Opis ruchu płynu rzeczywistego
|
|
- Bronisław Sobczyk
- 5 lat temu
- Przeglądów:
Transkrypt
1 Pedmio wykładu 7 Hipoea Newona płyny newonowskie płyny nienewonowskie Równanie uhu płynu lepkiego Naviea Sokesa - meody owiąywania układu [RNS]-[RC] 1
2 n dn = d dn 3 d ds 1 N N s m N s kg ; n s m m m m s m Si Isaa Newon n 1 1 płyn newonowski płyn nienewonowski
3 d dy d 3
4 p p p d y y y d d Kieunek d p y y p dy d 4 Napężenia powiehniowe {} na posopadłośiennym elemenie płynu
5 p p p d y y y d d Kieunek p yy pyy p yy p yy dy y y y y y y y y y dy dy Kieunek d p y y y y p yy d y y p dy 5 Napężenia powiehniowe {,} na posopadłośiennym elemenie płynu
6 p p p d y y y d d Kieunek p y p yy 6 pyy p yy p yy dy y y y y y y y y y dy dy p p p d y y y d d Kieunek Kieunek d p y p yy y d y y p y y y dy p Napężenia powiehniowe {,,} na posopadłośiennym elemenie płynu
7 f p m Równanie Eulea Claude Louis Heni Navie Geoge Gabiel Sokes d p d y d p d y y y f m y y yy y fmy d p d y y f m d d y d y y y y y y y d y d y d y
8 y y yy y y Tenso napężeń lepkih yy y y y y y y y y y y 8
9 3 1 1,, 3, p p,,, 1 3 T T 1,, 3,,,, 1 3 Rys.1. Uogólniony kywoliniowy układ współędnyh ons y ons ons P P 9 Rys.. posokąny kaejański układ współędnyh Rys. 3. walowy układ współędnyh Rys. 4. kulisy układ współędnyh
10 Równanie Naviea - Sokes a w kywoliniowym układie współędnyh (1,,3) f p m 3 d p d d p d d p d fm fm fm d d d d d d
11 Równanie Naviea - Sokes a w kywoliniowym układie współędnyh (1,,3) Tenso napężeń lepkih
12 Równanie Naviea - Sokes a w kywoliniowym układie współędnyh (1,,3) d d 1 p fm d d p fm d d 3 p fm
13 Równanie Naviea - Sokes a w kywoliniowym układie współędnyh (1,,3) 0 1 p fm d d p fm 1 3 d d 3 p fm d d 13
14 Równanie Naviea - Sokes a we współędnyh ylindynyh (,,) F p 1 1 F 1 p 1 1 m P 14 F p 1 1 m Rys. 3. walowy układ współędnyh
15 Równanie Naviea - Sokes a we współędnyh ylindynyh (,,) Składowe ensoa napężeń lepkih 1 ( ) ( ) ( )
16 Równanie Naviea - Sokes a we współędnyh sfeynyh (, ) sin p Fm sin sin sin g sin 16 1 p Fm sin sin 1 os sin sin
17 Równanie Naviea - Sokes a we współędnyh sfeynyh (, ) sin 1 p Fm sin sin 1 os sin sin sin P Rys. 4. kulisy układ współędnyh 17
18 Równanie Naviea - Sokes a we współędnyh ylindynyh (, ) Składowe ensoa napężeń lepkih 1 1 ( ) ( sin ) ( ) 3 sin sin ( ) ( sin ) ( ) 3 sin sin 1 g sin 1 1 ( ) ( sin ) ( ) 3 sin sin 1 sin 1 sin sin 18 1 sin
19 Rowiąywanie ównań Naviea - Sokes a Równania NS i RS w apisie opeaoowym 1 [NS] ( g ) p f 0 ; [RC] 0 e e e g 1 3 3,,, 1 3 p p 1,, 3, 1 19
20 Rowiąywanie ównań Naviea - Sokes a Równania NS i RS w apisie indeksowym (A. Enseina) [NS] ( ) ( ) p i i j ij ij j j j i j k i, j ij j i 3 k f 0 ; i, j 1,3 1, i 3,,, 1 3 p p 1,, 3, ; [RC] ( ) j j i i i j ij i j j j 1 p [NS] f 0 j [ RC] 0 j Równania NS i RS płyn newonowski nieśiśliwy
21 Pawo ahowania pędu w pepływie płynu eywisego PRAWO ACHOWANIA PĘDU [RÓWNANIE RUCHU],,, Pęd jes wielkośią wekoową definiowaną jako iloyn masy i pędkośi: U@ i spełnia pawo ahowania w ogólnej fomie. Konwekyjny enso anspou (F C) wielkośi wekoowej (U) anspoowanej w pepływie pędkośią () ma posać: FC Sumień konwekyjnego enso anspou (FC ds) wielkośi wekoowej (U) anspoowanej w pepływie pędkośią () ma posać: F ds ( n ds) dm& C 1
22 Pawo ahowania pędu w pepływie płynu eywisego,, Cłony źódłowe w pawie ahowania pędu o: siły wewnęne f (siły aia wewnęnego w płynie) siły ewnęne f i (masowe) e 3 f n i Tenso napężeń wewnęnyh w płynie: pi p - iśnienie I - enso jednoskowy - enso aia w płynie 1 Q S ds Q V ( ) S F C Ud U Rys.5. Ski do asady ahowania wekoowej wielkośi (U) f e f i n f i ij j i ( ) 3 i j ij
