Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc"

Transkrypt

1 Podsumowan W: Pzyblżn Pola Cntalngo: H H f +V H 0 +V nc V K Z + K > j V V c + V nc j H 0 h E E nl pozomy ng. Σ E nl (+ popawk) koljność zapłnana powłok lktonowych mpyczna guła Madlunga: nga gdy n+l Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6

2 Atomy wlolktonow - dgnacja sły wymnn Atom H (na az bz spnu oddz. L-S): H Z Z K K m m + H 0 H +H H * achunk zabuzń: zow pzyblżn: H 0 (H +H )Ψ E 0 Ψ H 0 lktony n oddzałują Ψ spaowalna: ϕ () ϕ () Ψ a b E 0 E n +E n a(nlm) b(n l m ) dgnacja wymnna noddzałujących lktonów watość wł. do funkcj: u u ab ba ϕ () ϕ () a ϕ () ϕ () b b a Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6

3 Rachunk zabuzń dla stanów zdgnowanych Zwykły achunk zabuzń nmożlwy z wzgl. Ψ' na dgnację wymnną, E 0 a () E b () E a () E b () dagonalzacja H w baz funkcj zowgo pzyblżna: u ab u ab ( ) ( ) ϕ () dυ ( ) ϕ () a b ρ () ρ () b a u u d d ba ba υ υ * dυ * ( ) ϕ () ϕ ()( ) ϕ () ϕ () a b a b u u d d ab ba υ υ ρ () ρ () a b dυ dυ Ψ całka kulombowska (nzmnnczość ) u u ab ba Ψ ϕ () ϕ () a ϕ () ϕ () b K całka wymany b a K zalży od kolacj lktonów (nakładan sę f. falowych): - np., gdy jdn l. w stan s, to dug pownn mć tż mał n, l. Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 3/6 3s 3p 3d

4 Dagonalzacja H (szukamy pzntacj, w któj H dagonaln) U c u + c u ab ba unomowan f. własn H 0 H : ; wystaczy dagonalzować H : H U E U H U E U, ( H 0 + ) U ( E + E) U, c + c c c ( ) E c c K ch ' + ch ' ch K ' + ch ' c E c E E K K E 0 E ±K f. wł. dla E +K : c +Kc (+K)c c c U ( u + u ) dla E K : Kc +c ( K )c c c U ( u u ) spawdzn dagonalzacj pzz U A,S : U [ u u u u + u u u u ] ( + K ) 0 ab ab ba ba ab ba ba ab K Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 4/6 S U A S A ab ab ba ba

5 Pozomy ngtyczn atomu hlu Stan podstawowy zow pzyblż.: E 0 E n +E n n, n wodoopodobn stany podstawow: n, l 0, m 0; n, l 0, m 0 konfguacja s E 0 (s ) E(s) E 0 (s ) 08,8 V Z E n Rhc ; Rhc 3, 6 V n 0 E Z (s)4x3,6v54,4 V H ++ + Enga -08,8 V -54,4 V s -54,4 V H + + Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 5/6

6 dokładnj: EE 0 + E, E ±K H ,4 V s +K K U S U A X Al! w stan podst. asb u ab u ba U A 0 (zakaz Paulgo) stan podst. H U S bak dgnacj możlw oblcz. pop. zędu: E(s ) U S 34V wtdy n. jonzacj H byłaby 54,4 34 0,4 V napawdę n. jonzacj H 4,58 V (duża watość popawk E 30V/00V konczn popawk wyższych zędów) -54,4 V -4,58 V H ++ H + Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 6/6 s

7 Stany wzbudzon H: a) wzbudzna jdnolktonow (konfg. s, nl) E E n +±K s, nl objmują zaks ng +K K U S U A -54,4 V -4,58 V H ++ H + s (s, nl) K(s, nl) s, nl s, nl s, nl nl,s całka kulombowska osłaba pzycągan l. n,l pzz jądo kanowan jąda pzz l. s tym lpsz m wększ n,l (mnjsza pntacja) oddzaływan fktywn: V Z K s ( Z ) dla dużych n,l pozomy H - wodoopodobn nl Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 7/6

8 b) wzbudzna dwulktonow H ++ E 0 (s ) 7, V E 0 + E 5 V... stany kontnuum s,νl -54,4 V -4,58 V s... s3s ss s H + spzężn stanu s z kontnuum ozpad (pzjśc s kontnuum) nstablność autojonzacja: s s + Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 8/6

9 Uwzględn. spn lktonu * całkowta f. fal. zmnn spnow pzstznn nzalżn bak oddzaływana f. falowaloczyn f. pzstznnj f. spnowj: f-kcja -lktonowa f-kcja -lktonowa Ψ u nlm Ψ U χ χ ± χ twozon pzz kombnacj χ ± () χ ± () * możlw kombnacj z waunkm S s +s, m S m s + m s χ S χ A χ () χ () + χ () χ () [ χ () χ () + χ () χ ()] + [ χ () χ () χ () χ ()] m S + m S m S 0 m S 0 S - typlt Kotność S+ S 0 - snglt Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 9/6

10 * całkowta f.fal. antysymtyczna: Ψ Ψ A U χ A S U χ S A nzalżn układy stanów własnych H: sngltow paahl, typltow otohl s U S χ A - snglt U A χ S - typlt Nstnn stanu s 3 S pzsłanka dla Paulgo Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 0/6

11 sły wymany: U A χ S - typlt Ψ( ) U U S χ A - snglt 0 Dla U S sła wymany pzycąga lktony, dla U A odpycha duża watość wzost n. sngltu mała watość zmnjsz. n. typltu (typlty lżą nżj nż snglty) kolacja zmnnych pzstz. spnowych wynkająca z fmonowgo chaaktu nozóżnalnych lktonów: lktony z spnam muszą być dalko, lktony mogą być blsko Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6

12 Ilustacja zasady Paulgo cśnn Fmgo: bozony fmony w pułapc (najnższy stan ngtyczny to cntum pułapk) bozony mogą sę dowoln zblżać (a nawt kondnsować) fmony zachowują skończoną odlgłość Bosons Fmons L 7 L 6 [dośw. z spułapkowanym atomam R. Hult t al., Rc Unv.] Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6

13 Kęt a pozomy ngtyczn cząstk naładowan mają momnty magntyczn zwązan z kętm stan atomu/ poz. ngtyczn okślon n tylko pzz oddz. El-stat, al tż pzz oddz. magntyczn zwązan z momntm pędu częścow znsn dgnacj pozostałj po oddz. El-stat. Kęt (opato σ ) chaaktyzowany pzz obswabl: σ j( j + ), σ m, j m j z ak kęty? W atom wl momntów pędu podlgających gułom składana kętów Np. dla pojdynczgo lktonu: kęt obtalny l ( z ozwązana częśc kątowj. Sch. (l0,,... n-)) spn s½ (fkt latywstyczny konskwncja. Daca) kęt wypadkowy j l + s, l s j l + s,, 3, 5 7,, Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 3/6 j m j jl±s ( ) j j zmna sę co

14 wl lktonów: L l S s j l + s L + S m m m m całkowty kęt zamknętych podpowłok 0 bo: σ m l pzyjmuj wszystk możlw wat. od l do l, σ z ml + ms oś kwantyzacj jst dowolna σ 0 0 Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 4/6 m L l S s jst tyl samo lktonów z m s -/ co z m s +/, całkowty kęt okślony wyłączn pzz nzamknęt podpowłok Np. Na: s s p 6 3s σ ½ ħ 80 Hg: s s p 6 3s 3p 6 3d 0 4s 4p 6 4d 0 4f 4 5s 5p 6 5d 0 6s 5d 0 6s σ 0 ( ) 6s lantanowc, 64 Gd:...4d 0 4f 7 5s 5p 6 5d6s [płn: (4f 4 )...(5d 0 )] stany, któym do wypłnna bakuj pwnj l. lktonów, są ównoważn stanom zawającym tę właśn lczbę (stany dla lktonów tak sam, jak dla dzu) dla wypłnonj podpowłok: 0 m + m uzup l s uzup z z + uzup σ σ σ m j σ uzup

15 Oddzaływan spn-obta: lkton w polu l.-statycznym o potncjal W ( ) W ( ) V ( ) q pola w układach: {R} - lab. E gad V B 0 {R } - zwąz. z pousz. sę lktonm E E' tafo Lontza B' B B' c E υ z każdym kętm zwązany momnt magntyczny w szczgólnośc: µ S S µ B S µ B m m Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 5/6

16 Oddzaływan spn-obta c.d. oddz. µ z polm: E µ B' R ' al pzy pzjścu {R} {R } pcsja Thomasa: S (np..d. ackson) {R} {R } s ω R ' ω + ω ω ω ω ω E µ B' R T T R R R R S E gadv B dw ' E mυ dw mυ c m mc d d σ l mυ l dw E l s m c d B' mc dw d l Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 6/6

Atomy wieloelektronowe - degeneracja i siły wymienne

Atomy wieloelektronowe - degeneracja i siły wymienne Atoy woktonow - dgnaja sły wynn Ato (na az bz spn oddz. L-): K Z K Z 0 = + * ahnk zzń: zow pzybżn: =0 ( + ) = 0 =0 ktony n oddzałją spaowana: () () a b 0 = n + n watość wł. do fnkj: a=(n) b=(n ) dgnaja

Bardziej szczegółowo

Podsumowanie W3: χ A singlet. χ S tryplet. 1s,nl. Hel (bez spinu): H 0 = H 1 +H 2 H. diagonalizacja H daje: E = J±K U ( u + u ) E= E n +J±K

Podsumowanie W3: χ A singlet. χ S tryplet. 1s,nl. Hel (bez spinu): H 0 = H 1 +H 2 H. diagonalizacja H daje: E = J±K U ( u + u ) E= E n +J±K Poduowan W: H (bz pnu): H Z Z K K + H 0 H +H H w H o, dg.wynna ta aa n. wł. do tanów wł. u ϕ () ϕ (), u ϕ () ϕ () dagonazaa H da: E J±K U ( u + u ) E E n +J±K,n oa zaady Paugo (t podt. H: tyko U ) ab U

Bardziej szczegółowo

W4: Kręt t a poziomy energetyczne

W4: Kręt t a poziomy energetyczne W4: Kęt t a pozoy ngtyzn zątk naładowan aą onty agntyzn zwązan z kęt tan atou/ poz. ngtyzn okśon n tyko pzz oddz. E-tat, a tŝ agntyzn zwązan z ont pędu zęśow znn dgna pozotał po oddz. E-tat. Kęt (opato

Bardziej szczegółowo

Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja

Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja zonanow twozn molkuł monowych hlu wodou oaz ch otacyjna dkcytacja Wlhlm Czaplńk Katda Zatoowań Fzyk ądowj w wpółpacy z N.Popovm W.Kamńkm Itnj 6 odzajów molkuł monowych hlu wodou: 4 H µ p Hµ d Hµ t 4 H

Bardziej szczegółowo

Wykład 2: Atom wodoru

Wykład 2: Atom wodoru Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali

Bardziej szczegółowo

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna

Bardziej szczegółowo

WSTĘP DO FIZYKI JADRA A ATOMOWEGOO

WSTĘP DO FIZYKI JADRA A ATOMOWEGOO WSTĘP DO FIZYKI JADRA A ATOMOWEGOO Wykład /3 IV ROK FIZYKI - smstr zmowy Janusz Brazwcz - Zakład Fzyk Mdycznj IF AŚ 1 Ernst Ruthrford r C r ZZ V / / ' = = ( ) 4 4 1 sn 1 4 q mc E C d d = = Ω ϑ σ ϑ Podstawow

Bardziej szczegółowo

Wykład 4: Termy atomowe

Wykład 4: Termy atomowe Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział

Bardziej szczegółowo

Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie

Bardziej szczegółowo

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone.

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. Podsumowani W Obsrw. przjść wymusz. przz pol EM tylko, gdy różnica populacji. Tymczasm w zakrsi fal radiowych poziomy są ~ jdnakowo obsadzon. Nirównowagow rozkłady populacji pompowani optyczn (zasada zachowania

Bardziej szczegółowo

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,

Bardziej szczegółowo

Elementy Fizyki Jądrowej

Elementy Fizyki Jądrowej Elementy Fzyk Jądrowej Wykład własnośc jąder atomowych deuter 1 1 H - wodór 1 H - deuter 3 1 H - tryt m d = 1875 MeV < m p + m p = 1878 MeV m 3 MeV słabo zwązany układ dwóch nukleonów Energa wązana E B

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna

Bardziej szczegółowo

+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba

+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba Atomy weloelektoowe: ekulombowsk potecał (cetaly) kedy? ektóe atomy weloelektoowe (p. alkalcze) maą elekto w śede odległ. od ąda >> ż odległośc pozostałych elektoów, el. walecyy kadłub atomu Róże stay

Bardziej szczegółowo

w rozrzedzonych gazach atomowych

w rozrzedzonych gazach atomowych w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal

Bardziej szczegółowo

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )

Bardziej szczegółowo

ŚĆ Ć ć ż ć ń Ę Ę ż ż Ą ń ż ć ż Ę ż Ę Ę Ć ż Ę ż Ś ż ż ż ż ż Ł ż ż Ę ż ĘŚ ż ć ć ŚĆ ć ń Ś ź ć ć ć ć ć ć ć ń ć Ę Ę ć ć ć Ł Ę Ą ź Ą Ę Ę Ł ć ć ż ć ż ż ć ż ż ż Ł ć ń ż Ł ż ń ń ż ż ć ż Ę ż Ę ć ż ż Ą ĘŚ ń ż ź Ę

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Wykrzykniki 2016 pomoc do egzaminu pisemnego, 8.II, 2016, godz

Wykrzykniki 2016 pomoc do egzaminu pisemnego, 8.II, 2016, godz Wykzykniki 6 pomoc do gzaminu pismngo, 8II, 6, godz Ruch dwóch ładunków punktowych q i q o masach m i m można opisać wybiając wktoy położnia każdgo z nich i względm dango punktu odnisinia O m CM R m m

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

1 n 0,1, exp n

1 n 0,1, exp n 8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Badanie zależności natężenia wiązki promieniowania od odległości

Badanie zależności natężenia wiązki promieniowania od odległości Ćwiczni 29a. Badani zalżności natężnia wiązki pominiowania od odlgłości 29a.. asada ćwicznia W ćwiczniu badana jst zalżność liczby impulsów pominiowania α, β i γ w funkcji odlgłości od źódła pominiotwóczgo

Bardziej szczegółowo

ę Ę ę ę ó ó Ę ę ś ś Ę ę Ę ń Ę Ę ó Ę ó ę ę Ę ń ęś ś ę ść Ę ó Ą ś ę ę ęę ę ę ń ę ę Ę ś Ł ę ę ę ć ś ę ś Ę ę ś ś ś Ą ś ę ę ń ó ę ć ś ń ó ó Ą ę ń ęę ś ś ś Ę ś ś ę ś ś ę ń ń Ę ĄĄ Ł Śę ó ń ś ń Ę ó ś ś ę ś Ę ś

Bardziej szczegółowo

Atom ze spinem i jądrem

Atom ze spinem i jądrem Atom ze spinem i jądrem Powtórzenie E 3s 2s 3p 2p 3d Ruch w polu ekranowym znosi degenracje ze wzgledu na l 1s Li l Powtórzenie 5 2 P 3/2 F=I+J 5P F= I-J 5 2 P 1/2 struktura subtelna struktura nadsubtelna

Bardziej szczegółowo

Oddziaływanie atomu z kwantowym polem E-M: C.D.

Oddziaływanie atomu z kwantowym polem E-M: C.D. Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e

Bardziej szczegółowo

PRZYSTOSOWANIE przykład 2 - Nośność jest określona przez warunki zmęczeniowe

PRZYSTOSOWANIE przykład 2 - Nośność jest określona przez warunki zmęczeniowe PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow NOŚNOŚĆ RAMY ZE WZGĘDU NA PRZYSTOSOWANIE Dana jst ama pogam F obcążna ja na ysunu obo Oślć mnożn ganczny obcążna z względu na pzystosowan oaz

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Ł Ę Ę ź Ń Ą Ę Ó Ł Ą Ą Ś ć ć ć ć ź Ą Ę Ę Ę Ę ź Ę Ę Ą Ę ć ć ź Ą Ę ć Ł ź ć Ę ć ć Ę Ą ć Ń ć Ę Ś Ś ć Ę Ę Ę Ę Ń ź Ę Ę Ą ź ź ć Ż Ś ź Ń ź ź ź ź ć ź ć ź Ł Ś ć Ł Ę Ę ź Ń Ą Ę ź Ę Ł Ł Ł Ł Ł Ę ć Ń Ę Ń Ę Ł Ł Ł Ł Ł

Bardziej szczegółowo

ź Ł ć Ł Ś ć ć Ą ć ć ć ć Ę Ę Ł Ź Ę Ś Ś ź Ą ć ć Ą ć ć ć ć Ń ć ć ć Ą ć ć ć ć ź ć ź ć ć ć Ń Ł ć ź ź Ń Ę Ą ć ć ć ć ć ć Ę ć ć ć ć ć ć ć Ą Ę ź ć Ś Ł Ł ć ć ć ć ć Ę ć ć ć ź ć ć Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

Moment pędu w atomach wieloelektronowych

Moment pędu w atomach wieloelektronowych Moment pędu w atomach weloelektronowych Podsumowane: Operator Hamltona w zerowym przyblżenu ma postać: 2 H h = + U( r 2m ) U(r ) reprezentuje całkowty centralny potencjał tzn. potencjał jądra + centralna

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne. Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem

Bardziej szczegółowo

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 26, 28.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 25 - przypomnienie

Bardziej szczegółowo

Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę

Bardziej szczegółowo

Przejścia międzypasmowe

Przejścia międzypasmowe Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda . akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie

Bardziej szczegółowo

Półprzewodniki (ang. semiconductors).

Półprzewodniki (ang. semiconductors). Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

3 ag E.Bielecka-Cimaszkiewicz Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S

3 ag E.Bielecka-Cimaszkiewicz Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S 3 ag E.Bielecka-Cimaszkiewicz 1 8:00-8:45 RT religia 20 EB j.polski 24 EB z.art 19 WE e_dla_bezp 34 2 8:55-9:40 IK biologia 36 CZ chemia 41 KG matematyka 32 MU Ba-Ch B3 CZ chemia 41 KI Ba-Dz B2 3 9:50-10:35

Bardziej szczegółowo

Wstęp do fizyki atomowej i cząsteczkowej

Wstęp do fizyki atomowej i cząsteczkowej Wstęp do fizyki atomowej i cząsteczkowej Pzedmiot badań: atom, cząsteczka (pojedynczy - nie kyształ ani ciecz) - stuktua poziomów eneg. - stany stacjonane -pzejścia między poziomami stany niestacjonane

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Wstęp do fizyki atomowej i cząsteczkowej

Wstęp do fizyki atomowej i cząsteczkowej Wstęp do fizyki atomowej i cząsteczkowej Pzedmiot badań: atom, cząsteczka (pojedynczy - nie kyształ ani ciecz) - stuktua poziomów eneg. - stany stacjonane - pzejścia między poziomami stany niestacjonane

Bardziej szczegółowo

Podstawy fizyki kwantowej.

Podstawy fizyki kwantowej. www.wdza.nt Podtawy fzyk kwantowj. Zadana z ozwązana. Zjawko fotolktyczn zwnętzn Pogowa długość fal dla wybca fotolktonów z talczngo odu wyno 5.45 7 a. wyznacz akyalną pędkość lktonów wybjanyc pzz śwatło

Bardziej szczegółowo

0. Powtórka podstawowych wiadomości z fizyki kwntowej - I

0. Powtórka podstawowych wiadomości z fizyki kwntowej - I Mechanka kwantowa (cz. II) 0. Powtórka podstawowych wadomośc z fzyk kwntowej - I - hstoryczna droga do fzyk mechank kwantowej PCDC, efekt fotoelektryczny, dośwadczena Francka-Hertza, dyfrakcja cząstek;

Bardziej szczegółowo

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM)

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM) Podsumowanie W Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. ymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. En. I det ħ m=+/ m=-/ B B A B h 8 3 Nierównowagowe

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω.

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω. Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P, Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

Diamagnetyzm. Paramagnetyzm. Paramagnetyzm. Magnetyczne własności materii. Ferromagnetyki. Dipolowy moment magnetyczny atomu B 0 = 0.

Diamagnetyzm. Paramagnetyzm. Paramagnetyzm. Magnetyczne własności materii. Ferromagnetyki. Dipolowy moment magnetyczny atomu B 0 = 0. aganna nt sły załający na akę z pą ) Wkt nukcj agntycznj. Ln pla agntyczng. ) Pą lktyczny jak źół pla agntyczng. ) ła Lntza. Ruch cząstk w plu agntyczny. 4) asaa załana spkttu aswg. 5) Efkt Halla. Wyznaczn

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 13 8 stycznia 2018 A.F.Żarnecki Podstawy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś

Bardziej szczegółowo

Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę

Bardziej szczegółowo

Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r.

Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r. DZE UZĘDY EÓDZA DLŚLĄE, d 24 2016 2966 UCHAŁA XXV/540/16 ADY EE CŁAA d 16 2016 ś g bdó b ó d gó d 18 2 15 d 8 1990 ąd g (D U 2016 446) 12 11 92 1 d 5 1998 ąd (D U 2015 1445 1890), ą 17 4 5 d 7 ś 1991 ś

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. ZADANIE TEORETYCZNE 3 DLACZEGO GWIAZDY SĄ TAK DUŻE?

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. ZADANIE TEORETYCZNE 3 DLACZEGO GWIAZDY SĄ TAK DUŻE? 40. Międzynaodowa Olimpiada Fizyzna Mksyk, 1-19 lipa 009. ZADANIE TEORETYCZNE 3 DLACZEGO GWIAZDY SĄ TAK DUŻE? Gwiazdy są kulami goągo gazu. Większość z nih świi poniważ w ih ntalnyh zęśiah zahodzi akja

Bardziej szczegółowo

Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ

Bardziej szczegółowo

Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż

Bardziej szczegółowo

Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś

Bardziej szczegółowo