Rozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą.
|
|
- Maja Czech
- 8 lat temu
- Przeglądów:
Transkrypt
1 Renty wieczyste Rozważyy nieskończony stuień płatności i obliczyy jego watość teaźniejszą Najpiew ozważy entę wieczystą polegającą na wypłacie jp co ok Jeśli piewsza płatność jest w chwili, to ówiy o encie płatnej z góy (ang pepetuity due) Jej watość teaźniejszą ozn ä Zate ä + υ + υ + υ d gdzie υ jest czynnikie dyskontujący Jeżeli piewsza płatność a + iejsce na koniec piewszego oku, to enta jest płatna z dołu (ang iediate pepetuity) Jej watość teaźniejszą ozn a : a υ + υ + υ υ, ale υ υ ( + )( ) +, + więc a Rozważy teaz enty, gdzie kwota jest wypłacana azy do oku Jeśli płatność jest z góy (piewsza wypłata w chwili ), to ozn ä () oaz ä () + υ + υ + υ bo d() υ Jeżeli płatności są z dołu, to oznaczay a () oaz d (), a () υ + υ + υ + υ υ υ ( + ) [ () + ] () Pzypoinay zależność d() + () ( + ) υ
2 Otzyane wyżej ówności: ä () d (), a(), () i oczywisty fakt, że oba odzaje ent óżnią się tylko płatnością w chwili, daje znaną już ówność d () + () Rozważy teaz entę wypłacaną w sposób ciągły (watość enty, początek wypłat w chwili ) Jej watość teaźniejszą oznaczy a Wypłatę dt w chwili t należy zdyskontować czynnikie e δt (bo czynnik ponażający dla jednego oku to e δ ), więc ay a To sao otzyay obliczając e δt dt δ a li ä() li d () δ, lub a li a() li () δ Rozważy teaz pewną entę wieczystą (z góy), w któej ay osnący ciąg płatności Renta ta będzie okeślona dwoa paaetai: liczba płatności w oku; liczba podwyżek w oku (zakładay, że ) Np dla i 4 płatności są dokonywane iesięcznie, a podwyższane co kwatał Ogólnie, płatności takiej osnącej enty są dokonywane wg scheatu: Czas + Płatność
3 W szczególności, w piewszy oku ostatnie płatności (czas od do ) wynoszą Ogólniej, w k-ty oku ostatnie płatności wynoszą k Oznaczay watość teaźniejszą takiej osnącej enty pzez (I() ä) () Można obliczyć jej watość pzedstawiając ją jako suę ent stałych (wysokość, płatność azy w oku) ozpoczynających się w oentach czasu,,, Zate (watość ocznej wpłaty to ): (I () ä) () ä() [ + υ/ + υ / + ] ä () ä () d () d () Odpowiednia enta płatna z dołu óżni się tylko ty, że każda wpłata jest dokonywana -tą oku później, więc (I () a) () υ ( (I ()ä) ) () υ d () d () () d, () bo d () υ () Indeks góny zawsze opuszczay Np watość teaźniejsza enty płatnej z góy z ocznyi płatnościai,,, to (Iä) (I () ä) () d Równości (I () ä) () d () d, () (I() a) () () d () ożna wykozystać (pzechodząc z ) do obliczenia watości teaźniejszych ciągłych stuieni płatności Np (uwaga: [x] oznacza całość z x): (Īā) te δt dt δ, (Iā) [t + ]e δt dt δd, pzy czy wyniki końcowe uzyskujey bez liczenia całek (Należy uwzględnić, że li oaz, że ) d () δ d () d Na koniec ozważy entę wypłacającą kwoty,,, (w chwilach,,, ) Jej watość teaźniejsza ä wynosi: ä + υ + υ +
4 Taka zienna enta oże być ozważana jako sua stałych ent, według scheatu Dooczna płatność Moent statu Jej watość teaźniejszą ożey więc zapisać jako ä d [ + υ( ) + υ ( ) + ] Taka postać bywa pzydatna, gdy óżnice są postsze niż sae k ; tak jest np wtedy, gdy k jest wieloiane ziennej k Np gdy k k +, to ożey otzyać znany już wzó (Iä) d ( + υ + υ + ) d υ d Czase jest łatwiej wyliczyć watość teaźniejszą bezpośednio Jeżeli np to pod waunkie, że τ < δ k e τk, k,,, ä + υe τ + υ e τ + υe τ e δ e τ e, (δ τ) Renty teinowe Rentą teinową (ang annuity) nazyway ciąg płatności z oganiczony czase twania n Watość teaźniejszą enty teinowej płatnej z góy, w wysokości, oznaczay ä Zate ä + υ + υ + + υ n υn υ υn d 4
5 Wynik ten ożna uzyskać taktując tę entę jako óżnicę dwóch ent wieczystych (jedna zaczyna się dla t, duga dla t n): Podobnie uzyskay: ä ä υ n ä υn d a υn, ä () υn d (), a () υn () W pzypadku ent teinowych inteesująca jest ównież ich watość pzyszła (końcowa) Watość pzyszłą uzyskay nożąc watość teaźniejszą pzez ( + ) n Stąd υ n s ( + )n d s ( + )n, s () ( + )n, d () May także zależność czyli s + s () ( + )n () ( ) υ n + υ n + υ n υ n υ n υ n υ, n a + a s Rozważy teaz osnącą entę teinową z paaetai i (np, 4) 5
6 Czas + Płatność n n + n Taka osnąca enta teinowa oże być taktowana jako osnąca enta wieczysta ozpoczynająca się w chwili inus osnąca enta wieczysta ozpoczynająca się w chwili n, inus stała enta (w wysokości n ) ozpoczynająca się w chwili n Zate Analogicznie: (I () ä) () (I () ä) () υ n (I () ä) () υ n nä () n d () d () υn d () d () υn n d () ( υ n d () d () ) υ n n ä() (I () a) () ä() nυ n () Ważnyi szczególnyi pzypadkai są:,,,,,,, nυ n d () Renty teinowe ozważane wyżej są to tzw standadowe enty osnące (I) Standadowe enty alejące (D) są podobnie skonstuowane, ale płatności są w odwotnej kolejności Zate suy obu tych ent twozą stałą entę W następujący achunku ä () jest watością enty w wysokości watością enty w wysokości n 6, więc nä() jest
7 teinową (wysokość iesięczna płatności to n + ) Zate skąd (I () ä) () + (D () ä) () (n + )ä() (D () ä) () (n + )ä() (n + [ d () [ d () ä() ) υn d () nυ n d () υ n d () nυ n d () n nυ n + υn υn n ( υ n )( d () ) d () ], + nυ n ] ale d () +, () więc (D () ä) () (n ) υn n a() d () () d () Wzó ten, czyli watość teaźniejszą standadowej enty alejącej ożna wyznaczyć także bezpośednio, taktując tę entę jako stałą entę wieczystą z płatnościai n inus n odoczonych ent wieczystych, każda z płatnością, zaczynających się w oentach,,, n Zate (D () ä) () nä () n [ ä () n [ d () d () υ i ä() i n ] υ i i n υ ] υn υ n υn, (υ ) 7
8 ale ponieważ ( + () ) υ, tj () (υ ), więc (D () ä) () d () [n υn () ] n a() d () Pzykłady 4-letni obotnik chce zgoadzić fundusz na eeytuę W ty celu odkłada w banku zł na początku każdego oku, pzez 5 lat Po pzejściu na eeytuę planuje wykozystać ten fundusz wybieając jednakowe kwoty na początku każdego oku pzez 5 lat W jakiej wysokości będą te kwoty jeśli efektywna oczna stopa pocentowa wynosi 8% pzez piewsze 5 lat, a później 7%? Jedna enta wypłaca kwoty 4 na koniec oku pzez 6 lat Duga kwoty 5 na koniec oku pzez 8 lat Watość teaźniejsza obu ent jest taka saa, pzy stopie i Znajdź n takie, że kapitał zainwestowany na n lat podwoi swoją watość pzy stopie i Załóży, że K i M zaabiają butto Na fundusz eeytalny pacodawca wpłaca 9,76% tej kwoty Obliczyć watość pzyszłą konta eeytalnego dla K po 4 latach i M po 45 latach Taktując obliczone wielkości jako watości teaźniejsze ent wypłacanych: w pzypadku K pzez lat, w pzypadku M pzez lat obliczyć wysokość (iesięczną) takiej enty Stopa oczna 4% Wpłaty i wypłaty z dołu, kapitalizacja iesięczna Rozwiązanie: Wpłata iesięczna wynosi, 976 9, 8 Ponieważ kapitalizacja jest iesięczna, najlepiej stosować wzó na s, gdzie n jest liczbą iesięcy, a jest stopą iesięczną,4 Zate podstawiay do wzou: s ( + )n, i otzyujey watość pzyszłą konta eeytalnego dla K po 4 latach: 9, 8s 48 Altenatywnie, gdyby stosować wzó: ( +,4 )48,4 s () ( + )n (), , 47
9 w któy n jest liczbą lat, to tzeba paiętać, że w ty wzoze jest stopą efektywną Zate nie jest ówne, 4, lecz ef, gdzie + ef ( +,4 ) Natoiast (), 4 Eeytuę (iesięczną) obliczay dla K z ówności a dla M z ówności 9, 8 s 48 x a 4, 9, 8 s 54 x a Wyniki dla óżnych stóp pocentowych: Stopa Kap:K Kap:M Eeyt:K Eeyt:M, , , , , , Zadania z egzainów dla aktuaiuszy ( zad) Rozważy -letnią entę pewną natychiast płatną o płatnościach dokonywanych na początku każdego oku Niech k dla k,,, oznacza płatność na początku oku k i niech k będzie zdefiniowane następująco: { α k+ ( k ) k dla k,,, Wiadoo, że watość obecna tej enty (tzn watość tej enty w chwili dokonania piewszej wypłaty) wynosi (z dokładnością do liczb całkowitych) Wiadoo też że czynnik dyskontujący wynosi υ, 7 Oblicz α Odpowiedź (podaj najbliższą watość):,5;,5;,75;,5;,65 Rozwiązanie Zauważy,że α, ( )α,; ogólnie k+ ( ) α k 9
10 Zate watość obecna k k υ k k k+ υ k k ( ) αυ k α k Stąd 4866 α, 7, więc α, 5 k ( ) υ k α( + υ) k (76 zad4) Dane są enty ciągłe, w któych wysokość płatności w chwili t wynosi t zaś natężenie opocentowania zależne jest od długości okesu wypłacania enty i wynosi Wyznacz ile azy obecna watość enty n wypłacanej pzez okes lat jest większa od obecnej watości wypłacanej pzez okes lat Odpowiedź:,5 azy ;,5 azy;, azy;,75 azy; żadna z powyższych odpowiedzi nie jest pawdziwa Rozwiązanie a W a podstawiay t u: te t dt, a te t dt Zate a ue u du 9 4 a a a 9 4, 5 (76 zad9) Oblicz watość końcową iesięcznej enty o wysokości kwatałai stałej po upływie 5 iesięcy wiedząc, że wysokość at wzośnie w kolejnych kwatałach o 4% Na początku enta wynosi 5 zł Miesięczna stopa pocentowa wynosi % Odpowiedź (podaj najbliższą watość): 785; 795; 85; 85; 85 Rozwiązanie Niech 5,,, p, 4 Watość pzyszła
11 (zakładay, że enta jest płatna z dołu): X p( ) + + p ( ) + p ( ) + p 4 ( + + ), [ + p 9 + p 6 + p + p 4 ] ) 5 ( p, p 5,,4 ( ) 5,,, (,4 ) 797, 4(76 zad) Dane są dwie enty wieczyste A i B, gdzie ) enta A - w wysokości płatna na koniec każdego oku, ) enta B - w wysokości płatna na koniec co dugiego oku Różnica poiędzy obecną watością enty A, wyznaczoną pzy stopie technicznej i, a obecną watością enty B wyznaczoną ównież pzy stopie technicznej i, wynosi Wyznacz stopę techniczną i Odpowiedź (podaj najbliższą watość):,;,;,;,4;,5 Rozwiązanie Watość obecna enty A wynosi, zaś enty B: i υ + υ 4 + Stąd υ υ υ ( υ ) υ ( + i) i + i i i(i + ), więc i+ i(i+), czyli i +( )i, skąd i <, i, 4
Rozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą.
Renty wieczyste Rozważyy nieskończony stuień płatności i obliczyy jego watość teaźniejszą Najpiew ozważy entę wieczystą polegającą na wypłacie jp co ok Jeśli piewsza płatność jest w chwili to ówiy o encie
Bardziej szczegółowoNOMINALNA STOPA PROCENTOWA stopa oprocentowania przyjęta w okresie bazowym; nie uwzględnia skutków kapitalizacji odsetek
Symbole: nominalna stopa pocentowa ( od stu ) n ilość okesów (lat, miesięcy, kwatałów etc.) m ilość podokesów (np. stopa pocentowa podana jest w skali oku; kapitalizacja miesięczna m=12) d stopa dyskontowa
Bardziej szczegółowoEFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.
Bardziej szczegółowoElementy matematyki finansowej
ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,
Bardziej szczegółowoZmiana wartości pieniądza
Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.
Bardziej szczegółowo1 Renty życiowe. 1.1 Podstawowe renty życiowe
Renty życiowe Renta życiowa jest serią płatności okonywanych w czasie życia ubezpieczonego Jej wartość teraźniejsza jest zienną losową (bo zależy o przyszłego czasu życia T, oznaczaną Y Postawowe renty
Bardziej szczegółowoROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
Bardziej szczegółowoLIST EMISYJNY nr 3 /2014 Ministra Finansów
LIST EMISYJNY n /0 Minista Finansów z dnia stycznia 0. w spawie emisji kótkookesowych oszczędnościowych obligacji skabowych o opocentowaniu stałym ofeowanych w sieci spzedaży detalicznej Na podstawie at.
Bardziej szczegółowoSystem finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy
Bardziej szczegółowoUBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ
UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 1: UWAGI WSTĘPNE. PROCENT SKŁADANY 1. Uwagi wstępne Ryzyko jest związane z niealże każdy rodzaje działalności człowieka: przy planowaniu urlopu ryzyko słabej
Bardziej szczegółowo0 Rachunek czasu. Informacje pierwotne: początkowa i końcowa data inwestycji.
0 Rachunek czasu Inforacje pierwotne: początkowa i końcowa data inwestycji. Konwencja: nie naliczay odsetek za początkowy dzień trwania inwestycji, naliczay za końcowy. Liczba dni trwania inwestycji liczba
Bardziej szczegółowoWARTOŚĆ PIENIĄDZA W CZASIE
WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość
Bardziej szczegółowoRys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1
6 FOTON 6, Wiosna 0 uchy Księżyca Jezy Ginte Uniwesytet Waszawski Postawienie zagadnienia Kiedy uczy się o uchach ciał niebieskich na pozioie I klasy liceu, oawia się najczęściej najpiew uch Ziei i innych
Bardziej szczegółowoWyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona
Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,
Bardziej szczegółowoRodzajowy rachunek kosztów Wycena zuŝycia materiałów
Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak
Bardziej szczegółowoOpracowała: mgr inż. Ewelina Nowak
Mateiały dydaktyczne na zajęcia wyównawcze z cheii dla studentów piewszego oku kieunku zaawianego Inżynieia Śodowiska w aach pojektu Ea inżyniea pewna lokata na pzyszłość Opacowała: g inż. Ewelina Nowak
Bardziej szczegółowoELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie
ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś
Bardziej szczegółowoModel klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
Bardziej szczegółowoTradycyjne mierniki ryzyka
Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%
Bardziej szczegółowo1. Ubezpieczenia życiowe
1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas
Bardziej szczegółowoAKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.
uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w
Bardziej szczegółowoMetody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
Bardziej szczegółowoGrawitacyjna energia potencjalna gdy U = 0 w nieskończoności. w funkcji r
Wykład z fizyki Piot Posykiewicz 113 Ponieważ, ważne są tylko ziany enegii potencjalnej, ożey pzyjąć, że enegia potencjalna jest ówna zeo w dowolny położeniu. Powiezchnia iei oże być odpowiedni wyboe w
Bardziej szczegółowo1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa
Bardziej szczegółowoWartość przyszła pieniądza: Future Value FV
Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie
Bardziej szczegółowozaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
Bardziej szczegółowoEnergia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Bardziej szczegółowoXXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha,
XXI OLIMPIADA FIZYCZNA (97-97). Stopień III zadanie teoetyczne. Źódło: XXI i XXII OLIMPIADA FIZYCZNA WSiP Waszawa 975 Auto: Nazwa zadania: Działy: Słowa kluczowe: Andzej Szyacha Dwa ciała i spężynka Dynaika
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.
Bardziej szczegółowoMETODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zagadnienia 1. Mateatyczne pdstawy etd hdwlanych 2. Watść cechy ilściwej i definicje paaetów genetycznych 3. Metdy szacwania paaetów genetycznych 4. Watść hdwlana cechy
Bardziej szczegółowoJak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014
Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu
Bardziej szczegółowoMECHANIKA BUDOWLI 12
Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady
Bardziej szczegółowomgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3
Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności
Bardziej szczegółowoWartość pieniądza w czasie (Value of money in time)
WRTOŚĆ PIENIĄDZ W CZSIE FINNSE I ROBERT ŚLEPCZUK Watość pieiądza w czasie (Value of oey i tie - futue value - watość pzyszła, PV - peset value - watość bieżąca, - stopa pocetowa, - ilość kapitalizacji
Bardziej szczegółowoEgzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Bardziej szczegółowoMatematyka bankowa 2
1. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki 2. Instytut Nauk Ekonomicznych i Informatyki Państwowa Wyższa Szkoła Zawodowa w Płocku Matematyka bankowa 2 średnio- i
Bardziej szczegółowoMatematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoMatematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Bardziej szczegółowoKomputerowa symulacja doświadczenia Rutherforda (rozpraszanie cząstki klasycznej na potencjale centralnym
Pojekt n C.8. Koputeowa syulacja doświadczenia Ruthefoda (ozpaszanie cząstki klasycznej na potencjale centalny (na podstawie S.. Koonin "Intoduction to Coputational Physics") Wpowadzenie Cząstka o asie
Bardziej szczegółowoI = F P. P = F t a(t) 1
6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia
Bardziej szczegółowoMETEMATYCZNY MODEL OCENY
I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień
Bardziej szczegółowoII.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Bardziej szczegółowoEgzamin dla Aktuariuszy z 6 grudnia 2003 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia Kadr
Bardziej szczegółowoUbezpieczenia życiowe
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ubezpieczenia życiowe 1. Z historii ubezpieczeń W uproszczeniu mówiąc mamy dwa tradycyjne modele ubezpieczeń. Pierwszy ma źródło w towarzystwach
Bardziej szczegółowoModelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
Bardziej szczegółowoMatematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoMatematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Bardziej szczegółowo500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 -
Zdyskotowae pzepływy pieięŝe - Pzepływy pieięŝe płatości ozłoŝoe w czasie - Pzepływy występujące w kilku óŝych okesach ie są poówywale z uwagi a zmiaę watość pieiądza w czasie - śeby poówywać pzepływy
Bardziej szczegółowoDobór zmiennych objaśniających do liniowego modelu ekonometrycznego
Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość
Bardziej szczegółowoMATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku.
MATEMATYA FIASWA Rachuek osetek postych Wykozystyway w okesie kótki o 1 oku Wzó oóly * * t Wzó pzy uwzlęieiu oiesieia czasoweo t * * t * T p. w pzypaku okesu zieeo t * * 360 Zaaie 1 jakiej kwoty otzyao
Bardziej szczegółowoRachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200
Bardziej szczegółowoMatematyka finansowa 17.05.2003
1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja
Bardziej szczegółowoArytmetyka finansowa Wykład 6 Dr Wioletta Nowak
Aytmetya finansowa Wyład 6 Wioletta Nowa Ryne apitałowy zez yne apitałowy ozumie się ogół tansacji upna-spzedaży, tóych pzedmiotem są instumenty finansowe o oesie wyupu dłuższym niż o. Śodi uzysane z emisji
Bardziej szczegółowoPRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
Bardziej szczegółowoPole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Bardziej szczegółowo20. Model atomu wodoru według Bohra.
Model atou wodou według Boha Wybó i opacowaie zadań Jadwiga Mechlińska-Dewko Więcej zadań a te teat zajdziesz w II części skyptu Opieając się a teoii Boha zaleźć: a/ poień -tej obity elektou w atoie wodou,
Bardziej szczegółowoMatematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile
Bardziej szczegółowoMatematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Bardziej szczegółowoMIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
Bardziej szczegółowoFizyka 9. Janusz Andrzejewski
Fizyka 9 Janusz Andzejewski R K Księżyc kążący wokół iei (Rozważania Newtona) Pzyśpieszenie dośodkowe księżyca 4πRK ak = T Wstawiając dane dla obity księżyca: R K = 3.86 10 T = 7. 3dnia 5 k R 6300 = 386000
Bardziej szczegółowoDariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady
Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Bardziej szczegółowoOcena siły oddziaływania procesów objaśniających dla modeli przestrzennych
Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,
Bardziej szczegółowoPapiery wartościowe o stałym dochodzie
Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,
Bardziej szczegółowoGraf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy
Bardziej szczegółowoREZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe
Bardziej szczegółowo= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2
64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że
Bardziej szczegółowoRachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN
Bardziej szczegółowoKognitywistyka II r. Teoria rzetelności wyników testu. Teorie inteligencji i sposoby jej pomiaru (4) Rzetelność czyli dokładność pomiaru
Kognitywistyka II Teoie inteligencji i sposoby jej pomiau (4) Teoia zetelności wyników testu Rzetelność czyli dokładność pomiau W języku potocznym temin zetelność oznacza niezawodność (dokładność). W psychometii
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy
Bardziej szczegółowoĆwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy
Bardziej szczegółowoWYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
Bardziej szczegółowoUBEZPIECZENIA NA ŻYCIE
UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną
Bardziej szczegółowoWykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Bardziej szczegółowoPrzejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)
inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska
Bardziej szczegółowoMatematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Bardziej szczegółowom q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 2
LEKCJA 2 Pzykład: Dylemat Cykoa (albo Poke Dogowy) Dwie osoby wsiadają w samochody, ozpędzają się i z dużą pędkością jadą na siebie - ten kto piewszy zahamuje lub zjedzie z tasy jest "cykoem" i pzegywa.
Bardziej szczegółowoEgzamin dla Aktuariuszy z 7 grudnia 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 7 grudnia 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:....... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Bardziej szczegółowonależą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoDariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II
Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział
Bardziej szczegółowoMatematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Bardziej szczegółowoZadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Bardziej szczegółowoMONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH
51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl
Bardziej szczegółowoMatematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowo9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN
91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,
Bardziej szczegółowoMatematyka finansowa w pakiecie Matlab
Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka
Bardziej szczegółowoWartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA *
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO n 786 Finanse, Rynki Finansowe, Ubezpieczenia n 64/1 (2013) s. 269 278 Watości wybanych pzedsiębiostw góniczych pzy zastosowaniu EVA * Adam Sojda ** Steszczenie:
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
Bardziej szczegółowoOGÓLNE RENTY ŻYCIOWE
OGÓLNE RENTY ŻYCIOWE M. BIENIEK Rentą życiową nazywamy kontrakt między ubezpieczycielem a ubezpieczonym, w którym ubezpieczony w zamian za określoną opłatę, zwaną składką, otrzymuje ciąg z góry określonych
Bardziej szczegółowoKrystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4
Kystyna Gonostaj Maia Nowotny-Różańska Katea Cheii i Fizyki, FIZYKA Uniwesytet Rolniczy o użytku wewnętznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kaków, 2004-2012
Bardziej szczegółowo4. Strumienie płatności: okresowe wkłady oszczędnościowe
4. Strumienie płatności: okresowe wkłady oszczędnościowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4. Strumienie w Krakowie)
Bardziej szczegółowoMatematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku
Bardziej szczegółowoSpis treści I. Ilościowe określenia składu roztworów strona II. Obliczenia podczas sporządzania roztworów
Sps teśc I. Iloścowe okeślena składu oztwoów stona Ułaek wagowy (asowy ocent wagowy (asowy ocent objętoścowy Ułaek olowy 3 ocent olowy 3 Stężene olowe 3 Stężene pocentowe 3 Stężene noalne 4 Stężene olane
Bardziej szczegółowo