23 Pawo ahowania pędu w pepływie płynu eywisego Pawo ahowania pędu foma ałkowa, d (n )ds f d n ds ( ) (S) ( ) (S) e f d n pds n ds e, Pawo ahowania pędu foma óżnikowa ( ) (S) (S) 3 d ( ) p f d 1 ( ) p ( ) f 3 1 ( ) p ( ) f 3 e e e iee płyn doskonały Równania Eulea
24 Rowiąywanie ównań Naviea - Sokes a Układ ównań (RC)-(RNS) w posai óżnikowej, Q Fi j 0 F (p 11) , Q 1 3 F 1 1 (p ) 3 3, F (p )
25 Rowiąywanie ównań Naviea - Sokes a Układ ównań (RC)-(RNS) w posai ałkowej ( ) Q Fi d 0 j Dla pepływu usalonego ( wiedenia Gaussa Osogadkiego) (S) F n ds 0 ; j 1,3 j j 5 Meody owiąywania układu ównań (RC)-(RNS) [numeyne] DNS - Die Soluion Navie-Sokes Euaions LES - Lage Eddy Simulaion ω 1 ω ω ω Re ω wiowość 0 0
26 Konie
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Dynamika punktu materialnego
Naa -Japonia W-3 (Jaosewic 1 slajdów Dynamika punku maeialnego Dynamika Układ inecjalny Zasady dynamiki: piewsa asada dynamiki duga asada dynamiki; pęd ciała popęd siły ecia asada dynamiki (pawo akcji
W siła działająca na bryłę zredukowana do środka masy ( = 0
Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1
Temat wykładu: Równania różniczkowe Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Zagadnienia 1. Terminologia i oznaczenia 2. Definicje 3. Przykłady Anna Rajfura, Matematyka na kierunku Biologia
Siły oporu prędkość graniczna w spadku swobodnym
FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych
Dynamika mechanizmów
Dynamika mechanizmów napędy zadanie odwrotne dynamiki zadanie proste dynamiki ogniwa maszyny 1 Modelowanie dynamiki mechanizmów wymuszenie siłowe od napędów struktura mechanizmu, wymiary ogniw siły przyłożone
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
E - 0 Z W 7 - a l a I P P A B X E - 2 E N T R A L A I P P A B X O X Y T Z l 4 W a s 4 R i s S s j S X i f S W k 0 j 4 W a l W 4 ś 0 i a - i a W 7 k 4 - z ś 0 i R 4 - ó W a W i Z 4 f Z - 7 O W a s O X Y
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
TEORIA SPRĘŻYSTOŚCI 10
W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym
Teoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Guanajuato, Mexico, August 2015
Guanajuao Meico Augus 15 W-3 Jaosewic 1 slajdów Dnamika punku maeialnego Dnamika Układ inecjaln Zasad dnamiki: piewsa asada dnamiki duga asada dnamiki pęd ciała popęd sił ecia asada dnamiki pawo akcji
WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17
WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA /7 Zaczniemy od wyprowadzenia równania ruchu dla płynu newtonowskiego. Wcześniej wyprowadziliśmy z -ej Zasady Dynamiki ogólne równanie ruchu, którego postać indeksowa
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Podstawy robotyki wykład VI. Dynamika manipulatora
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Inżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 5,6, str. 1
Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 1 18. Klasyfikacja UR ze wzgl. na posać sygn. wejściowego a) regulacja sałowarościowa y () = cons b) regulacja programowa c)
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski
Zasady zachowania, równanie Naviera-Stokesa Mariusz Adamski 1. Zasady zachowania. Znaczna część fizyki, a w szczególności fizyki klasycznej, opiera się na sformułowaniach wypływających z zasad zachowania.
