Zapomniane twierdzenie Nyquista
|
|
- Maksymilian Sadowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Zapomniane wierdzenie Nyquisa Bogdan Cichocki, IFT UW KMMF
2 A A Flukuacje od łac. flucuaio drgania, falowanie, nazwa wprowadzona przez Mariana Smoluchowskiego
3 Harry Nyquis ( ) inżynier elekryk, w laach pracownik laboraorium ATT (od 1934 r. lab. Bella)
4 T R W 196 r. J.B. Johnson odkrywa zjawisko szumów ermicznych na oporniku i formułuje empiryczne prawo doyczące zależności inensywności ych szumów od emperaury. O wyjaśnienie eoreyczne zjawiska prosi swojego kolegę z laboraorium ATT H. Nyquisa, kóry wywiązuje się z posawionego zadania znakomicie. Praca Nyquisa poprzedzona pracą Johnsona ukazuje się w Phys.Rev. 3 (198).
5 Druga zasada ermodynamiki ermosa T Q W niemożliwość zbudowania perpeuum mobile II rodzaju
6 H. Nyquis, Phys.Rev. 3,(198), T R 1 R E ( ) 1 E ( ) siła elekromooryczna
7 H. Nyquis, Phys.Rev. 3,(198), T R 1 R E ( ) 1 E ( ) siła elekromooryczna Z analizy równowagi globalnej niewiele można wydedukować, ale równowaga musi zachodzić w każdym przedziale częsości!! τ 1 i x = dx ( ) e, τ + τ o
8 T R 1 R E 1,, I 1, E 1, ( R 1 R ) = +,,,, ( 1 ) E I = E R + R 1 R 1 1 R E, d = E 1, d π ( R + R ) π ( R + R ) 1 1 moc wydzielona na oporniku (1) od flukuacji siły elekromoorycznej na i vice versa oporniku () w przedziale (, +d)
9 T R E R = f (, T ) R R uniwersalna funkcja i T niezależna od oporu R średnia energia jednego modu (fali sojącej) k B T, zasada ekwiparycji energii f (, T ) = k B T
10 praca elemenarna: F X siła uogólniona, przesunięcie uogólnione moc: F J, J = X srumień, prąd prawo makroskopowe: (liniowe) J ( ) = J e, F ( ) = Fe i i J = Y ( ) F admiancja
11 Przypadek ogólny T J = Y ( ) F Y ( ) 1 Z ( ) = Y ( ) = R + ix, F = k BT Re Z ( ) = J kt Y B Re ( )
12 Twierdzenie Nyquisa: + i d J (0) J ( ) e = k BT Y ( ) wersja klasyczna 0 średnia energia oscylaora o częsoliwości ħ ħ E β ( ħ ) = + exp( ħβ ) 1 wersja kwanowa
13 poziom opisu makroskopowy wierdzenie Nyquisa mezoskopowy wierdzenie o flukuacjach i dyssypacji - Callen, Welon (1951) ( )!! mikroskopowy
14 Druga zasada ermodynamiki ermosa T Q W niemożliwość zbudowania perpeuum mobile II rodzaju niezmienniczość dynamiki mikroskopowej ze względu na zmianę -
15 Równanie Langevina bez pamięci du m = γu ( ) + F ( ) d siła sochasyczna współczynnik oporu F ( ) = 0, F ( ) F ( ) =Γ δ ( ) 1 1 biały szum u ( + ) = k BT m, ekwiparycja energii Γ= γk BT,
16 Równanie Langevina bez pamięci cd. du m = γu ( ) + F ( ) d jeżeli F() nie jes białym szumem o perpeuum mobile II rodzaju goowe!! 1 u = Y ( ) F, Y ( ) = Z( )= im + γ im + γ z w. Nyquisa F = k BT γ F ( 1 ) F ( ) = k BT γδ ( 1 ) biały szum
17 Równanie Langevina bez pamięci kryerium sosowalności du ( ) m = γu ( ) + F ( ), d m aom M błąd!!! 1 τ τ B v = = ρa η ρ ca η czas relaksacji prędkości cząski Browna o gęsości ρ czas relaksacji procesów w płynie o gęsości ρ c τ ρ v 1 c 1 ruchy Browna w gazach!!! τ ρ B Lorenz (1911)
18 Sokes (1851) problem siły oporu dla oscylującej kuli F oporu ( ) = γ ( ) u ( ) d + i ˆ( γ ) = γ () e d, 0 1 i ρ c ˆ( γ ) = 6πη a 1 + α a + ( α a ), α = 9 η 1/
19 Równanie Langevina z pamięcią (wersja poprawna) du ( ) m = γ ( ) u ( ) d + F ( ), d ( ) 0 F = Jes o związek pomiędzy u() i F() i nic więcej!! Wyznaczenie ich własności wymaga odwołania się do w. Nyquisa (F-D) + 1 i Y ( ) =, uu ( ) (0) e d = k BT Y ( ) im + ˆ( γ ) 0 d m uu ( ) (0) = ( ) u ( ) u (0) d, u (0) = k BT m d 0 γ
20 Rewolucja la 60-ych XX wieku + 0 i 1 uu ( ) (0) e d = k BT Y ( ), Y ( ) = im + ˆ( γ ) przybliżenie ˆ( γ ) = γ uu ( ) (0) e γ m bez przybliżenia uu ( ) (0) 3/
21 Równanie Langevina z pamięcią (wersja naciągana) du ( ) m = γ ( ) u ( ) d + F ( ) d 0 Kubo F ( ) u (0) = 0 powołanie się na przyczynowość d m uu ( ) (0) = γ ( ) u ( ) u (0) d d w. F-D!! 0 Felderhof (1978): F ( + τ ) u ( ) = γ ( + τ ) u ( ) u (0) d, τ - 0 dowolne
