Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 5,6, str. 1
|
|
- Michał Jarosz
- 5 lat temu
- Przeglądów:
Transkrypt
1 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr Klasyfikacja UR ze wzgl. na posać sygn. wejściowego a) regulacja sałowarościowa y () = cons b) regulacja programowa c) regulacja nadażna 19. Zadania układów regulacji a) zadanie nadażania e() b) zadanie przesawiania c) zadanie kompensacji zakłóceń 2. Wskaźniki jakości procesu regulacji a) warość uchybu usalonego e u e() = e u + e p () lim e p() = lim e() = se(s) s e( ) + e() G o (s) e u (a) b) czas regulacji r Rys. 45 (b) h( ) y u 2 h( ) y u h 1 h 2 h r (a) Rys. 46 c) przeregulowanie κ: κ = h 1 h 1% Podsawy auomayki (z) (b) ( h3 = h 2 = h ) 1 h 2 h 1 h hp:// waldemar.wroblewski
2 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr Sabilność ciagłych układów liniowych u( ) Ci¹g³y uk³ad dynamiczny y( ) Rys. 47 ẋ = F(x) (28) x = punk równowagi układu, zn. F() = x() = x dla = x = > x < η x() < ε (29) ε> η> x = n x 2 i (3) i=1 x x 1 x 3 Rys. 48 lim x() = (31) Podsawy auomayki (z) hp:// waldemar.wroblewski
3 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr Warunek konieczny i dosaeczny sabilności ukł. ciagłych G(s)= L(s) M(s) = b ms m + + b 1 s + b =k (s z 1)(s z 2 )...(s z m ) a n s n + + a 1 s + a (s s 1 )(s s 2 )...(s s n ) z 1,... z m zera ransm., s 1,...s n bieguny, k = b m /a n (32) k m (s z i ) i=1 G(s)= q (s s j ) r, (33) [s 2 + 2σ l s + (σl 2 + ωl 2)] j=1 l=1 q + 2r = n, bieguny pojedyncze s j lub s l = σ l + jω l [ q ] r g() =L 1 [G(s)]= j e sj B l + e σl sin(ω l + θ l ) ½() (34) ω l j=1 l=1 j, B l, θ l sa sałymi zależnymi od k, z i, s j, σ l, ω l s j gj( ) gl( ) s j < s l1 l l g j( ) s l2 l g l( ) l < s l1 =j l s j g j( ) s j = s l2 =j l g l( ) l = l s l1 s j s j > l Rys. 49 l s l2 l > Podsawy auomayki (z) hp:// waldemar.wroblewski
4 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 4 G(s) Re(s i ) <, i = 1,... n G(s) = L(s) M(s) M(s) = a n s n + a n 1 s n a 1 s + a = 23. Kryerium sabilności Hurwiza a) a, a 1,...a n > M(s) = a n s n + a n 1 s n a 1 s + a = (35) b) n, n 1,... 2, 1 a n 1 a n 3 a n 5... a n a n 2 a n 4... n = a n 1 a n 3... a n a n }{{} n Przykład n (36) G o (s) = k s(1 + st 1 )(1 + st 2 ) G(s) = G o(s) 1 + G o (s) = L(s) M(s) M(s) = T 1 T 2 s 3 + (T 1 + T 2 )s 2 + s + k = a 3 s 3 + a 2 s 2 + a 1 s + a T 1 T 2 >, T 1 + T 2 >, k > a 2 a T 1 + T 2 k 3 = a 3 a 1 = T 1 T 2 1 a 2 a T 1 + T 2 k T 1 + T 2 > T 1 T 2 k Podsawy auomayki (z) hp:// waldemar.wroblewski
5 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr Kryerium sabilności Rouha s n s n 1 s n 2 s n 3 s n 4... a n a n 2 a n 4 a n 6... a n 1 a n 3 a n 5 a n 7... b 1 b 2 b 3... c 1 c 2 c 3... d 1 d (37) b 1 = c 1 = d 1 = a n a n 2 a n 1 a n 3, b 2 = a n 1 a n 1 a n 3 b 1 b 2, c 2 = b 1 b 1 b 2 c 1 c 2, d 2 = c 1 a n a n 4 a n 1 a n 5, b 3 = a n 1 a n 1 a n 5 b 1 b 3,... b 1 b 1 b 3 c 1 c 3,... c 1 a n 6 a n 7,... a n 1 a n a n 1 G(s) = L(s) M(s), M(s) = a ns n + a n 1 s n a 1 s + a = Podsawy auomayki (z) hp:// waldemar.wroblewski
6 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 6 Przykład M(s) = (s + 2)(s 2 s + 4) = s 3 + s 2 + 2s + 8 = s s b s 1 1 = = 6, c 1 = = 8 s 8 układ niesabilny, 2 bieguny w prawej półpłaszcz. zespolonej Przykład M(s) = s 5 + 2s 4 + 2s 3 + 4s s + 1 = s s b 1 = s 3 ǫ = ǫ, b 2 = = 6, s ǫ s 1 c 1 = ǫ ǫ 6 12 ǫ, c 2 = ǫ ǫ = 1, s 1 d 1 = ǫ ǫ = ǫ ( 1ǫ ) 6, e 1 = ǫ 6 ǫ 6 = 1 ǫ układ niesabilny, 2 bieguny w prawej półpłaszcz. zespolonej p = [ ]; roos(p) ans = i, i i, i Podsawy auomayki (z) hp:// waldemar.wroblewski