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Równania hydrodynamicznego smarowania poprzecznych łożysk ślizgowych z uwzględnieniem starzenia się oleju
SIKORA Gego MISZCZAK Andej Równania hydodynamicnego smaowania popecnych łożysk śligowych uwględnieniem saenia się oleju WSĘP Poblem saenia się olejów smaujących jes ak say jak same elemeny w kóych o smaowanie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne
Zastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi
Zastosowanie przeksztaªcenia Laplace'a Przykªad Rozwi» jednorodne równanie ró»niczkowe liniowe ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi y(0 + ) = a, ẏ(0 + ) = b. Rozwi zanie Dokonuj c transformacji
ź Ź Ź Ź ć Ł Ę Ź ć Ź ć Ń Ź Ź Ź Ź ć ć ć ź ć ź Ę ć Ź Ź Ł Ł Ł ć Ł Ą ć ć Ź Ś ć Ź ć Ę Ź ź ć Ź ć ź ć Ę ć Ą ć ć ć Ł ć ć ć ć Ą ć Ź ć ć Ź Ą Ź Ą ź Ń Ą ć Ą ć ć ć Ź ć ć ć ć ć Ą Ą Ą ć Ł Ń ć ć Ź Ł ć Ź Ź Ę Ź ć ć ć ć
ρ - gęstość ładunku j - gęstość prądu FALE ELEKTROMAGNETYCZNE W PRÓŻNI: Równania Maxwella: -przenikalność elektryczna próżni=8,8542x10-12 F/m
-- G:\AA_Wklad \FIN\DOC\em.do Drgania i fale III rok Fiki C FAL LKTROMAGNTYCZN W PRÓŻNI: Równania Mawella: di ρ ε ρ di j ρ - gęsość ładunku j - gęsość prądu ro di ro j ε ε -prenikalność elekrna próżni8854
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC
3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko
Funkcje analitycne Wykład 3. Zastosowanie achunku esiduów do owiąywania poblemów analiy ecywistej Paweł Mlecko Funkcje analitycne ok akademicki 8/9 Plan wykładu W casie wykładu omawiać będiemy astosowanie
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
ver b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
MECHANIKA II. Dynamika układu punktów materialnych
MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 10 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
J. Szantyr - Wykład 5 Pływanie ciał
J. Szantyr - Wykład 5 Pływanie ciał Prawo Archimedesa Na każdy element pola ds działa elementarny napór Napór całkowity P ρg S nzds Główny wektor momentu siły naporu M ρg r nzds S dp Αρχίµηδης ο Σΰρακοσιος
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
Elementy dynamiki mechanizmów
Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem
Źródła pola magnetycznego
Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny
XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne
XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana
WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11
WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA RUCHU PŁYNU. ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. 1/11 RÓŻNICZKOWE RÓWNANIA RUCHU PŁYNU Wiemy uż, że Zasada Zmienności Pędu est szczególnym przypadkiem ogólne
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B
Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=
Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka
Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania
Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności
Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania
ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
RÓWNANIE MOMENTÓW PĘDU STRUMIENIA
RÓWNANIE MOMENTÓW PĘDU STRUMIENIA Przepływ osiowo-symetryczny ustalony to przepływ, w którym parametry nie zmieniają się wzdłuż okręgów o promieniu r, czyli zależą od promienia r i długości z, a nie od
Transport masy, pędu energii. Prawo zachowania
Pzedmio wykładu 5 Makoskopowy i mikoskopowy punk widzenia sysemu fizycznego an i własności subsancji Własności eksensywne i inensywne subsancji Ogólna foma zasady zachowania Pawo zachowania wielkości skalanej
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
6. Kinematyka przepływów
6. Kinemk pepłwów Podswowe deinije To jekoi elemenu płnu jes o miejse geomene kolejnh położeń pousjąego się elemenu płnu upłwem su. Równnie óżnikowe ou elemenu płnu: d d d d Lini pądu o lini spełniją wunek
Pręty silnie zakrzywione 1
Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.
cz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015
EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,
MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i
MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,
Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Zasada zachowania pędu
Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać