądny model eneg otencalne dobó oczątowych watośc aametów Doasowane aametów w tace symulac Oddzaływana ótozasęgowe enega otencalna