7 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr Kryerium sabilności Michajłowa (częsoliwościowe) G(s) = L(s) M(s), M(s) = a ns n + a n 1 s n a 1 s + a = = a n (s s 1 )(s s 2 )...(s s n ) (38) M(jω) = M(s) s=jω = a n (jω s 1 )(jω s 2 )... (jω s n ) (39) js i s i j Rys. 5 Z(jω) = Z(jω) e jϕ(ω), ϕ(ω) = arg Z(jω) Re(s i ) < arg (jω s i ) = +π <ω< Re(s i ) > arg (jω s i ) = π <ω< s i s i js i js i Podsawy auomayki (z) Rys. 51 n arg M(jω) = arg(jω s i ) (4) i=1 hp:// waldemar.wroblewski
8 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 8 Jeśli w prawej półpłaszcz. zespolonej l pierwiasków M(jω), o: arg M(jω) = l( π) + (n l)π = (n 2l)π (41) <ω< Jeśli układ asympoycznie sabilny, zn. l =, o: Re[M( jω)] = Re[M(jω)], arg ω< M(jω) = n π 2 arg M(jω) = nπ (42) <ω< Im[M( jω)] = Im[M(jω)] < ω < ω < ( Re(s i ) <, i = 1, 2,... n) (43) arg ω< M(jω) = (n 2l) π 2 (44) n2 Im M( s) n1 n4 Im M( s) 1 2 Re M( s) Re M( s) 3 n3 n4 1, 3 > 2 < (a) układy sabilne układ niesabilny ponieważ Rys. 52 (b) układ niesabilny arg M(jω) = ψ 1 + ψ 2 + ψ 3 = ω< (n 2l) π 2 = dla n = 4 jes l = 2 Podsawy auomayki (z) hp:// waldemar.wroblewski
9 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr Sayzm i asayzm ciagłych układów regulacji G o (s) = L o(s) s l M o (s) (45) y () e() G o (s) y() + Rys. 53 G o (s) = L o(s) M o (s) = b ms m + b m 1 s m b 1 s + b a n s n + a n 1 s n a 1 s + a, m n L o (s) k o = lim G o (s) = lim s s M o (s) = b a a) układ sayczny, y () = ½(): s se(s) = lim s sg e (s) s = lim s 1 + G o (s) = 1 + k o b) układ asayczny 1-go rzędu (l = 1), y () = ½(): s sg e (s) s = lim s 1 + L o(s) sm o (s) = lim s sm o (s) sm o (s) + L o (s) = c) układ asayczny 1-go rzędu (l = 1), y () = ½(): s sg e (s) s 2 = lim s ( ) 1 + L o(s) sm o s (s) = lim s M o (s) sm o (s) + L o (s) = k o Podsawy auomayki (z) hp:// waldemar.wroblewski
10 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr Dokładność sayczna a) odpowiedź skokowa, y () = ½(): s se(s) = lim s sg e (s) s = lim s 1 + G o (s) = (46) 1 + k p k p = k o = lim s G o (s) sała uchybu położenia (47) przy założeniu, że układ jes sabilny l = k p < e u = 1 + k p l 1 k p = lim s L o (s) s l M o (s) = e u = b) odpowiedź na sygnał liniowo narasajacy y () = ½(): s se(s) = lim s sg e (s) s 2 = lim s s + sg o (s) = lim s sg o (s) = k v (48) k v = lim s sg o (s) sała uchybu prędkościowego (49) l = k v = e u l = 1 k v = lim s L o(s) s sm o (s) < e u = k v l 2 k v = lim s L o(s) s s l M o (s) = e u = Podsawy auomayki (z) hp:// waldemar.wroblewski
11 Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 11 c) odpowiedź na sygnał paraboliczny y () = 2 2 ½(): s sg e (s) s 3 = lim s s 2 + s 2 G o (s) = lim s s 2 G o (s) = k a (5) k a = lim s s 2 G o (s) sała uchybu przyspieszeniowego (51) l =, 1 k a = e u l = 2 k a = lim s 2 L o (s) s s 2 M o (s) < e u = k a l 3 k a = lim s 2 L o(s) s s l M o (s) = e u = e u l = l = 1 l = 2 l = 3 y () = ½() 1+k p y () = ½() k v y () = 2 2 ½() k a y( ) y ( ) l l= y( ) y ( ) l l=1 l= y( ) y ( ) l l=2 l=,1 e( ) e( ) l= e( ) l=,1 e u l= l e l=1 u l e u l=2 l (a) Podsawy auomayki (z) (b) (c) Rys. 54 hp:// waldemar.wroblewski
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowolim e(kt p) = 0 (29) G 1 (z) 1 + G 1 (z)g 2 (z) + + K nz K i (p i ) k = 0
Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 3,4, sr. 3. Sabilność układów dyskrenych Y (z) e( k) lim e(k) (29) k Rys. 3 G(z) Y (z) U(z) G s ( ) G s 2( ) G (z) G (z)g 2 (z) U(z)
Bardziej szczegółowo27. Regulatory liniowe o wyjściu ciagłym. e(t) u(t) G r (s) G r (s) = U(s) E(s) = k p = k p + j0, k p > k p k ob.
