Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc
|
|
- Marcin Kołodziej
- 6 lat temu
- Przeglądów:
Transkrypt
1 Podsumowan W: Pzyblżn Pola Cntalngo: H H f +V H 0 +V nc V K Z + K > j V V c + V nc j H 0 h E E nl pozomy ng. Σ E nl (+ popawk) koljność zapłnana powłok lktonowych mpyczna guła Madlunga: nga gdy n+l Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6
2 Atomy wlolktonow - dgnacja sły wymnn Atom H (na az bz spnu oddz. L-S): H Z Z K K m m + H 0 H +H H * achunk zabuzń: zow pzyblżn: H 0 (H +H )Ψ E 0 Ψ H 0 lktony n oddzałują Ψ spaowalna: ϕ () ϕ () Ψ a b E 0 E n +E n a(nlm) b(n l m ) dgnacja wymnna noddzałujących lktonów watość wł. do funkcj: u u ab ba ϕ () ϕ () a ϕ () ϕ () b b a Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6
3 Rachunk zabuzń dla stanów zdgnowanych Zwykły achunk zabuzń nmożlwy z wzgl. Ψ' na dgnację wymnną, E 0 a () E b () E a () E b () dagonalzacja H w baz funkcj zowgo pzyblżna: u ab u ab ( ) ( ) ϕ () dυ ( ) ϕ () a b ρ () ρ () b a u u d d ba ba υ υ * dυ * ( ) ϕ () ϕ ()( ) ϕ () ϕ () a b a b u u d d ab ba υ υ ρ () ρ () a b dυ dυ Ψ całka kulombowska (nzmnnczość ) u u ab ba Ψ ϕ () ϕ () a ϕ () ϕ () b K całka wymany b a K zalży od kolacj lktonów (nakładan sę f. falowych): - np., gdy jdn l. w stan s, to dug pownn mć tż mał n, l. Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 3/6 3s 3p 3d
4 Dagonalzacja H (szukamy pzntacj, w któj H dagonaln) U c u + c u ab ba unomowan f. własn H 0 H : ; wystaczy dagonalzować H : H U E U H U E U, ( H 0 + ) U ( E + E) U, c + c c c ( ) E c c K ch ' + ch ' ch K ' + ch ' c E c E E K K E 0 E ±K f. wł. dla E +K : c +Kc (+K)c c c U ( u + u ) dla E K : Kc +c ( K )c c c U ( u u ) spawdzn dagonalzacj pzz U A,S : U [ u u u u + u u u u ] ( + K ) 0 ab ab ba ba ab ba ba ab K Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 4/6 S U A S A ab ab ba ba
5 Pozomy ngtyczn atomu hlu Stan podstawowy zow pzyblż.: E 0 E n +E n n, n wodoopodobn stany podstawow: n, l 0, m 0; n, l 0, m 0 konfguacja s E 0 (s ) E(s) E 0 (s ) 08,8 V Z E n Rhc ; Rhc 3, 6 V n 0 E Z (s)4x3,6v54,4 V H ++ + Enga -08,8 V -54,4 V s -54,4 V H + + Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 5/6
6 dokładnj: EE 0 + E, E ±K H ,4 V s +K K U S U A X Al! w stan podst. asb u ab u ba U A 0 (zakaz Paulgo) stan podst. H U S bak dgnacj możlw oblcz. pop. zędu: E(s ) U S 34V wtdy n. jonzacj H byłaby 54,4 34 0,4 V napawdę n. jonzacj H 4,58 V (duża watość popawk E 30V/00V konczn popawk wyższych zędów) -54,4 V -4,58 V H ++ H + Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 6/6 s
7 Stany wzbudzon H: a) wzbudzna jdnolktonow (konfg. s, nl) E E n +±K s, nl objmują zaks ng +K K U S U A -54,4 V -4,58 V H ++ H + s (s, nl) K(s, nl) s, nl s, nl s, nl nl,s całka kulombowska osłaba pzycągan l. n,l pzz jądo kanowan jąda pzz l. s tym lpsz m wększ n,l (mnjsza pntacja) oddzaływan fktywn: V Z K s ( Z ) dla dużych n,l pozomy H - wodoopodobn nl Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 7/6
8 b) wzbudzna dwulktonow H ++ E 0 (s ) 7, V E 0 + E 5 V... stany kontnuum s,νl -54,4 V -4,58 V s... s3s ss s H + spzężn stanu s z kontnuum ozpad (pzjśc s kontnuum) nstablność autojonzacja: s s + Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 8/6
9 Uwzględn. spn lktonu * całkowta f. fal. zmnn spnow pzstznn nzalżn bak oddzaływana f. falowaloczyn f. pzstznnj f. spnowj: f-kcja -lktonowa f-kcja -lktonowa Ψ u nlm Ψ U χ χ ± χ twozon pzz kombnacj χ ± () χ ± () * możlw kombnacj z waunkm S s +s, m S m s + m s χ S χ A χ () χ () + χ () χ () [ χ () χ () + χ () χ ()] + [ χ () χ () χ () χ ()] m S + m S m S 0 m S 0 S - typlt Kotność S+ S 0 - snglt Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 9/6
10 * całkowta f.fal. antysymtyczna: Ψ Ψ A U χ A S U χ S A nzalżn układy stanów własnych H: sngltow paahl, typltow otohl s U S χ A - snglt U A χ S - typlt Nstnn stanu s 3 S pzsłanka dla Paulgo Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 0/6
11 sły wymany: U A χ S - typlt Ψ( ) U U S χ A - snglt 0 Dla U S sła wymany pzycąga lktony, dla U A odpycha duża watość wzost n. sngltu mała watość zmnjsz. n. typltu (typlty lżą nżj nż snglty) kolacja zmnnych pzstz. spnowych wynkająca z fmonowgo chaaktu nozóżnalnych lktonów: lktony z spnam muszą być dalko, lktony mogą być blsko Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6
12 Ilustacja zasady Paulgo cśnn Fmgo: bozony fmony w pułapc (najnższy stan ngtyczny to cntum pułapk) bozony mogą sę dowoln zblżać (a nawt kondnsować) fmony zachowują skończoną odlgłość Bosons Fmons L 7 L 6 [dośw. z spułapkowanym atomam R. Hult t al., Rc Unv.] Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 /6
13 Kęt a pozomy ngtyczn cząstk naładowan mają momnty magntyczn zwązan z kętm stan atomu/ poz. ngtyczn okślon n tylko pzz oddz. El-stat, al tż pzz oddz. magntyczn zwązan z momntm pędu częścow znsn dgnacj pozostałj po oddz. El-stat. Kęt (opato σ ) chaaktyzowany pzz obswabl: σ j( j + ), σ m, j m j z ak kęty? W atom wl momntów pędu podlgających gułom składana kętów Np. dla pojdynczgo lktonu: kęt obtalny l ( z ozwązana częśc kątowj. Sch. (l0,,... n-)) spn s½ (fkt latywstyczny konskwncja. Daca) kęt wypadkowy j l + s, l s j l + s,, 3, 5 7,, Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 3/6 j m j jl±s ( ) j j zmna sę co
14 wl lktonów: L l S s j l + s L + S m m m m całkowty kęt zamknętych podpowłok 0 bo: σ m l pzyjmuj wszystk możlw wat. od l do l, σ z ml + ms oś kwantyzacj jst dowolna σ 0 0 Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 4/6 m L l S s jst tyl samo lktonów z m s -/ co z m s +/, całkowty kęt okślony wyłączn pzz nzamknęt podpowłok Np. Na: s s p 6 3s σ ½ ħ 80 Hg: s s p 6 3s 3p 6 3d 0 4s 4p 6 4d 0 4f 4 5s 5p 6 5d 0 6s 5d 0 6s σ 0 ( ) 6s lantanowc, 64 Gd:...4d 0 4f 7 5s 5p 6 5d6s [płn: (4f 4 )...(5d 0 )] stany, któym do wypłnna bakuj pwnj l. lktonów, są ównoważn stanom zawającym tę właśn lczbę (stany dla lktonów tak sam, jak dla dzu) dla wypłnonj podpowłok: 0 m + m uzup l s uzup z z + uzup σ σ σ m j σ uzup
15 Oddzaływan spn-obta: lkton w polu l.-statycznym o potncjal W ( ) W ( ) V ( ) q pola w układach: {R} - lab. E gad V B 0 {R } - zwąz. z pousz. sę lktonm E E' tafo Lontza B' B B' c E υ z każdym kętm zwązany momnt magntyczny w szczgólnośc: µ S S µ B S µ B m m Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 5/6
16 Oddzaływan spn-obta c.d. oddz. µ z polm: E µ B' R ' al pzy pzjścu {R} {R } pcsja Thomasa: S (np..d. ackson) {R} {R } s ω R ' ω + ω ω ω ω ω E µ B' R T T R R R R S E gadv B dw ' E mυ dw mυ c m mc d d σ l mυ l dw E l s m c d B' mc dw d l Wojcch Gawlk Wstęp do Fzyk Atomowj, 00/, Wykład 3 6/6
Atomy wieloelektronowe - degeneracja i siły wymienne
Atoy woktonow - dgnaja sły wynn Ato (na az bz spn oddz. L-): K Z K Z 0 = + * ahnk zzń: zow pzybżn: =0 ( + ) = 0 =0 ktony n oddzałją spaowana: () () a b 0 = n + n watość wł. do fnkj: a=(n) b=(n ) dgnaja
Podsumowanie W3: χ A singlet. χ S tryplet. 1s,nl. Hel (bez spinu): H 0 = H 1 +H 2 H. diagonalizacja H daje: E = J±K U ( u + u ) E= E n +J±K
Poduowan W: H (bz pnu): H Z Z K K + H 0 H +H H w H o, dg.wynna ta aa n. wł. do tanów wł. u ϕ () ϕ (), u ϕ () ϕ () dagonazaa H da: E J±K U ( u + u ) E E n +J±K,n oa zaady Paugo (t podt. H: tyko U ) ab U
W4: Kręt t a poziomy energetyczne
W4: Kęt t a pozoy ngtyzn zątk naładowan aą onty agntyzn zwązan z kęt tan atou/ poz. ngtyzn okśon n tyko pzz oddz. E-tat, a tŝ agntyzn zwązan z ont pędu zęśow znn dgna pozotał po oddz. E-tat. Kęt (opato
Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja
zonanow twozn molkuł monowych hlu wodou oaz ch otacyjna dkcytacja Wlhlm Czaplńk Katda Zatoowań Fzyk ądowj w wpółpacy z N.Popovm W.Kamńkm Itnj 6 odzajów molkuł monowych hlu wodou: 4 H µ p Hµ d Hµ t 4 H
Wykład 2: Atom wodoru
Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali
Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej
ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna
WSTĘP DO FIZYKI JADRA A ATOMOWEGOO
WSTĘP DO FIZYKI JADRA A ATOMOWEGOO Wykład /3 IV ROK FIZYKI - smstr zmowy Janusz Brazwcz - Zakład Fzyk Mdycznj IF AŚ 1 Ernst Ruthrford r C r ZZ V / / ' = = ( ) 4 4 1 sn 1 4 q mc E C d d = = Ω ϑ σ ϑ Podstawow
Wykład 4: Termy atomowe
Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział
Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie
Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone.