22 Podsumowanie 1. Wysępowanie flukuacji nie może prowadzić do łamania II zasady ermodynamiki rozwinięcie ej konsaacji prowadzi do wierdzenia Nyquisa.. W ramach eorii liniowej odpowiedzi wierdzenie o nosi nazwę wierdzenia F-D i wyprowadzane jes po wykonaniu szeregu żmudnych przekszałceń z wykorzysaniem niezmienniczości dynamiki mikroskopowej ze względu na odbicie na. W związku z ym częso wierdzenie F-D rakowane jes jako niezby głęboki wynik manipulacji maemaycznych. 3. Tymczasem wierdzenie Nyquisa (F-D) ma charaker podsawowy i wszelkie próby jego ignorowania, ominięcia lub modyfikacji kończą się ak samo boleśnie konsrukcją perpeuum mobile II rodzaju.
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Pojęcia podstawowe 1
Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników
Głównie występuje w ośrodkach gazowych i ciekłych.
W/g ermodynamiki - ciepło jes jednym ze sposobów ransporu energii do/z bila, zysy przepływ ciepła może wysąpić jedynie w ciałach sałych pozosających w spoczynku. Proces wymiany ciepla: przejmowanie ciepła
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU
Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
ver b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra
Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu
Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki
NMR Obrazowanie Spektroskopia wysokiej zdolności rozdzielczej Niskopolowy magnetyczny rezonans jądrowy - relaksometria
NMR Obrazowanie Spektroskopia wysokiej zdolności rozdzielczej Niskopolowy magnetyczny rezonans jądrowy - relaksometria Obrazowanie Magnetyzacja w wybranej objętości (wokselu): -gęstość spinów -czas relaksacji
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna
Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej
Fizyka statystyczna Równanie Fokkera-Plancka. P. F. Góra
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t) W (y y)p
PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej
PODSTWY CHEMII KWTOWEJ Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:
Przykład: Parametryczna krzywa poŝaru dla strefy poŝarowej
Dokumen Ref: SX04a-EN-EU Srona 1 z 5 Przykład: Parameryczna krzywa poŝaru dla srefy Przykład pokazuje wyznaczenie paramerycznej krzywej poŝaru dla srefy w budynku biurowym, według Załącznika normy PN-EN
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Wykład VII Detektory I
Wykład VII Detektory I Rodzaje detektorów Parametry detektorów Sygnał na wyjściu detektora zależy od długości fali (l), powierzchni światłoczułej (A) i częstości modulacji (f), polaryzacji (niech opisuje
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC
VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi
Fizyka statystyczna Równanie Fokkera-Plancka
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 17 marca 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t)
2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne
Zaawansowane metody numeryczne
Wykład 6 Własności wielomianów ortogonalnych Wszystkie znane rodziny wielomianów ortogonalnych dzielą pewne wspólne cechy: 1) definicja za pomocą wzoru różniczkowego, jawnej sumy lub funkcji tworzącej;
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
ver teoria względności
ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
19. Zasilacze impulsowe
19. Zasilacze impulsowe 19.1. Wsęp Sieć energeyczna (np. 230V, 50 Hz Prosownik sieciowy Rys. 19.1.1. Zasilacz o działaniu ciągłym Sabilizaor napięcia Napięcie sałe R 0 Napięcie sałe E A Zasilacz impulsowy
czyli o szukaniu miejsc zerowych, których nie ma
zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGJĄCY Ruch harmoniczny Rodzaje drgań Oscylaor harmoniczny Energia oscylaora harmonicznego Wahadło maemayczne i fizyczne Drgania łumione Drgania wymuszone i zjawisko rezonansu RUCH HRMONICZNY Ruch
Aerodynamika I. wykład 2: 2: Skośne fale uderzeniowe iifale rozrzedzeniowe. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa
Aerodynamika I Skośne fale uderzeniowe i fale rozrzedzeniowe naddźwiękowy przepływ w kanale dla M = 2 (rozkład liczby Macha) 19 maja 2014 Linie Macha Do tej pory, rozważaliśmy problemy dynamiki gazu, które
Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku
w Lokalnie Ergodycznym Środowisku Tymoteusz Chojecki UMCS, Lublin Tomasz Komorowski IMPAN, Warszawa Kościelisko, 10 września 2016, XLV Konferencja Zastosowań Matematyki T. Komorowski, T. Chojecki w Lokalnie