Poliechnika Poznańska, Kaera Serowania i Inżynierii Sysemów Wykła 8, sr. 1 27. Regulaory liniowe o wyjściu ciagłym REGULATOR e) u) G r s) + Rys. 76. a) regulaor ypu P proporcjonalny): OBIEKT G s) G r s)
Bardziej szczegółowoPolitechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1
Poliechnia Poznańsa, Kaedra Serowania i Inżynierii Sysemów Wyłady 3,4, sr. 5. Charaerysyi logarymiczne (wyresy Bodego) Lm(ω) = 20 lg G(jω) [db = decybel] (20) (Lm(ω) = [db] 20 lg G(jω) = G(jω) = 0 /20,22
Bardziej szczegółowoInżynieria Systemów Dynamicznych (5)
Inżynieria Systemów Dynamicznych (5) Dokładność Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 DOKŁAD 2 Uchyb Podstawowy strukturalny
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Bardziej szczegółowoUrz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l.
Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Podstawowe pojęcia z (t) z 2 (t)... u (t) u 2 (t). Obiet u m (t) z l (t) (t) 2 (t). n (t) u(t) z(t) Obiet (t) (a) u Rs. u u =
Bardziej szczegółowo(dyskretyzacja transmitancji G(s)) K (1 + st 1 )(1 + st 2 ) = K T 1 T 2 ( 1 T 1. z z a. z(e Tp/T1 e Tp/T2 )
Poliechnika Poznańska, aedra Serowania i Inżynierii Sysemów Wykład 5, sr. 1 Przykład Gs g dyskreyzacja ransmiancji Gs 1 st 1 1 st lim s 1 T 1 T 1 T 1 T s es lim s 1 T T 1 T e /T 1 e /T ½ g[k] T 1 T 1 T
Bardziej szczegółowoInżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Bardziej szczegółowoPodstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Bardziej szczegółowoKompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Bardziej szczegółowoRegulatory. Zadania regulatorów. Regulator
Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej
Bardziej szczegółowou (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C
Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoProjektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Bardziej szczegółowoInżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
Bardziej szczegółowoTransmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Bardziej szczegółowoTeoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Bardziej szczegółowoWykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Bardziej szczegółowoPrzeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Bardziej szczegółowo2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoZagadnienia współczesnej elektroniki Elektroakustyka
Zagadnienia współczesnej eleronii Eleroasya Andrzej Dobrci Kaedra Asyi Insy Teleomniacji,Teleinformayi i Asyi Poliechnia Wrocławsa Terminy 5.3 A. Dobrci (pomiary w eleroasyce z życiem współczesnych meod
Bardziej szczegółowoPodstawowe czªony dynamiczne. Odpowied¹ impulsowa. odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach pocz tkowych, { dla t = 0
CHARAKTERYSTYKI W DZIEDZINIE CZASU I CZ STOTLIWO CI Podstawowe czªony dynamiczne Opis w dziedzinie czasu: Odpowied¹ impulsowa g(t) = L 1 [G(s)] odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach
Bardziej szczegółowoObwody prądu zmiennego
Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający
Bardziej szczegółowoSterowanie napędów maszyn i robotów
Wykład 7 - Układy sterowania. Ocena jakości układów sterowania. Instytut Automatyki i Robotyki Warszawa, 2016 Realizacje układów sterowania zwykłego Realizacje układów sterowania zwykłego układy jednoobwodowe,
Bardziej szczegółowoCzęść 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Bardziej szczegółowof = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
Bardziej szczegółowoLaboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
Bardziej szczegółowoPodstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
Bardziej szczegółowoTEORIA STEROWANIA I, w 5. dr inż. Adam Woźniak ZTMiR MEiL PW
TEORIA STEROWANIA I, w 5 dr inż. Adam Woźniak ZTMiR MEiL PW Układy LTI- SISO Stacjonarne, przyczynowe liniowe układy z jednym wyjściem i jednym wejściem najczęściej modeluje się przy pomocy właściwej transmitancji
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Bardziej szczegółowoAkademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
Bardziej szczegółowoĆwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Bardziej szczegółowoBadanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Bardziej szczegółowoSterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
Bardziej szczegółowo4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()
4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1
Bardziej szczegółowoPodstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane
Bardziej szczegółowoSterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Bardziej szczegółowoSTUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW, SYSTEMÓW I MODULACJI. Filtracja cyfrowa. v.1.0
Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji SUDIA MAGISERSKIE DZIENNE LABORAORIUM SYGNAŁÓW, SYSEMÓW I MODULACJI Filtracja cyfrowa v.1. Opracowanie: dr inż. Wojciech Kazubski,
Bardziej szczegółowoZastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi
Zastosowanie przeksztaªcenia Laplace'a Przykªad Rozwi» jednorodne równanie ró»niczkowe liniowe ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi y(0 + ) = a, ẏ(0 + ) = b. Rozwi zanie Dokonuj c transformacji
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoSterowanie mechanizmów wieloczłonowych
Wykład 6 - Modelowanie napędów złączy Instytut Automatyki i Robotyki Warszawa, 2019 Modelowanie napędu złączy - silniki DC Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
Bardziej szczegółowo28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w
Bardziej szczegółowoJęzyki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4 dr inż. Marcin Ciołek Katedra Systemów Automatyki Wydział ETI, Politechnika Gdańska Języki Modelowania i Symulacji dr inż. Marcin Ciołek
Bardziej szczegółowoSystemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoVII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Bardziej szczegółowoPodstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowoPlan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Bardziej szczegółowoKryterium miejsca geometrycznego pierwiastków
7.5.3. Kryterium miejsca geometrycznego pierwiastków Wprowadzenie Miejsce geometryczne pierwiastków równania charakterystycznego układu zamkniętego (mgp) umożliwia między innymi wyznaczenie wymaganego
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Bardziej szczegółowoTeoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.
eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa
Bardziej szczegółowoUKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
Bardziej szczegółowoSposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Bardziej szczegółowo(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
Bardziej szczegółowoPOMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Bardziej szczegółowoUkłady z regulatorami P, PI oraz PID
Układy z regulatorami P, PI oraz PID Sterowanie Procesami Ciągłymi 2016 Układ automatycznej regulacji y0( t) + _ ε () t ut () K R (s) yt () KO () s yt () y 0 (t) = 1(t) Postulaty, kryteria oceny jakości
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja
Bardziej szczegółowoPodstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Bardziej szczegółowoSterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowoJęzyki Modelowania i Symulacji
Języki Modelowania i Symulacji Projektowanie sterowników Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 4 stycznia 212 O czym będziemy mówili? 1 2 3 rlocus Wyznaczanie trajektorii
Bardziej szczegółowoŁ Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź
Bardziej szczegółowoŃ Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó
Bardziej szczegółowoń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń
Bardziej szczegółowoĄ Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć
Bardziej szczegółowoĄ ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź
Bardziej szczegółowoInstrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników
Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.
Bardziej szczegółowoSterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Bardziej szczegółowoNr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej
Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia
Bardziej szczegółowo#09. Systemy o złożonej strukturze
#09 Systemy o złożonej strukturze system składa się z wielu elementów, obiekty (podsystemy) wchodzące w skład systemu są ze sobą połączone i wzajemnie od siebie zależne mogą wystąpić ograniczenia w dostępności
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Bardziej szczegółowo1. Regulatory ciągłe liniowe.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),
Bardziej szczegółowoREGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace
Bardziej szczegółowoAutomatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Bardziej szczegółowoTechniki regulacji automatycznej
Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych
Bardziej szczegółowoAutomatyka i sterowanie w gazownictwie. Regulatory w układach regulacji
Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania
Bardziej szczegółowoOBWODY MAGNETYCZNE SPRZĘśONE
Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym
Bardziej szczegółowoPROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Bardziej szczegółowoPolitechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017
Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,
Bardziej szczegółowoChemia Analityczna. Autor: prof. dr hab. inż Marek Biziuk
Cheia Analiyczna Auor: pro. dr hab. inż Marek Biziuk Kaedra Cheii Analiycznej Wydział Cheiczny Poliechnika Gdańska 21 ANALIZA MIARECZKOWA (dział analizy objęościowej - woluerii) Meody iareczkowe służą
Bardziej szczegółowo