Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
|
|
- Krystian Turek
- 5 lat temu
- Przeglądów:
Transkrypt
1 Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const W ceu wyznaczena rzemeszczena z wykorzystanem wzoru axwea-ohra naeży wykonać wykresy momentów gnących od obcążena rzeczywstego jednostkowego Obcążene rzeczywste Przed rzystąenem do sorządzena wykresu momentów wyznaczymy reakcje odorowe oraz oddzaływana w rzegube Oswobodzmy układ od węzów, zastęując odory reakcjam Obe odory są odoram rzegubowym nerzesuwnym Oznaczmy ewą odorę terą, a rawą terą Zarówno w unkce jak dzałają o dwe nezaeżne od sebe składowe reakcj: onowa ozoma V V y V V V V x Z równana sumy momentów wzgędem unktu da całego układu wyznaczymy składową V = 0 : V = 0 V = Z równana sumy rzutów sł na oś onową da całego układu obczymy składową V Py = 0 : V + V = 0 V = Składową ozomą reakcj wyznaczymy z równana sumy momentów wzgędem unktu da rawego odukładu
2 = 0 : V + = 0 = Z równana sumy rzutów sł na oś ozomą da całego układu obczymy składową 9 Px = 0 : + = 0 = Wyznaczymy teraz oddzaływana w rzegube, zasując równana równowag da rawego odukładu Równane sumy rzutów sł na oś ozomą ma ostać: P = 0 : x + = 0 =, natomast równane sumy rzutów sł na oś onową jest nastęujące: P = 0 : V V V y = 0 = 9 Wykres momentów gnących od obcążena rzeczywstego jest nastęujący: T = 0 = 5 0 o = o T mnożnk mnożnk
3 Na ewy słu ramy dzała obcążene cągłe Wykonano wykres sł orzecznych na tym fragmence układu W częśc donej słua ( ) w żadnym rzekroju ne zeruje sę sła orzeczna, a węc w tym rzedzae ne wystęuje ekstremum na wykrese momentów Przed rzystąenem do wyznaczena rzemeszczena za omocą sosobu Wereszczagna, naeży wykres momentów w rzedzae ( ) rzedstawć jako sumę takch wykresów, da których znane jest oe wykresu oraz ołożene środka cężkośc (wykres nowy ochodz od składowej ozomej reakcj na odorze, natomast wykres araboczny od obcążena cągłego) ejsce zerowe ochodnej funkcj kwadratowej, osującej moment zgnający wywołany obcążenem cągłym, jest oznaczone na wykrese koorem czerwonym = o o 9 = 0 Obcążene jednostkowe Rozatrywany układ naeży obcążyć obcążenem jednostkowym, stosownym do oszukwanego rzemeszczena W rzyadku wyznaczana zmany odegłośc mędzy unktam naeży do tych unktów rzyłożyć dwe sły jednostkowe, o kerunku rostej mające rzecwne zwroty mnożnk y V V x W ceu sorządzena wykresów momentów wyznaczymy reakcje odorowe oraz oddzaływana w rzegube Oswobodzmy układ od węzów, zastęując odory reakcjam Obe odory są odoram rzegubowym nerzesuwnym Zarówno w unkce jak dzałają o dwe nezaeżne od sebe składowe reakcj: onowa ozoma
4 Z równana sumy momentów wzgędem unktu da całego układu wyznaczymy składową V = 0 : V + = 0 V = 0 Z równana sumy rzutów sł na oś onową da całego układu obczymy składową V Py = 0 : V + V = 0 V = 0 V V V V Składową ozomą reakcj unktu da rawego odukładu wyznaczymy z równana sumy momentów wzgędem = 0 : V = 0 = Z równana sumy rzutów sł na oś ozomą da całego układu obczymy składową Px = 0 : = 0 = Wyznaczymy teraz oddzaływana w rzegube, zasując równana równowag da rawego odukładu Równane sumy rzutów sł na oś ozomą ma ostać: P = 0 : x = 0 =, natomast równane sumy rzutów sł na oś onową jest nastęujące: P = 0 : V = 0 = 0 y V V
5 Wykres momentów gnących od obcążena jednostkowego jest nastęujący: mnożnk Korzystając ze wzoru axwea-ohra wyznaczymy zmanę odegłośc mędzy unktam = ds = ds EI EI s ałkowane możemy wykonać sosobem Wereszczagna, oneważ w każdym rzedzae całkowana co najmnej jedna z funkcj odcałkowych jest nowa s = EI + 5 = 5 EI,5 EI Znak dodatn obczonego rzemeszczena śwadczy o tym, że unkty zbżą sę do sebe, oneważ zwrot rzemeszczena jest zgodny ze zwrotem obcążena jednostkowego 5
Przykład 3.2. Rama wolnopodparta
rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ
Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
Przykład 2.3 Układ belkowo-kratowy.
rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej
DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.
DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F
Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy
etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b
Zasada Jourdina i zasada Gaussa
Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane
Przykład 4.4. Belka ze skratowaniem
rzykład.. eka ze skratowane oecene: korzystając z etody sł sporządzć wykresy sł przekrojowych w ponŝszej konstrukcj staowej. yznaczyć ugęce w punkce (w połowe rozpętośc bek). orównać wyznaczone ugęce ze
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Mechanika teoretyczna
Obciążenie ciągłe równoierne ecanika teoretyczna Wykład nr Wyznaczanie reakcji. eki rzegubowe. ay. Siły wewnętrzne. Obciążenie ciągłe trójkątne iara wyadkowej obciążenia rozłożonego iniowo równa jest ou
Mechanika teoretyczna
Kratownica Mechanika teoretyczna Wykład nr Obiczanie sił wewnętrznych w układach rętowych. Kratownice. Układ rętów rostoiniowych, ryzmatycznych, jednorodnych: ołączenia rzegubowe w węzłach; obciążenia
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Przykład 7.2. Belka złożona. Obciążenie poprzeczne rozłożone, trapezowe.
rzkład 7.. Beka złożona. Obciążenie orzeczne rozłożone, traezowe. a oniższej beki zaisać funkcje sił rzekrojowch i sorządzić ich wkres. α Rozwiązanie Oznaczam unkt charakterstczne, składowe reakcji i rzjmujem
Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
Mechanika ogólna Obliczanie sił wewnętrznych c w układach prętowych. Kratownice. Kratownica
Mechanika ogólna Wykład nr 7 Obliczanie sił wewnętrznych w układach rętowych. Kratownice. 1 Kratownica Układ rętów w rostoliniowych: ołą łączenia rzegubowe w węzłach; w obciąż ążenia w ostaci sił skuionych
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
MECHANIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE
Oga Koacz, Adam Łodygows, Wocech Pawłows, chał Płoowa, Krzyszof Tymer Konsuace nauowe: rof. dr hab. JERZY RAKOWSKI Poznań 00/003 ECHAIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE Wyznaczane rzemeszczeń z zasosowanem
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił
Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Polecenie: Narysuj wykres sił wewnętrznych w ramie. Zadanie rozwiąż metodą sił. PkN MkNm EJ q kn/m EJ EJ Określenie stopnia statycznej niewyznaczalności
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Stateczność układów ramowych
tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.
Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami
Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa
ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE
Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra
KORZYŚCI PŁYNĄCE ZE STOSOWANIA ZASADY PRAC WIRTUALNYCH NA PRZYKŁADZIE MECHANIKI OGÓLNEJ. 1. Wprowadzenie. 2. Więzy układu materialnego.
Górnctwo Geonżynera Rok 33 Zeszyt 3/ 2009 Maran Paluch* KORZYŚCI PŁYNĄCE ZE STOSOWNI ZSDY PRC WIRTULNYCH N PRZYKŁDZIE MECHNIKI OGÓLNEJ. Wprowadzene W pracy kerując sę dewzą Johna Zmana: Celem nauk jest
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
Mieczysław Wilk. Materiał pomocniczy do rozwiązywania kratownic płaskich. Mielec 2007
Meczysław Wk Materał omocnczy do rozwązywana kratownc łaskch Meec 7 s treśc Dzał Nazwa dzału trona Wstę Wadomośc umejętnośc do zrozumena zaamętana Agorytm rozwązywana kratowncy łaskej metodą ttera Przykład
Mechanika teoretyczna
Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe
PROJEKTOWANIE I BUDOWA
ObcąŜena kadłuba PROJEKTOWANIE I BUDOWA OBIEKTÓW LATAJĄCYCH I ObcąŜena kadłuba W. BłaŜewcz Budowa samolotów, obcąŝena W. Stafej Oblczena stosowane przy projektowanu szybowców St. Danleck Konstruowane samolotów,
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH
ECHANIKA I WYTRZYAŁOŚĆ ATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH ZAD. 1. OBLICZYĆ SIŁY TNĄCE ORAZ OENTY ZGINAJĄCE W BELCE ORAZ NARYSOWAĆ WYKRESY TYCH SIŁ Wyznaczamy siły reakcji. Obciążenie ciągłe
2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI
Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował
ŁĄCZENIA CIERNE POŁĄ. Klasyfikacja połączeń maszynowych POŁĄCZENIA. rozłączne. nierozłączne. siły przyczepności siły tarcia.
POŁĄ ŁĄCZENIA CIERNE Klasyfikacja ołączeń maszynowych POŁĄCZENIA nierozłączne rozłączne siły sójności siły tarcia siły rzyczeności siły tarcia siły kształtu sawane zgrzewane lutowane zawalcowane nitowane
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó
Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
SPORZĄDZANIE LINII WPŁYWU WIELKOŚCI STATYCZNYCH SPOSOBEM KINEMATYCZNYM
LINIE WŁYWU przykład sposób kinematyczny SORZĄDZNIE LINII WŁYWU WIELKOŚCI STTYCZNYCH SOSOBEM KINEMTYCZNYM Sposób kinematyczny sporządzania linii wpływu wielkości statycznych polega na wykorzystaniu twierdzenia
BeStCAD - Moduł INŻYNIER 1
BeStCAD - Moduł INŻYNIER 1 Ścianki szczelne Oblicza ścianki szczelne Ikona: Polecenie: SCISZ Menu: BstInżynier Ścianki szczelne Polecenie służy do obliczania ścianek szczelnych. Wyniki obliczeń mogą być
Część 2 4. RAMY OBCIĄŻONE TERMICZNIE, OSIADANIEM PODPÓR ORAZ PRZYPADKI RAMY OBCIĄŻONE TERMICZNIE, OSIADANIEM PODPÓR ORAZ PRZYPADKI SZCZEGÓLNE
Część 4. RAY OBCIĄŻONE TERICZNIE, OSIADANIE ODÓR ORAZ RZYADKI... 4. 4. RAY OBCIĄŻONE TERICZNIE, OSIADANIE ODÓR ORAZ RZYADKI SZCZEGÓLNE 4.. Wpływ temperatury rzy obczanu uładów statyczne newyznaczanyc naeży
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
Ćwiczenie 410. Wyznaczanie modułu Younga metodą zginania pręta. Długość* Szerokość Grubość C l, [m] a. , [mm] [m -1 ] Strzałka ugięcia,
Katedra Fzyk SGGW Nazwsko... Data... Nr na śce... Imę... Wydzał... Dzeń tyg.... Godzna... Ćwczene 410 Wyznaczane modułu ounga metodą zgnana pręta Pomary rozmarów pręta Rodzaj pręta Długość* Szerokość Grubość
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Funkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
Pierwsze prawo Kirchhoffa
Pierwsze rawo Kirchhoffa Pierwsze rawo Kirchhoffa dotyczy węzłów obwodu elektrycznego. Z oczywistej właściwości węzła, jako unktu obwodu elektrycznego, który: a) nie może być zbiornikiem ładunku elektrycznego
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
I..ROZWIĄZANIE DANEGO RUSZTU BELKOWEGO OD DANEGO OBCIĄŻENIA
TO SIŁ układ przetrzenny przykład ruzt belkowy OZWIĄZNI USZTU LKOWO TOĄ SIŁ I OLIZNI PZISZZNI any jet ruzt belkowy jak na ryunku obok ozwązać go etodą ł porządzć wykrey ł przekrojowych dokonać kontrol
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Płyny nienewtonowskie i zjawisko tiksotropii
Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
KINEMATYKA MANIPULATORÓW
KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH
Szybkobeżne Pojazdy Gąsencowe (15) nr 1, 2002 Andrzej SZAFRANIEC WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH Streszczene. Przedstawono metodę wyważana statycznego wolnoobrotowych wrnków ponowych
Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
Kryteria samorzutności procesów fizyko-chemicznych
Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI
Metoda Różnic Skończonych
Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej.
WOJSKOWA AKADEMIA TECHNICZNA im. Jar osława Dąbr owskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO
WOJSKOWA AKADEMIA TECHNICZNA m. Jar osława Dąbr owskego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO Przedmot: PODSTAWY AUTOMATYKI I AUTOMATYZACJI (studa I stona) ĆWICZENIE RACHUNKOWE KOREKCJA LINIOWYCH UKŁADÓW
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Karta (sylabus) modułu/przedmiotu
Karta (sylabus) modułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Mecanka teoretyczna Teoretcal mecancs Rok: I Semestr: MK_1 Rodzaje zajęć lczba godzn: Studa stacjonarne Studa
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Zadania optymalizacyjne
Zadania optymalizacyjne Zadania optymalizacyjne, to zadania, w których należy obliczyć, jakie warunki muszą być spełnione, aby pewna wielkość osiągała największą lub najmniejszą wartość Żeby żądane warunki
Metody analizy obwodów
Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda
MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl
MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,