LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia
|
|
- Edyta Świderska
- 7 lat temu
- Przeglądów:
Transkrypt
1 LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu końcach. Rysunek 8.1. Wyboczenie pręta ściskanego. 8.. odstawowe zaeżności dotyczące wyboczenia pręta ściskanego Wzór Euera da pręta ściskanego: kr EJ. (8.1) w 1
2 Rysunek 8.. Długości wyboczeniowe prętów ściskanych. Smukłość i smukłość graniczna prętów ściskanych: s w I, A s gr E (8.) prop Rysunek 8.3. Zakres stosowaności wzoru Euera Metoda pomiaru Ze wzgędu na ugięcia wstępne pręta oraz nieosiowość zadanego obciążenia (pręta w praktyce nie można obciążyć siłą dokładnie przyłożoną w osi), bezpośrednie wyznaczenie siły krytycznej pręta jest niemożiwe. Wykorzystujemy zatem metodę Southwea, która opiera się na założeniu, że pręt posiada ugięcie wstępne. Na rys. 8.1 pokazano schemat pręta, który uegł wyboczeniu.
3 Zakładamy ugięcie wstępne (tzw. imperfekcję wstępną) w postaci: x y0 asin, (8.3) gdzie a jest ugięciem w połowie długości pręta. Funkcja (8.3) spełnia warunki brzegowe przegubowego podparcia pręta. Jeżei pręt obciążymy siłą osiową, to całkowite ugięcie wyniesie: Moment gnący w przekroju o współrzędnej x wynosi: y 1 y y. (8.4) 0 M g y y ). (8.5) 1 ( 0 y Zatem równanie inii ugięcia pręta możemy zapisać w postaci: d y EI ( y 0 y). (8.6) dx Dzieąc obie strony równania (8.6) przez EI i uwzgędniając w nim zaeżność (8.3) otrzymujemy: gdzie: d y x k y k asin. (8.7) dx EI k (8.8) Rozwiązanie równania (8.7) przewidujemy w postaci: a x y C1 cos kx C sin kx sin. (8.9) kr 1 Z warunków brzegowych swobodnego podparcia końców pręta wyznaczamy stałe C 1 i C. Z warunku y = 0 da x = 0 wynika, że C 1 = 0 oraz z warunku y = 0 da x = wynika również C =0 (da cr). Zatem inia ugięcia pręta da < cr zdefiniowana jest następująco: a x y sin. (8.10) kr 1 Ugięcie w połowie długości pręta wynosi: a y. (8.11) x kr 1 Zaeżność (8.11) jest równaniem inii prostej w układzie współrzędnych (, ) i można ją zapisać w postaci (rys. 8.4): kr a. (8.11) gdzie tg α = kr. 3
4 Rysunek 8.4. Wykres Southwea. Wykres pokazany na rys. 8.4 sporządzamy na podstawie pomiarów siły ściskającej i ugięcia w połowie długości pręta i odczytujemy z niego wartość tg α równą poszukiwanej wartości siły krytycznej kr Wykonanie ćwiczenia Na stanowisku pomiarowym umieszczony jest pręt o przekroju poprzecznym pokazanym na rys odparcie przegubowe zreaizowane jest poprzez umieszczenie końców pręta w specjanych ostrzach. W połowie długości pręta ugięcie mierzone jest zegarowym czujnikiem przemieszczeń o działce eementarnej 0.01 mm. ręt obciążany jest za pomocą szaki, na której umieszczamy koejne obciążniki. Dane pomiarowe stanowiska są następujące: a a = 0,04 m - szerokość przekroju poprzecznego pręta b = 0,003 m - wysokość przekroju poprzecznego pręta = 0,774 m - długość pręta E =, Ma - moduł Younga materiału pręta 0 = 1,3 N - ciężar szaki c = 50 N - ciężar jednostkowego obciążnika b Rysunek 8.5. Stanowisko pomiarowe. 4
5 Wykonanie ćwiczenia składa się z następujących czynności: 1. Obiczenie smukłości pręta i sprawdzenie, czy obiczona smukłość jest większa od granicznej.. Obiczenie teoretycznej wartości siły krytycznej z wzoru Euera. 3. Wyzerowanie zegarowego czujnika przemieszczeń, a następnie wykonanie kiku deikatnych uderzeń w doną podporę pręta w ceu zimaizowania wpływu siły tarcia. onowne zanotowanie wskazania czujnika i jego zapis. 4. Zawieszenie szaki i zapis wskazania czujnika, odpowiadającego ciężarowi szaki. 5. Obciążanie szaki koejnymi obciążnikami o ciężarze 50 N aż do osiągnięcia wartości całkowitego obciążenia pręta ok. 0,8 kr i zapis koejnych wskazań czujnika. 6. Obiczenie wartości i (na podstawie wykonanych pomiarów). 7. Sporządzenie na papierze miimetrowym wykresu w funkcji 8. Wyznaczenie z wykresu eksperymentanej wartości siły krytycznej. 9. Obiczenie wzgędnego błędu pomiarowego Spis oznaczeń A - poe przekroju poprzecznego pręta I - imany moment bezwładności przekroju poprzecznego pręta w - długość wyboczeniowa s - smukłość pręta s gr = smukłość graniczna da stai σ prop - granica proporcjonaności σ past - granica pastyczności (R e) Literatura [1] Ćwiczenia aboratoryjne z wytrzymałości materiałów, raca zbiorowa pod red. M. Banasiaka, Wyd. Naukowe WN, Warszawa 000, str [] Laboratorium Wytrzymałości Materiałów, raca zbiorowa pod redakcją R. Grądzkiego, Wyd. Wydziału O. i Z. Ł, str [3] Niezgodziński M.E., Niezgodziński T., Wytrzymałość Materiałów, wyd. XIV WN, Warszawa
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:
Bardziej szczegółowoWyznaczenie reakcji belki statycznie niewyznaczalnej
Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
Bardziej szczegółowoPrzykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Bardziej szczegółowoBadanie ugięcia belki
Badanie ugięcia belki Szczecin 2015 r Opracował : dr inż. Konrad Konowalski *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Sprawdzenie doświadczalne ugięć belki obliczonych
Bardziej szczegółowoLiczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Bardziej szczegółowoĆ w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Bardziej szczegółowoBADANIE PRĘTÓW NA WYBOCZENIE
Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Wydział Mechaniczny Technoogiczny oitechnika Śąska LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE RĘTÓW NA WYBOCZENIE BADANIE RĘTÓW NA WYBOCZENIE
Bardziej szczegółowoBadanie prętów na wyboczenie
Instytut Mechaniki i Inżynierii Obiczeniowej Wydział Mechaniczny Technoogiczny oitechnika Śąska www.imio.pos.p fb.com/imiopos twitter.com/imiopos LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badanie prętów na
Bardziej szczegółowoĆ w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Bardziej szczegółowoDr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Bardziej szczegółowoBadanie prętów na wyboczenie
Instytut Mechaniki i Inżynierii Obiczeniowej Wydział Mechaniczny Technoogiczny oitechnika Śąska www.imio.pos.p fb.com/imiopos twitter.com/imiopos LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badanie prętów na
Bardziej szczegółowoLaboratorium Wytrzymałości Materiałów. Wyboczenie
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium Wytrzymałości Materiałów Wyboczenie Opracował : dr inż. Leus Mariusz Szczecin 014 r. 1. Cel ćwiczenia
Bardziej szczegółowoLaboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Bardziej szczegółowoIntegralność konstrukcji
1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm
Bardziej szczegółowoPrzykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu
Bardziej szczegółowoPrzykład 9.2. Wyboczenie słupa o dwóch przęsłach utwierdzonego w fundamencie
rzykład 9.. Wyboczenie słupa o dwóch przęsłach utwierdzonego w undamencie Wyznaczyć wartość krytyczną siły obciążającej głowicę słupa, dla słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku.
Bardziej szczegółowoRozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2
Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE
ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje
Bardziej szczegółowoSTATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Bardziej szczegółowoLABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Bardziej szczegółowoTemat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E
Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności
Bardziej szczegółowoWytrzymałość Materiałów
Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych
Bardziej szczegółowoWyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Bardziej szczegółowoBadanie i obliczanie kąta skręcenia wału maszynowego
Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn
Bardziej szczegółowoProjektowanie elementu zbieżnego wykonanego z przekroju klasy 4
Projektowanie elementu zbieżnego wykonanego z przekroju klasy 4 Informacje ogólne Analiza globalnej stateczności nieregularnych elementów konstrukcyjnych (na przykład zbieżne słupy, belki) może być przeprowadzona
Bardziej szczegółowoWYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
Bardziej szczegółowo700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Bardziej szczegółowoWytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/201 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE MODUŁU W
Bardziej szczegółowo2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania
UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I
Bardziej szczegółowoBadanie i obliczanie kąta skręcenia wału maszynowego
Zakład Podstaw Konstrukcji i Budowy Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn Instrukcja
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Bardziej szczegółowoWyznaczanie modułu Younga metodą zginania pręta
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu FIZYKA Kod przedmiotu KS017; KN017; LS017; LN017 Ćwiczenie Nr 1 Wyznaczanie modułu Younga metodą
Bardziej szczegółowoĆw. 4. Wyznaczanie modułu Younga z ugięcia
KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga z ugięcia Wprowadzenie Ze wzgędu na budowę struktury cząsteczkowej, ciała stałe możemy podzieić na amorficzne oraz
Bardziej szczegółowoWytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń opracowanie: dr inŝ. Marek Golubiewski, mgr inŝ. Jolanta Bondarczuk-Siwicka
Bardziej szczegółowoAl.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Bardziej szczegółowoĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.
Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.
Bardziej szczegółowoLaboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie
Bardziej szczegółowoTemat: Mimośrodowe ściskanie i rozciąganie
Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia
Bardziej szczegółowoKOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać:
KOMINY WYMIAROWANIE KOMINY MUROWANE Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: w stadium realizacji; w stadium eksploatacji. KOMINY MUROWANE Obciążenia: Sprawdzenie
Bardziej szczegółowoZ-LOG-0133 Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Bardziej szczegółowowiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe
Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe
Bardziej szczegółowoĆ w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grua nr: Ocena:
Bardziej szczegółowoSpis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Bardziej szczegółowo2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
Bardziej szczegółowoModelowanie Wspomagające Projektowanie Maszyn
Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowoRys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic
ROZDZIAŁ VII KRATOW ICE STROPOWE VII.. Analiza obciążeń kratownic stropowych Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic Bezpośrednie obciążenie kratownic K5, K6, K7 stanowi
Bardziej szczegółowoINSTRUKCJA DO CWICZENIA NR 5
INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić
Bardziej szczegółowoZginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Bardziej szczegółowoPrzykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami
Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych
Bardziej szczegółowoSTATECZNOŚĆ SPRĘŻYSTA TRÓJKĄTA HAMULCOWEGO
MODELOWNIE INŻYNIERSKIE ISSN 896-77X 44, s. 99-08, Gliwice 0 STTECZNOŚĆ SPRĘŻYST TRÓJKĄT HMULCOWEGO KRZYSZTOF MGNUCKI,), SZYMON MILECKI ), ) Instytut Mechaniki Stosowanej, Politechnika Poznańska, ) Instytut
Bardziej szczegółowoUTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
Bardziej szczegółowoZadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Bardziej szczegółowo6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
Bardziej szczegółowoProjekt: Data: Pozycja: EJ 3,14² , = 43439,93 kn 2,667² = 2333,09 kn 5,134² EJ 3,14² ,0 3,14² ,7
Pręt nr 8 Wyniki wymiarowania stali wg P-90/B-0300 (Stal_3d v. 3.33) Zadanie: Hala stalowa.rm3 Przekrój: 1 - U 00 E Y Wymiary przekroju: h=00,0 s=76,0 g=5, t=9,1 r=9,5 ex=0,7 Charakterystyka geometryczna
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Bardziej szczegółowoMateriały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Bardziej szczegółowoPrzykład: Słup przegubowy z trzonem z dwuteownika szerokostopowego lub rury o przekroju kwadratowym
ARKUSZ OBICZEIOWY Dokument Ref: SX004a-E-EU Strona 1 z 4 Dot. Eurokodu E 1993-1-1 Wykonał Matthias Oppe Data czerwiec 005 Sprawdził Christian Müller Data czerwiec 005 Przykład: Słup przegubowy z trzonem
Bardziej szczegółowoNOŚNOŚĆ GRANICZNA
4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie
Bardziej szczegółowoNazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,
Bardziej szczegółowoWytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej
Bardziej szczegółowoPręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Bardziej szczegółowo5. Indeksy materiałowe
5. Indeksy materiałowe 5.1. Obciążenia i odkształcenia Na poprzednich zajęciach poznaliśmy różne możliwe typy obciążenia materiału. Na bieżących, skupimy się na zagadnieniu projektowania materiałów tak,
Bardziej szczegółowoWytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Bardziej szczegółowoWyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Bardziej szczegółowoSPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
Bardziej szczegółowoWykresy momentów gnących: belki i proste ramy płaskie Praca domowa
ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński
Bardziej szczegółowoDRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Bardziej szczegółowo1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Bardziej szczegółowo2.0. Dach drewniany, płatwiowo-kleszczowy.
.0. Dach drewniany, płatwiowo-kleszczowy..1. Szkic.. Charakterystyki przekrojów Własności techniczne drewna: Czas działania obciążeń: ormalny. Klasa warunków wilgotnościowych: 1 - Wilg. 60% (
Bardziej szczegółowoWyznaczanie modułu Younga metodą zginania pręta MATEMATYKA Z ELEMENTAMI FIZYKI. Ćwiczenie Nr 1 KATEDRA ZARZĄDZANIA PRODUKCJĄ
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu ISO17; INO17 Ćwiczenie Nr 1 Wyznaczanie modułu Younga
Bardziej szczegółowoWYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Ćwiczenie 0 WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO 0.1. Wiadomości oóne Wahadłem fizycznym nazywamy ciało sztywne, zawieszone na poziomej osi nie przechodzącej przez jeo środek
Bardziej szczegółowoWIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Bardziej szczegółowoStateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
Bardziej szczegółowoLinie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
Bardziej szczegółowoMateriały dydaktyczne. Semestr IV. Laboratorium
Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie
Bardziej szczegółowoWpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki
Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Informacje ogólne Podpora ograniczająca obrót pasa ściskanego słupa (albo ramy) może znacząco podnieść wielkość mnożnika obciążenia,
Bardziej szczegółowoZbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
Bardziej szczegółowoKONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych
KONSTRUKCJE METALOWE Przykład 4 Projektowanie prętów ściskanych 4.Projektowanie prętów ściskanych Siły ściskające w prętach kratownicy przyjęto z tablicy, przykładu oraz na rysunku 3a. 4. Projektowanie
Bardziej szczegółowoWIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych
Bardziej szczegółowoKonstrukcje metalowe Wykład VI Stateczność
Konstrukcje metalowe Wykład VI Stateczność Spis treści Wprowadzenie #t / 3 Wyboczenie giętne #t / 15 Przykład 1 #t / 45 Zwichrzenie #t / 56 Przykład 2 #t / 83 Niestateczność lokalna #t / 88 Zapobieganie
Bardziej szczegółowoPOMIAR STRZAŁKI UGIĘCIA DŹWIGARA NOŚNEGO SUWNICY JEDNODŹWIGAROWEJ
INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT SPECJALNOŚĆ: SYSTEMY I URZĄDZENIA TRANSPORTOWE PRZEDMIOT: SYSTEMU I URZĄDZENIA TRANSPORTU BLISKIEGO LABORATORIUM POMIAR STRZAŁKI UGIĘCIA DŹWIGARA NOŚNEGO
Bardziej szczegółowoZestaw pytań z konstrukcji i mechaniki
Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku
Bardziej szczegółowoZ-LOGN Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Bardziej szczegółowogruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Bardziej szczegółowoUwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
Bardziej szczegółowoObliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
Bardziej szczegółowoWytrzymałość materiałów. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../1 z dnia.... 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu (taki jak w USOS) Nazwa modułu Wytrzymałość materiałów Nazwa modułu w języku angielskim Strength
Bardziej szczegółowoKolejnośd obliczeo 1. uwzględnienie imperfekcji geometrycznych;
Kolejnośd obliczeo Niezbędne dane: - koncepcja układu konstrukcyjnego z wymiarami przekrojów i układem usztywnieo całej bryły budynki; - dane materiałowe klasa betonu klasa stali; - wykonane obliczenia
Bardziej szczegółowo{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Bardziej szczegółowoWYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA
LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym
Bardziej szczegółowo2P 2P 5P. 2 l 2 l 2 2l 2l
Przykład 10.. Obiczenie obciażenia granicznego Obiczyć obciążenie graniczne P gr da poniższej beki. Przekrój poprzeczny i granica pastyczności są stałe. Graniczny moment pastyczny, przy którym następuje
Bardziej szczegółowoPłatew dachowa. Kombinacje przypadków obciążeń ustala się na podstawie wzoru. γ Gi G ki ) γ Q Q k. + γ Qi Q ki ψ ( i ) G ki - obciążenia stałe
Płatew dachowa Przyjęcie schematu statycznego: - belka wolnopodparta - w halach posadowionych na szkodach górniczych lub w przypadkach, w których przewiduje się nierównomierne osiadanie układów poprzecznych
Bardziej szczegółowoPróba statyczna zwykła rozciągania metali
Próba statyczna zwykła rozciągania metai Opracował: XXXXXXX stdia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 1 r. Wprowadzenie Podstawową próbą badań własności mechanicznych metai jest próba
Bardziej szczegółowoMECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Bardziej szczegółowo