Podsumowani W Obsrw. przjść wymusz. przz pol EM tylko, gdy różnica populacji. Tymczasm w zakrsi fal radiowych poziomy są ~ jdnakowo obsadzon. Nirównowagow rozkłady populacji pompowani optyczn (zasada zachowania
Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa
Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,
Elementy Fizyki Jądrowej
Elementy Fzyk Jądrowej Wykład własnośc jąder atomowych deuter 1 1 H - wodór 1 H - deuter 3 1 H - tryt m d = 1875 MeV < m p + m p = 1878 MeV m 3 MeV słabo zwązany układ dwóch nukleonów Energa wązana E B
Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He
Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu
Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna
+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba
Atomy weloelektoowe: ekulombowsk potecał (cetaly) kedy? ektóe atomy weloelektoowe (p. alkalcze) maą elekto w śede odległ. od ąda >> ż odległośc pozostałych elektoów, el. walecyy kadłub atomu Róże stay
w rozrzedzonych gazach atomowych
w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
ŚĆ Ć ć ż ć ń Ę Ę ż ż Ą ń ż ć ż Ę ż Ę Ę Ć ż Ę ż Ś ż ż ż ż ż Ł ż ż Ę ż ĘŚ ż ć ć ŚĆ ć ń Ś ź ć ć ć ć ć ć ć ń ć Ę Ę ć ć ć Ł Ę Ą ź Ą Ę Ę Ł ć ć ż ć ż ż ć ż ż ż Ł ć ń ż Ł ż ń ń ż ż ć ż Ę ż Ę ć ż ż Ą ĘŚ ń ż ź Ę
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Wykrzykniki 2016 pomoc do egzaminu pisemnego, 8.II, 2016, godz
Wykzykniki 6 pomoc do gzaminu pismngo, 8II, 6, godz Ruch dwóch ładunków punktowych q i q o masach m i m można opisać wybiając wktoy położnia każdgo z nich i względm dango punktu odnisinia O m CM R m m
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
1 n 0,1, exp n
8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Badanie zależności natężenia wiązki promieniowania od odległości
Ćwiczni 29a. Badani zalżności natężnia wiązki pominiowania od odlgłości 29a.. asada ćwicznia W ćwiczniu badana jst zalżność liczby impulsów pominiowania α, β i γ w funkcji odlgłości od źódła pominiotwóczgo
ę Ę ę ę ó ó Ę ę ś ś Ę ę Ę ń Ę Ę ó Ę ó ę ę Ę ń ęś ś ę ść Ę ó Ą ś ę ę ęę ę ę ń ę ę Ę ś Ł ę ę ę ć ś ę ś Ę ę ś ś ś Ą ś ę ę ń ó ę ć ś ń ó ó Ą ę ń ęę ś ś ś Ę ś ś ę ś ś ę ń ń Ę ĄĄ Ł Śę ó ń ś ń Ę ó ś ś ę ś Ę ś
Atom ze spinem i jądrem
Atom ze spinem i jądrem Powtórzenie E 3s 2s 3p 2p 3d Ruch w polu ekranowym znosi degenracje ze wzgledu na l 1s Li l Powtórzenie 5 2 P 3/2 F=I+J 5P F= I-J 5 2 P 1/2 struktura subtelna struktura nadsubtelna
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
PRZYSTOSOWANIE przykład 2 - Nośność jest określona przez warunki zmęczeniowe
PRZYSTOSOWANIE pzyład Nośność jst oślona pzz waun zmęcznow NOŚNOŚĆ RAMY ZE WZGĘDU NA PRZYSTOSOWANIE Dana jst ama pogam F obcążna ja na ysunu obo Oślć mnożn ganczny obcążna z względu na pzystosowan oaz
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Ł Ę Ę ź Ń Ą Ę Ó Ł Ą Ą Ś ć ć ć ć ź Ą Ę Ę Ę Ę ź Ę Ę Ą Ę ć ć ź Ą Ę ć Ł ź ć Ę ć ć Ę Ą ć Ń ć Ę Ś Ś ć Ę Ę Ę Ę Ń ź Ę Ę Ą ź ź ć Ż Ś ź Ń ź ź ź ź ć ź ć ź Ł Ś ć Ł Ę Ę ź Ń Ą Ę ź Ę Ł Ł Ł Ł Ł Ę ć Ń Ę Ń Ę Ł Ł Ł Ł Ł
ź Ł ć Ł Ś ć ć Ą ć ć ć ć Ę Ę Ł Ź Ę Ś Ś ź Ą ć ć Ą ć ć ć ć Ń ć ć ć Ą ć ć ć ć ź ć ź ć ć ć Ń Ł ć ź ź Ń Ę Ą ć ć ć ć ć ć Ę ć ć ć ć ć ć ć Ą Ę ź ć Ś Ł Ł ć ć ć ć ć Ę ć ć ć ź ć ć Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć
Moment pędu w atomach wieloelektronowych
Moment pędu w atomach weloelektronowych Podsumowane: Operator Hamltona w zerowym przyblżenu ma postać: 2 H h = + U( r 2m ) U(r ) reprezentuje całkowty centralny potencjał tzn. potencjał jądra + centralna
Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1
Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.
Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.
Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem
Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny
Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 26, 28.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 25 - przypomnienie
Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
Elektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda
. akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie
Półprzewodniki (ang. semiconductors).
Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
3 ag E.Bielecka-Cimaszkiewicz Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S
3 ag E.Bielecka-Cimaszkiewicz 1 8:00-8:45 RT religia 20 EB j.polski 24 EB z.art 19 WE e_dla_bezp 34 2 8:55-9:40 IK biologia 36 CZ chemia 41 KG matematyka 32 MU Ba-Ch B3 CZ chemia 41 KI Ba-Dz B2 3 9:50-10:35
Wstęp do fizyki atomowej i cząsteczkowej
Wstęp do fizyki atomowej i cząsteczkowej Pzedmiot badań: atom, cząsteczka (pojedynczy - nie kyształ ani ciecz) - stuktua poziomów eneg. - stany stacjonane -pzejścia między poziomami stany niestacjonane
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)
Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Wstęp do fizyki atomowej i cząsteczkowej
Wstęp do fizyki atomowej i cząsteczkowej Pzedmiot badań: atom, cząsteczka (pojedynczy - nie kyształ ani ciecz) - stuktua poziomów eneg. - stany stacjonane - pzejścia między poziomami stany niestacjonane
Podstawy fizyki kwantowej.
www.wdza.nt Podtawy fzyk kwantowj. Zadana z ozwązana. Zjawko fotolktyczn zwnętzn Pogowa długość fal dla wybca fotolktonów z talczngo odu wyno 5.45 7 a. wyznacz akyalną pędkość lktonów wybjanyc pzz śwatło
0. Powtórka podstawowych wiadomości z fizyki kwntowej - I
Mechanka kwantowa (cz. II) 0. Powtórka podstawowych wadomośc z fzyk kwntowej - I - hstoryczna droga do fzyk mechank kwantowej PCDC, efekt fotoelektryczny, dośwadczena Francka-Hertza, dyfrakcja cząstek;
Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM)
Podsumowanie W Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. ymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. En. I det ħ m=+/ m=-/ B B A B h 8 3 Nierównowagowe
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω.
Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Model elektronów swobodnych w metalu
Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:
POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły
6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Diamagnetyzm. Paramagnetyzm. Paramagnetyzm. Magnetyczne własności materii. Ferromagnetyki. Dipolowy moment magnetyczny atomu B 0 = 0.
aganna nt sły załający na akę z pą ) Wkt nukcj agntycznj. Ln pla agntyczng. ) Pą lktyczny jak źół pla agntyczng. ) ła Lntza. Ruch cząstk w plu agntyczny. 4) asaa załana spkttu aswg. 5) Efkt Halla. Wyznaczn
Zasady obsadzania poziomów
Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa
Spektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 13 8 stycznia 2018 A.F.Żarnecki Podstawy
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś
Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę
Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r.
DZE UZĘDY EÓDZA DLŚLĄE, d 24 2016 2966 UCHAŁA XXV/540/16 ADY EE CŁAA d 16 2016 ś g bdó b ó d gó d 18 2 15 d 8 1990 ąd g (D U 2016 446) 12 11 92 1 d 5 1998 ąd (D U 2015 1445 1890), ą 17 4 5 d 7 ś 1991 ś
40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. ZADANIE TEORETYCZNE 3 DLACZEGO GWIAZDY SĄ TAK DUŻE?
40. Międzynaodowa Olimpiada Fizyzna Mksyk, 1-19 lipa 009. ZADANIE TEORETYCZNE 3 DLACZEGO GWIAZDY SĄ TAK DUŻE? Gwiazdy są kulami goągo gazu. Większość z nih świi poniważ w ih ntalnyh zęśiah zahodzi akja
Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ
Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż
Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś