Równania dynamiki maszyn prądu stałego w jednostkach względnych Jako podstawę analizy przyjmijmy równania obwodu twornika:
|
|
- Renata Zakrzewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 óaa ya aszy pą sałego jeosach zgęych Jao posaę aazy pzyjjy óaa obo oa: obo zbzea: ( ) e ( ) aość sły eeoooyczej yającej z oboó a: e oe yozoy aszye: M e Bazo ygoy jes zaps óań jeosach zgęych. Jao eośc oesea pzyjjy asępjące eośc: - zaooe apęce oa - zaooy pą oa - zaooy seń Da sa obcozbego: Weość oesea a pęośc jes óa pęośc eaego beg jałoego a sa obcozbego. Oczyśce a ych ypó aszy pzyjoaa jes eość yzaczoa ełg zo poaego yżej. Pzy a yboze eośc oesea ozyay: - 1 -
2 Ozaczając: Ozyay óae oa posac: Taa posać óaa jes paycza, gyż szyse eośc ysępjące óaach, zaese o beg jałoego o aó zaooych, ają aośc z zaes 1. Paaey ysępjące óaach jao ają eośc eaoae, a poóae óżych aszy ze sobą jes łaejsze. óae obo zbzea eoścach zgęych pzyjje posać: óae oe pzyjje posać: Jey z posaoych opacj aaz aszy eeyczych jes fa eoej zaeżośc sea o pą agesjącego, są a pzybżoego zgęea zjas asyceoych oża pzybże aposyoać chaaeysyę agesoaa eoścach zgęych. Pojając zjaso hseezy ageyczej oża sosoać zó aposyjący posac: - -
3 Pzy czy a: a a.55 ( 1 a).65 Oczysy jes, że e jes o jeye pzybżee chaaeysy agesoaa, oża p.. sosoać zaeżość: a aca( a1) a eoay b e fcje aposyjące chaaeysy agesoaa: ah B 1 a.73; b.149 bh a a1h ah... B 1 b H b H... 1 H exp( B ) ] B [ 1 3 Naeży pzy y paęać, że jes o jeye pzybżee zjas ysępjących payce. óae ya echaczej: J M W jeosach zgęych ozyay: e M gze: J j e - 3 -
4 J j S obcozby Da ego yp aszyy ypoazoe yżej óaa opoaają bez żaych oyfacj Da zaooego pą zbzea, b aszy o agesach ałych 1 W sae saoy, pzy sałej pęośc ąoej: Pzy zaooy pąze zbzea: W s szeegoy: S szeegoy - 4 -
5 są y pzypa e a oębego óaa a obo zbzea. óae obo oa a posać: Naeży pzy y zgęć: sz a ( 1 a) W sae saoy, poobe ja aszye obcozbej:: Waość sea zaeży o pą oa, są z zaese oej częśc chaaeysy agesoaa ożey apsać: Pzy ach założeach chaaeysya echacza a zae szał hpebo
6 S boczoy W s boczoy apęce zasające obó zbzea jes óe apęc oa, są: Pzy czy aość pą o jes pąe pobeay ze źóła apęca sałego. W y pzypa zaa apęca zasającego zea aże aość pą oboze zbzea. Koseecją jes ba ożośc egacj pęośc obooej popzez zaę apęca oa.. aga! Dosępy jes poga syacyjy ya aszy pą sałego: SPS_E.EXE. W pogae yozysao óaa aszy pą sałego jeosach zgęych. Koeje zee ozaczają: pą oa pęość zgęa pą zbzea e sła eeoooycza apęca zasaa f seń a ayy oe obcążea b bey oe obcążea oe aszyy a aość spółczya fcj aposyjącej chaaeysyę agesoaa aość zgęa ezysacj zojea oa - aość zgęa cyjośc zojea oa aość zgęa ezysacj zojea zbzea - aość zgęa cyjośc zojea zbzea j aość zgęa oe bezłaośc aszyy Poga zgęa asępjące yp aszy: 1 s obcozby s szeegoy z zgęee chaaeysy agesoaa 3 s boczoy, obó ageyczy oy 4 s boczoy z zgęee chaaeysy agesoaa - 6 -
7 Waośc paaeó oe aeayczych oża oszacoać a posae aych aaogoych: cyjość obo oa aszyy obcozbej: W aoścach zgęych: p [ H ] p =.9 s z bega oaoy =.3 s z bega oaoy zojee opesacyjy =.3 agesy ałe cyyczy =.7 agesy ałe aczoy ezysacja oa: W aoścach zgęych:.5(1.5(1 ) Waość sałej czasoej obo oa a aszy ałej śeej ocy: T 3 8s ezysację zojea zbzea oża szacoać a posae sa, pzy czy say oboze zbzea:.5% P - s szeegoy 1% P - s boczoy (obcozby) W eaze spoya sę zaeżość a szacoaą aość cyjośc obo zbzea posac: 1. z p ) [ a N ] z czba zojó zojea zbzea N czba zojó zojea oa a czba pa gałęz óoegłych 1. z p a N - 7 -
8 Sała czasoa obo zbzea: T.3 4. T [s] Moc zę [W]: s - 8 -
Przyjmijmy, że moment obciążenia jest równy zeru, otrzymamy:
aszyy prąy sałgo yaka Dla aszyy prą sałgo, ykorzysyaj jako l aoayk, yzaczy ybra rasacj. Sygał jścoy oż być p. apęc orka (la aszyy obcozbj) a sygał yjścoy prękość obrooa. óa Krchhoffa la obo orka oży apsać
Bardziej szczegółowoIDENTYFIKACJA RÓWNAŃ DYNAMIKI SILNIKA PRĄ DU STAŁ EGO
ZESZYTY AUKOWE AKADEII AYAKI WOJEEJ OK XV 58 4 Ja Ids a Zlla IDETYFIKACJA ÓWAŃ DYAIKI SIIKA PĄ DU STAŁ EGO STESZCZEIE W ayl dsa żlśc assaa baych fcj sljaych słżących dyfacj óań sla lycg. D s bgó assa ba
Bardziej szczegółowoR n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 )
Maeayka fasowa ubezpeczeowa Ćwczea 4 IE, I rok SS Tea: achuek re oęce rey Warość począkowa końcowa rey ey o sałych raach ea o zeych raach ea uogóoa osawowe poęca rachuku re ea es o cąg płaośc okoywaych
Bardziej szczegółowoObwody elektryczne. Stan ustalony i stan przejściowy. Metody analizy obwodów w stanie przejściowym. przejściowym. Stan ustalony i stan przejściowy
Obody elerycze Meody aalzy obodó sae rzejścoym Wyład W obodze rąd sałego Warośc rądó aęć e legają zmae W obodze rąd zmeego Warośc średe secze rądó aęć e legają zmae Prądy aęca są fcjam oresoym o aej samej
Bardziej szczegółowoUwaga z alkoholem. Picie na świeżym powietrzu jest zabronione, poza licencjonowanymi ogródkami, a mandat można dostać nawet za niewinne piwko.
B : U U F F U 01 Ę ś ę 3 ż łć ę ę ź ł, Ż 64 ó ł ł óżó, j, j U 02 Ą ś U ł 1925, 1973 łś ą ż ęą fć j j ą j ł 9 ( ) ó 15 F 03 j ąó j j, ę j ż 15 ł, ó f Bść ł łj ł, 1223 j 15 B Ą ć ę j- j ść, j ż ą, ż, ją
Bardziej szczegółowoWykład Studium przypadku (case study) silnik prądu stałego. Eksperyment identyfikacyjny układ otwarty. Odpowiedzi skokowe Położenie
6 Sm za ca ln ą ałgo Wła Sm za omchanzm Sanoo laboaojn m zbgo oooana om PC glao aa /O Ob. Mol mamaczn. Paczn mo nfacj aamó mol. S glacj ooan zmłoch omchanzmach. Paczn mo ojna glaoó P la omchanzmó Żabń
Bardziej szczegółowolatarnia morska wę d elbląg malbork an o el a z o i s olsztyn zamek krzyżacki w malborku Wisła płock żelazowa wola ęży z a me k ól.
T ę Ł ó 499 ż Y ę ą T T ą ść ż B ę ó ąż ę ąż żą ó ę ż ę ś Ś SZ ź ź S żó ż śó ś ść E ó E ń ó ó ó E ó ś ż ó Ł Gó ę ó SZ ś ż ę ę T 6 5 ó ż 6 5 : 685 75 ą ę 8 Ó ńó ę: : U 5 ó ż ó 5 Śą Gó 4 ść ę U żę ż ć Z
Bardziej szczegółowoFIZYKA WZORY zakres GIMNAZJUM
ZYKA ZOY zake GMNAZM ZÓ ielkości NAZA ielkości SYMBOL ielkości SYMBOL jedoki NAZA jedoki, Pędkość uchu jedoajy ooliioy ędkość, doga, cza, e a ekudę = Doga uchu jedoajy ooliioy doga, ędkość, cza ś... ędkość,...
Bardziej szczegółowoÓ Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó
Bardziej szczegółowoĘ Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż
Bardziej szczegółowoŁ Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć
Bardziej szczegółowoŹ ź Ę Ś Ś Ń ę ę ż Ę ż ę ż ę ż ę ż ż ę ż ż Ń ź ę ę Ę Ć ż Ź Ś ę ż ż ę ż Ź Ó ę Ź ż Ś ż ę ż Ź ę Ę Ź ż ę ę ż Ś ę ę Ó Ś ę Ę ę ę ę Ą Ę Ą Ę Ś ę ż ż Ź ę Ń Ź Ś Ś ę Ź ż Ź ź ę ć Ó ż ż Ę Ó ę ż Ń ż ę Ź ę Ź Ą ę ż ż Źę
Bardziej szczegółowoMASZYNA ASYNCHRONICZNA 1. Oblicz sprawność silnika dla warunków znamionowych przy zadanej mocy strat i mocy znamionowej. Pmech
MAYA AYCHOCA. Oblcz pawość lka dla wauków zaoowych pzy zadaej ocy tat ocy zaoowej. ech η η el ech ech. Jak a podtawe ocy zaoowej zaoowej pędkośc oblcza ę zaoowy oet lka? η 60 60 η 9,55 η 3. Wyzacz pawość
Bardziej szczegółowoINSTRUMENTY DŁUŻNE. Duracja jako funkcja stopy procentowej Duracja skończonego ciągu płatności Immunizacja portfela aktywów
INSTRUMENTY ŁUŻNE aja jao fja opy poeowej aja ońzoego iąg płaośi Iizaja pofela aywów aja iąg pzepływów pzy apializaji iągłej oza opa ' ; aja jao fja ] [ ' T VR T E T E e d d d d aja jao fja apializaja
Bardziej szczegółowoSpędź czas w Dortmundzie korzystając z autobusu i kolei
ęź z Dz zyją z Tä z D 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 00 0 0 0 z y D! D J z ł Dz yzyj j jją ł zy ć ó D j Pń zę yjy ż, y y zć! Dz żj ją zz zł D z żj jy zzó zy y jyz zó j ż zć Pń zł, jż Pń ży, z Pń zz
Bardziej szczegółowoMaria Dems. T. Koter, E. Jezierski, W. Paszek
Sany niesalone masyn synchonicnych Maia Dems. Koe, E. Jeieski, W. Pasek Zwacie aowe pąnicy synchonicnej San wacia salonego, wany akże waciem nomalnym lb pomiaowym yskje się pe wacie acisków wonika (j (sojana
Bardziej szczegółowoNiezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Bardziej szczegółowoMarii. Skłodowskiej-Curie. Ekspozycja-warsztaty Lekcje
Epyj-y Lj M.--.-v.f L M 2011 j- Epyj-y p L M NR (b M) p Mé, Uy P-D, Uy. P M j- Uy P 11 Oy. y yp M j- phą ąż Lj M j- Ib hv, yj p E EDP 2003. Zję M j- ą ć Mé. L M 386, v Dv L 92290 hây-mby - FRANJA (33)
Bardziej szczegółowoŁ Ł ć ć ż ż ż ź ź Ć ń ł ź ż ś ł ź ń ś ż ś ś ś ś ż ź ż ż ź ł ż ż ż ś ś ś ś ż ś ś ź Ś ś ż ś ś ł ż ś ś ł ź ź Ź ś ź ł ż ż ń ł ść ł ś ść ś ż ć ś ż ś ś ź ń ć ź ść ź ż ż ść ć ść ść Ź Ź ł ś ń ł ś ś ł ł ś ś ś ś
Bardziej szczegółowoa b c d e f g h i j k l l m n o p r s t u w
P ABC Iay ³ Da. 4-6 Ga 2013 ` a ẓ Na : 1. Gañ. F. M. a 2. a. F. P. Maa 3. K O³. F. P. Maa 4. Ty. F. A. Gêa P ABC Iay Da Iay ³ a,. P ABC P a ó ay Pñ Wó³ Na, óy ay y ó a 4-6 ³y a a ay, a ó ó a³¹y a ê ê aa
Bardziej szczegółowoŻ ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Bardziej szczegółowoŚ Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Bardziej szczegółowoŁ Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Bardziej szczegółowoŁ Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Bardziej szczegółowot - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Bardziej szczegółowoBezpieczniki PSC 7x Protistor. Bezpieczniki do ochrony półprzewodników. Typ: PSC 7x grb Nożowe i przykręcane. 690V AC od 50 do 1000A
Typ: PSC 7x grb Rozmiar 70 Nożowe znam. Nożowe A 50 C301279 P301405 Q301245 63 D301280 Q301406 R301246 80 E301281 R301407 S301247 100 F301282 S301408 Q302027 T301248 125 G301283 T301409 T301179 160 L301310
Bardziej szczegółowoDokument pochodzi z cyfrowego archiwum PTN, Odział we Wrocławiu. Wszelkie prawa zastrzeżone - wykorzystanie bez zgody Właściciela zabronione.
ń ń Dokument pochodzi z cyfrowego archiwum PTN, Odzia we Wrocawiu. Wszelkie prawa zastrzeone - wykorzystanie bez zgody Waściciela zabronione. ń Ą Ł Ś ń ń ó ń ńę Dokument pochodzi z cyfrowego archiwum PTN,
Bardziej szczegółowo1. MODELOWANIE SYSTEMÓW
. MODEOWANIE SYSEMÓW.. Wpoazene Moeloane jao pzeja nelealnej aynośc człoea jes znane o zaana lzośc. Neno oszec że na co zeń posłgjey sę oela nae ego ne zaażając. Na pzyła gy żyay pojęca os o zazyczaj ay
Bardziej szczegółowoBezpieczniki NH 500V gg
/C - 5V gg /C 5 NHGG5V B946C /C 4 5 NHGG5V4 M46C /C 6 5 NHGG5V6 D995C /C 5 NHGG5V B965C /C 6 5 NHGG5V6 K97H 9 /C 5 NHGG5V A847H 9 /C 5 5 NHGG5V5 E85H 9 /C 5 NHGG5V Z48H 9 /C 5 5 NHGG5V5 C947H 9 /C 4 5
Bardziej szczegółowoPROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I
Bardziej szczegółowośą ś ć Ą Ó ó Ę ń ó
ć Ł Ś Ó ó ś ą ś Ł ń Ą Ę ń śą ś ć Ą Ó ó Ę ń ó Ę ń Źą ń ó Ą ś ś ń Ń ó ń ń ń ń ę ś Ę ń ń ś ą ą ą ę śó ń Ó Ś ę Ź ę ść ń ó ę Ę ń ó ą ó ą ą ą ę ą ó ń ń ę ć ń ó ó ń ą ń ę ó ś ą ś Ł ą ń ą ń Źą ń ę ś ń Ź ó ę ń
Bardziej szczegółowoÓŁ Ś Ó Ó Ó ć ć ć Ź Ó ŚĆ Ś ć ć ć ŚĆ Ź ć Ż Ó Ś Ó ć Ł Ż Ł Ż Ż ć ź ÓŁ Ż Ó Ź Ó Ó Ż ź Ś ć Ż Ś Ó Ź Ż ć ć ć Ż Ó Ó Ś Ó Ó Ź ć ź Ó Ź Ż Ó Ó Ż Ó Ś Ś Ż Ź Ś Ó Ź Ź Ó Ó Ł ÓŁ Ż Ż Ł Ó Ż Ż Ż ć ć ć Ż ź ź ć ź ć Ź Ó ć Ś Ś
Bardziej szczegółowoź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć
Bardziej szczegółowoRozwiązania zadań z ksiąŝki pt. Podstawy matematyki ubezpieczeń na Ŝycie T.Rolskiego, B.Błaszczyszyna (dodatkowo teoria)
Jab Grabow jabgrabow@oczaf Rozwązaa zaań z ąŝ Poawy aeay bezeczeń a Ŝyce TRoego, BBłazczyzya oaowo eora Raor echczy r 8 Kaery Sayy Wrocław 8 Coyrgh by Jab Grabow a Dearae of Sac Wrocław 8 S reśc Rozzał
Bardziej szczegółowoRozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
Bardziej szczegółowoMechanika Bryły y Sztywnej - Ruch Obrotowy. Bryła a Sztywna. Model górnej kończyny Model kręgosłupa
WYKŁAD # Mechaka Bryły y Szywej - Ruch Obroowy Bryła a Szywa Model cała rzeczywsego, dla k puky (ależą podczas ruchu. a rzeczywsego, dla kórego dwa dowole wybrae żące do bryły) y) e zeają swojej odległośc
Bardziej szczegółowoć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć
Bardziej szczegółowo1. Dobór powierzchni grzejników konwekcyjnych
. Dobór poerzchn grzejnkó konekcyjnych rzejnk a za zadane dosarczene odpoednej ośc cepła ceu zapenena yaganej eperaury ogrzeany poeszczenu. Jes o przeponoy yennk oda poerze przekazujący cepło na drodze
Bardziej szczegółowoOpis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c
Bardziej szczegółowoć Ę ó ó Ź ó ó ć ź ć ć Ś ć Ź ó Ó ó ó Ś ó ó ć ó ć Ź ź ć ó ź ć ó ź ó ó ó ó ć Ą ó ó ź ó ó ó ć ź ć ć ź ź Ś ó ó ó ć ó Ź ó ó ć ó ó ó ó Ę ó ó ź Ę ó ó ó ć ó ó ź Ć Ź ź ó ó ó ó ó ó ó óź ź ó ź ó ó ó ó ć ó ó ć ó ó
Bardziej szczegółowo21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Bardziej szczegółowoPrzedmiotowe Zasady Oceniania z Informatyki (zakres podstawowy)
P Z O I ( ) Oąę ó ą bą ść ęć ś ś. Dą ś ęś. D ż ć ę ABC ó 2: P ś:. ZAPAMIĘTANIE WIADOMOŚCI,, ó,, ł, ę. b. ZROZUMIENIE WIADOMOŚCI ł,, ś,. P ęś:. STOSOWANIE WIADOMOŚCI W SYTUACJACH TYPOWYCH ś, ó bą ś ą ąę..
Bardziej szczegółowoa b c d e f g h i j k l l m n o p r s t u w z
Maay a B / Pñ a³aa ³a Tya y, ê óy a¹ y a y T, a aa³ ay y ³ya y a y¹, a ó a a ay y y³a - ó aa³y a¹ ó ¹ aê, yyê a aa aê ( y añ, ³ ) Maa³y y³¹ ó aa, a ay ê ¹ ¹, a ³ œ¹ W ó y a ya ê ay aa³ó, ê óy aa a aayyy
Bardziej szczegółowoPROJEKT DOCELOWEJ ORGANIZACJI RUCHU
ży Oły Wł, ęy Oł Wł VETIGO MGET JCZEWSK UL JCKOWSKIEGO - WOCŁW TEL/FX l: -l: v@l OJEKT DOCELOWEJ OGIZCJI UCHU y: I Ząy: O: Ll: ///W/ G Wł l y T - - Wł ż Oły ęy Oł Wł Wó: lślą, : Wł, G: Wł, ż Oły T: ży
Bardziej szczegółowoSchrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z
Bardziej szczegółowoLaboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach
Laboaoium Półpzewodniki, Dielekyki i Magneyki Ćwiczenie n 10 Pomiay czasu życia nośników w półpzewodnikach I. Zagadnienia do pzygoowania: 1. Pojęcia: nośniki mniejszościowe i większościowe, ównowagowe
Bardziej szczegółowoi = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Bardziej szczegółowoTWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Bardziej szczegółowoSPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I
Bardziej szczegółowo, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
Bardziej szczegółowoNovosibirsk, Russia, September 2002
Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego
Bardziej szczegółowoĄ ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
Bardziej szczegółowoPolitechnika Gdaska Wydział Elektrotechniki i Automatyki Katedra Inynierii Systemów Sterowania. Podstawy Automatyki
Polechka daska Wdzał Elekroechk Aoak Kaedra Ier seó eroaa Podsa Aoak earzacja sacza dacza Maerał pooccze do cze - er T7 Opracoae: Kazerz Dzkecz dr hab.. Mchał rochosk dr. ober Porosk dr. Toasz kosk dr.
Bardziej szczegółowoÓ Ś Ą ŚĆ Ą Ś Ś ż Ó Ą Ś Ó Ż Ó Ó ć ć ć Ó Ó Ń Ś Ó ć Ś Ó Ń Ą Ś ć Ó Ó ć Ź ć ć Ź ż Ź ć ż ć ż ż ż ż ć ć ć Ó Ó Ó ć ż ż ż Ó Ó Ó Ń ż ć ć ż ż Ż ć Ó Ó ć ć ć ć ć ż ż Ó Ó ć ć Ó Ą Ź Ź Ó Ó Ó Ń ć ż ć ż Ó ż ć Ź ć ć Ż ż
Bardziej szczegółowoHP 125 + HP-COO ; Piec na zużyty olej 25-33 kw + Rekuperator powietrza/spaliny. HITON HP 125 Piec na zużyty olej 25-33 kw
Inforacje o produkcie torzono 17-06-2016 P 125 + P-COO ; Piec na zużyty oej 25-33 kw + ekupator poietrza/spainy Cena : 4.629,00 zł (netto: 3.763,41 zł) Cena proocyjna : 4.429,00 zł (netto: 3.600,81 zł)
Bardziej szczegółowoI. STADHOUDERZY NIDERLANDÓW
68 I. STADHOUDERZY NIDERLANDÓW I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W R o z d z i a ł I I. KRÓLOWIE HOLANDII LUDWIK I 70 LUDWIK II 79 6 9 I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W LUDWIK I Król
Bardziej szczegółowoLaboratorium. Sterowanie napędami elektrycznymi zagadnienia wybrane
POEHK WROŁWSK SYU MSZY, PĘDÓW POMRÓW EEKRYZYH ZKŁD PĘDU EEKRYZEGO, MEHROK UOMYK PRZEMYSŁOWEJ aboao Soan napęa lyczny zaganna yban Ćczn 3 aan sy soana pycyjngo pęoścą położn napę z sln pą sałgo. Opacoał:
Bardziej szczegółowoy Y : r R ; n Dobór zmiennych objaśniających do modelu ekonometrycznego Oznaczenia: Y - zmienna objaśniana, Postać macierzowa:
Dobó zec objaśającc do odeu eooetczego Ozaczea Y - zea objaśaa,,.,, - potecjae zee objaśające. Postać acezowa Y,. Współcz oeacj R, R, gdze ;,.,, ; ;,.,,, Postuat dotczące zec objaśającc Wso pozo zeośc
Bardziej szczegółowoWyznaczenie współczynników q1=1,0. Wyznaczyć częstości drgań własnych oraz amplitudy drgań wymuszonych dla następującej belki:
Wyznaczyć częośc dgań włanych oaz aludy dgań wyuzonych dla naęującej bel: 4. Sfoułowane zez wółczynn acezy zywnośc. a dgana włane Dane: N 5 g 8 N Hz π 88,496 ad/, J Soeń wobody dynacznej SSD Uład odawowy
Bardziej szczegółowoBudowa ścieżki spacerowo-dydaktycznej wokół jezior w Januszkowicach
Biuro Projektowe ECO-UNIT mgr inż. Marek Klyk ul. Cygana 4/213, 45-131 Opole tel. 77 442-81-18 fax. 77 442-81-19 kom. 606 101 958 NIP 754-242-14-40 REGON 532303190 http: www.eco-unit.pl e-mail: m.klyk@eco-unit.pl
Bardziej szczegółowoWytrzymałość śruby wysokość nakrętki
Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a
Bardziej szczegółowoMATEMATYCZNY OPIS UKŁADÓW DYNAMICZNYCH
MATEMATYCZNY OPIS UKŁADÓW DYNAMICZNYCH. Posać ogóla moel amczego cągłego Obek amcze, bęące jeowejścowm jeowjścowm kłaam lowm rs., o paramerach skpoch ezależch o czas, opsje sę za pomocą lowch rówań różczkowch
Bardziej szczegółowoGdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
Bardziej szczegółowoOptymalizacja funkcji
MARCIN BRAŚ Opymalzacja funcj ) Opymalzacja w obszarze neoranczonym WK: y. y WW: > > y y Znaleźć mnmum funcj: (, y) ( ) y ( ) y y ( ) y solve, P(, ) y y solve, y ( ) y ( ) y y y ( ) y W W W > (, y) > Op.
Bardziej szczegółowoMATEMATYKA FINANSOWA - WZORY LOKATY
Stoa ocetowa Z Dysoto ateatycze D M Dysoto halowe D H MAMAYA FINANSOA - ZORY LOAY stoa ysotowa atalzacja zgoa osta z ołu atał o oesach: P Oset: ( Z P Oblczae atału a ostawe P : P P P P atalzacja zgoa złożoa
Bardziej szczegółowoLISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy
JĘZYK WŁOSKI B2/C1 9.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 10.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 14.03.2015 R. 1 8.30-9.20 2 9.00-9.50
Bardziej szczegółowoELEKTROTECHNIKA. Obwody elektryczne. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego.
ELEKOEHNK Q Q rąd elerycy płye w obwode amęym Źródło eerg Wyład Obwody eleryce Zespół elemeów prewodących prąd, awerający pryajmej jedą drogę amęą dla prepływ prąd W elemeach obwod elerycego achodą procesy
Bardziej szczegółowoń óź óź Ę ć Ą Ą ó Ę ć ć Ł Ś Ł Ą ź ó Ź ź ń ó ź ź ź ó ó ź ź ź ź ó ć ź ó ć ó Ź ź ń Ę ó Ź ź ź Ę ź ó Ź ź ź Ź ź ń Ą Ą Ę Ą Ę ć Ą Ą Ę Ą Ź Ą ź Ł Ę Ł ó ź ć ć Ę Źó ó ó ź Ś Ą ź ó ó ń ź Ę ó Ą Ś ź ó Ę ó ź ó ź ź ź ź
Bardziej szczegółowoPROJEKT DOCELOWEJ ORGANIZACJI RUCHU
I GMINA ROŁA P Ny T / - ł P I: ł Iy S Of Ośę - ł T + F + E @ J BIURO PROJEKTÓ DRÓG I MOSTÓ BBKS-PROJEKT S UL OJA BEYZYMA / - ROŁA TEL () FAX () -; : @- S: P yy N : - PRZEBUDOA RONDA REJONIE PORTU LOTNIZEGO
Bardziej szczegółowoó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż
Ó śó ą ę Ę śćś ść ę ą ś ó ą ó Ł Ó ż Ś ą ś Ó ą ć ó ż ść śó ą Óść ó ż ż ą Ś Ś ż Ó ą Ó ą Ć Ś ż ó ż ę ąś ó ć Ś Ó ó ś ś ś ó Ó ś Ź ż ą ó ą żą śó Ś Ó Ś ó Ś Ś ąś Ó ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó
Bardziej szczegółowoDYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
Bardziej szczegółowoOSCYLATOR HARMONICZNY
OSCYLTOR HRMONICZNY Dgania swobone oscylaoa haonicznego negia oencjalna sęŝysości Dgania łuione oscylaoa haonicznego Dgania wyuszone oscylaoa haonicznego Rezonans aliuowy Rezonans ocy Doboć ukłau gającego
Bardziej szczegółowoN ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Bardziej szczegółowoę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę
ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą
Bardziej szczegółowo2 p. d p. ( r y s. 4 ). dv dt
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X N U M E R Y C Z N Y O P I W Y S T R Z E L E N I A S I A T K I S P R O C E S U W A S P E K C I E I N T E R A K C J I D Y N A
Bardziej szczegółowoK R Ó L O W I E PS Z W E C J I PWP.P O LF K U N G O W I E P 5 2 2
5 2 2 3. Folkungowie WŻ L D E MŻ R B I R G E R S S O N MŻ G N U S I LŻ D U L Å S B I R G E R MŻ G N U S S O N MŻ G N U S I I E R I K S S O N E R Y K MŻ G N U S S O N HŻŻ K O N MŻ G N U S S O N 5 2 3 W
Bardziej szczegółowoaangażowanie lokalnego biznesu w sponsoring i mecenat kultury jest niewielkie, czego przyczyną jest brak odpowiedniego kapitału kulturowego u
g Z gż llg b g l l, g ą b g ł lg ó, ll g b, żść g l ó łg, ż l f, ż f łą g, ó. R l b ą, ż ó ó gh ą lę ę łś llh, ó ą b h ó łg. Sg l g h, ó f b g gh lh. Gl g: ęb l źl, h g l l l. Mą ą ę l, óó ąą l ęh gh l
Bardziej szczegółowo2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Bardziej szczegółowoParafia Rokitnica. Kalendarz
Parafia Rokitnica Kalendarz 2012 KOŚCIÓŁ PARAFIALNY P.W. NAJŚW. SERCA PANA JEZUSA W ZABRZU ROKITNICY Wj eż d ż a ją c d o Ro k i t n i c y, z w ł a s z c z a d r o g a m i o d s t r o n y Mi e ch o w i
Bardziej szczegółowoŻYJE BAL NIECH r. Ala i klasówka z historii MASKOWY. Szkoła Podstawowa nr 12 im. Powstańców Śląskich w Warszawie. Nr 3/9 styczeń 2013 r.
Rs Ns k 5 Sk Ps 12 Psńó Śąskh s N 3/9 sń 2013 A ksók hs Z Bńsk, k 5b ŻYJE 12 BAL 10012013 NIEC ASKOY 2 O s ó ks 2 - s só BUONICZOIE BAJEK 6122012 Skń są P k Z b sę, sk bk óżk s k O s O k hs s ąę bą sę
Bardziej szczegółowoData opracowania
AZWA I ARES JEOSTKI PROJEKTUJĄCEJ: IURO PROJEKTOWE - KRZYSZTOF AAY Gó - Wz fx -: @ ZAAIE IWESTYCYJE (AZWA I ARES OIEKTU): R z J z R z zż T S A L P Lś KATGORIA OIEKTU UOWLAEGO: XXV z IV ó z TYTUŁ I SKŁA
Bardziej szczegółowoŚ Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Bardziej szczegółowoŁ ś ą ś ż ą Ż ż ż ó ó ó ó ś ą ą Ś ą ą ó ą ś Ż ą ż ż ż ą ą Ś ą ą ą ż ś ą ó ą Ę ą ą ś ą ą ó ś ą ś Ą ż ż ą ą Ś ą Ż ą ż Ł ó ą ś ą ó ó Ę ą ą Ś ą ą ó ą ą ż ś ą ą Ę ż Ąą ą ś ą ą ą ą ś Ż ó ą ą ż ż ą ą Ś ą Ę ó
Bardziej szczegółowoReprezentacja krzywych...
Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc
Bardziej szczegółowoRozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
Bardziej szczegółowo- ---Ą
Ą ż ą ą ą Ą ó ą ł ą ł Ąą ż ś Ę ÓŁ Ę Ó ŁĄ ŁŚĆ ł ż ł ż ó ł Ó Ć Ą Ł ŁÓ ŁŚ Ą ż Ó ŁÓ Ę ś ś ł ż ł Ą ęś Ą ń ź ć ą ą ę ń ż ąń ę ę ć óź ŁĄ ą ł ę ę ł ę ń Ą Ęł ą Ł ł ł ż ó ą ł ęę ĘĘ ęć ó ą ń ł ą Ą ęś ł ś ÓŁ Ą ę ę
Bardziej szczegółowoWykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r
Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub
Bardziej szczegółowo2. Zakres opracowania Opracowanie obejmuje inwentaryzację i wytypowanie do usunięcia drzew i krzewów kolidujących z projektowana inwestycją
ROUDO UL SUŁOSKEJ ODCKU OD UL POLOCKEJ DO UL FRYJERSKEJ RMCH D POPR STU TECHCEGO ERCH UL SUŁOSKEJ ODCKU OD ULCY POLOCKEJ (O) DO GRCY MST ROCŁU ETP OPS TECHCY pj p l l y l Słj l Plj l Fyjj m Pp l Słj l
Bardziej szczegółowoRys. 1. Schemat układu objętości poszczególnych składników w próbce gruntu.
CECHY FIZYCZNE GRUNTÓW Ośoek gutoy kłaa ię z ozielych zia i czątek, ięzy któyi ytęują oy, któe ą yełioe ajczęściej oą zaieającą ęchezyki gazu (oietza, ay oej, CO 2 ). Objętość ozczególych kłaikó zetaioo
Bardziej szczegółowo