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Wymagania przedmiotowe z fizyki - klasa II (obowiązujące w roku szkolnym 2013/2014)
Wymagania przedmioowe z fizyki - klasa II (obowiązujące w roku szkolnym 013/014) 6. Praca. Moc. Energia!oblicza moc na podsawie wzoru!podaje jednoski mocy i przelicza je W P =!podaje przykłady energii
Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze
projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Fale biegnące. y t=0 vt. y = f(x), t = 0 y = f(x - vt), t ogólne równanie fali biegnącej w prawo
ale (mechaniczne) ala - rozchodzenie się się zaburzenia (w maerii) nie dzięki ruchowi posępowemu samej maerii ale dzięki oddziałwaniu (sprężsemu) Rodzaje i cech fal Rodzaj zaburzenia mechaniczne elekromagneczne
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Sygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
Wyznaczanie współczynnika lepkości cieczy.
Politechnika Warszawska Wydział Fizyki Centralne Laboratorium Fizyki Piotr Jaśkiewicz Krystyna Wosińska 1. Podstawy fizyczne. Wyznaczanie współczynnika lepkości cieczy. Płyny to substancje, które po przyłożeniu
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska
VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
Opracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
Drgania elektromagnetyczne obwodu LCR
Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia
CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej
CHEMI KWTOW CHEMI KWTOW Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:
Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.
Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Model elektronów swobodnych w metalu
Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Teoria ze Wstępu do analizy stochastycznej
eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji
Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego
Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś
Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
Cel ćwiczenia: Wyznaczenie współczynnika oporu platyny. Pomiar charakterystyki termopary miedź-konstantan.
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
Ruch falowy, ośrodek sprężysty
W-9 (Jaroszewicz) 5 slajdów Ruch falow, ośrodek sprężs ę Pojęcie ruchu falowego rodzaje fal Równanie fali płaskiej paraer fali Równanie falowe prędkość propagacji, energia i pęd przenoszone przez falę
Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu
Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzaa Doman Akademia Ekonomiczna w Poznaniu Modele mikrosrukury rynku Bageho (97) informed raders próbują wykorzysać swoją przewagę informacyjną
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
u(t)=u R (t)+u L (t)+u C (t)
Szeregowy obwód Źródło napięciowe u( o zmiennej sile elektromotorycznej E(e [u(] Z drugiego prawa Kirchhoffa: u(u (u (u ( ównanie ruchu ładunku elektrycznego: Prąd płynący w obwodzie: di( i t dt u t i
Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa
Ekonometria Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 10 1 / 22 Outline 1 2 Jakub Mućk Ekonometria Ćwiczenia 10 2 / 22 Oznaczenia i definicje Numeracja gałęzi: i, j = 1, 2,,
Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I
Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy
Zadania z mechaniki kwantowej
Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu
Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności
Dobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
Ruchy Browna. Wykład XIII Mechanika statystyczna 1. Podejście Einsteina
Wykład XIII Mechanika statystyczna 1 Ruchy Browna Stosując metody fizyki statystycznej do opisu układów wielu ciał, koncentrowaliśmy się dotychczas na ich charakterystykach uśrednionych po dostatecznie
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO
PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO wyprowadzenie bez mechaniki kwantowej. Opracował mgr inż. Herbert S. Mączko Celem jest wyznaczenie objętościowej gęstości energii ρ T promieniowania w równoległościennej,