MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i
|
|
- Henryk Kuczyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i ) 9, ( i +i ), (cos 5 + i sin 5 ) 5, ( p 3 i) 3. ) Wyznaczyć i narysować zbiór rozwiazań ¾ równania z 3 = 7, z 3 = i, z = 9i, z 4 =, z 4 =, z 3 = i p 3, z4 = i p 3, z 3 = + i, z 6 =, z 6 =. 3) Narysować zbiory P ;3 (3 + i), P ; ( i), P 4;5 (i), S 3 (), S ( i), S ( ), K( + i; ), K(i; 3), K( i; ). 4) Narysować zbiór tych liczb zespolonych z, które spe niaja¾ warunek a) < jz ij, b) jz + 3ij 3, c) Re z > ^ jz ij 3, d) < arg z 4 ^ jzj >, e) arg z < ^ Im z, f) Im( i z ) <, g) Re(z ), h) Im( z ) <, i) 4 arg(iz) 4, j) < arg(( + i)z) < 4 k) jz + ij jz 5 + ij, l) jzj = jz 5j. 5) Wyznaczyć Re z; Im z dla z = e + 4 i, e 6 i, e i, e 7 6 i, cos(i), cos( + i), cos( 3 i), sin( i), sin( 4 i), sin( 3 i), log(3i), log( + i), log( i p 3 ), log(e + ie p 3).
2 6) Wykazać, ze dla z; z ; z C, k zachoa¾ równości e z+z = e z e z, (e z ) k = e kz, je z j = e Re z, e z+ki = e z, sin(z + ki) = sin z, cos(z + ki) = cos z, cos z + sin z =. 7) Sprawić, czy podana funkcja f jest holomor czna na swojej ieinie naturalnej (wyznaczyć ta¾ iein ¾e). Jeśli tak, to wyznaczyć pochodna¾ funkcji f. a) f(z) = z Im z, b) f( + iy) = y + 3i + yi, c) f(z) = z z, d) f(z) = jzj + iz, e) f( + iy) = 3y i( + y ), f) f( + iy) = 3 iy 3 3y + 3i y, g) f(z) = i z. ) Wyznaczyć (o ile istnieje) funkcj ¾e holomor czna¾ f = u + iv taka, ¾ ze a) u(; y) = y + y, f() = i, b) v(; y) = +y, f(i) =, (y > ), c) u(; y) = e ( cos y y sin y), f() =, d) v(; y) = 4y y, e) u(; y) = (y + 3) y, f) u(; y) = 3 +y, ( > ), g) v(; y) = arctg( y ), ( > ), h) u(; y) = arccos( ), (y > ), i) v(; y) = ( +y ) 3 p +y, (y < ). 9) Dla podanego potencja u zespolonego f wyznaczyć pole si! E,! E oraz naszkicować linie si i linie ekwipotencjalne. a) f(z) = iz (pole sta e), b) f(z) = ( + i)z (pole sta e), c) f(z) = iq log z ( adunek q umieszczony w punkcie ), d) f(z) = pi z (dipol q w p., q w p. d, p = qd moment dipolowy, d > ("baro ma e")), e i ) f(z) = iz z (interpretacja zyczna=?).
3 ) Obliczyć d) Re z, = ; + i, d) Im z, = i; i, d3) jzj, jzj = ^ Im z,(poczatek=) ¾ d4) e z, = ; + i, p) e z, =dowolna krzywa g adka ¾ aczaca ¾ z + i, p) e iz, = ; 5i, p3) p4) p5) p6) p7) (3z iz + i), =dowolna krzywa g adka ¾ aczaca ¾ z i, i z, jzj = ^ Re z, (poczatek=i) ¾, 3 (z i)4, jz ij = 7, (i cos z z), =dowolna krzywa g adka ¾ aczaca ¾ z, (+z) z 5, jz + ij =, p) sin(i z), = ; + i, p9) (z e iz i cos(z 3 )), z + 5 p) (z 5 log z), jz 7j =, p) p) sin z i z i, jz + 3j =, z 4, jz + 3ij =, p i =, 3
4 p3) p4) c) c) c3) c4) c5) c6) c7) c) c9) c) c) c) c3) c4) c5) z +9, jzj =, sin z+5iz z 4iz 4, jz + ij =, +z 3z z +i, jz j = 5, log z z+4i, jz + 5ij =, e z (z+)(z i), jz ij =, e z (z+)(z i), jz + j = 3, sin(z) z +9, jz ij =, cos (z) z +4, jz + 7ij = 6, z cos( z) (z+), jz + ij = 7, z (z i), jzj = 3, z (z i) 3, jz ij = 3, z (z i) 3, jz ij =, z 5 (z+i) 4, jzj = 3, (z +), jz + ij =, (z +) 3, jz ij = 4, e z (z 4), jz + j =, cos(z) (z 9), jz 3j =, 4
5 r) r) r3) r4) r5) r6) r7) r) r9) r) r) r) z(z +4), jzj = 3, (z e z3 + eiz z ), jz j = 4, e iz z, jz j = 5, z 5 z 3, jzj = 7, z 4 +, + y =, (z ) (z+), + y = + y, (sin(z ) + e i z ), jzj = 3, sin( z ), jzj = 3, (z cos( 3i z )), jzj =, sin z, jzj =, (z 4 e 3 z 5 ), jzj =, (z 7 cos( +i z 4 )), jzj = 4. ) Obliczyć a) d, a) a3) a4) d ( +), ( +a ) d, (a > ), d ( +a )( +b ), (a > b > ), 5
6 a5) a6) b) b) b3) b4) b5) b6) c) c) c3) c4) d +4+, d ( ), cos +4 d, sin +4+ d, cos d, cos ( +a ) d, (a > ), sin ( +a ) d, (a > ), cos ( +a )( +b ) d, (a > b > ), d sin +a d (+cos ),, (a > ), sin a+b cos d, (a > b > ), cos 5 4 cos( ) d, ( R). ) Wyznaczyć transformat ¾e Laplace a orygina u f(t) = (t)h(t) dla h(t) = a) 7 t + 3t t 3 a) t 5 3t 4 + t 3t + a3) 5 sin t 3 cos t a4) sin(5t) + cos(3t) a5) te t t e 3t + t 3 e t + e 5t a6) e t cos(3t) + e 3t sin(4t) + e 7t a7) ch(t) 3sh(t) 6
7 a) e t cht + e t sht a9) t sin t a) t cos(t) a) tch(t) a) e 3t sh(4t) a3) sin 3t a4) cos t a5) a6) a7) t t t e cos d e 5 d e 3 sin()d 3) Naszkicować wykres orygina u f i wyznaczyć jego transformat ¾e Laplace a. < t < a) f(t) = < t < t > < t < a) f(t) = 3t < t < 3 < t t < a3) f(t) = t t > >< a4) f(t) = > >< a5) f(t) = > < a6) f(t) = t < t < t < t < t < t > t < < t < < t < t > t < 3 t < t < t > ) Wyznaczyć transformat ¾e odwrotna¾ do transformaty Laplace a obrazu F (s) = a) s a) (s+) 3 a3) (s ) 3 a4) s +4 7
8 a5) 3s s +9 a6) s +s a7) 4s s +3s a) s + s 3 +s a9) s 5 s +s+ a) s (s +s+5)(s ) a) 4s +5s+36 s (s +6s+3) a) s s+ (s+)(s +4) a3) 3s+5 s +s+ a4) s (s +) a5) s (s +4) a6) s s(s +s+) a7) s s+5 (s +4) a) (s +6s+3) 4) Stosujac ¾ metod ¾e operatorowa¾ rozwiazać ¾ poni zsze zagadnienia poczatkowe ¾ dla równań i uk adów równań ró zniczkowych liniowych. a) + = () = a) + = cos t () = 3 = e a3) 3t () = a4) + = t () = 3 a5) = t () = ; () = a6) + + = t () = ; () = a7) + = cos t () = ; () = a) = e t () = ; () = a9) + = sin t () = ; () =
9 a) a) + = e t () = ; () = ; () = (4) + 4 = t () = ; () = ; () = ; () = < = + y u) y = y + () = y() = < + y y = e t u) + y + y = 5 () = y() = < = y u3) y = + y () = y() = < + y = 3t u4) y = 4 () = ; y() = 3 < = + y u5) y = 4y () = y() = >< = y z y u6) = + y z > = + z () = ; y() = ; z() = >< = y + z y u7) = 3 + z z > = 3 + y () = ; y() = ; z() = 5) Wyznaczyć transformat ¾e Laplace a podanych sygna ów t a) y(t) = (t) sin s cos(t s)ds 9
10 t a) y(t) = (t) a3) y(t) = (t) a4) y(t) = (t) a5) y(t) = (t) a6) y(t) = (t) t t t t cos s sin(t s)ds (t s) 4 cos sds (s 3)e t s ds s 3 (t s) ds sin(3s)e 3(s t) ds a7) 3(t) (t ) + 5(t 5) a) (t) + 7((t)) ((t)) + 4((t)) a9) (t) + ((t 3)) 3((t 4)) + ((t )) a) (t) ((t)t ) a) (t ) ((t) sin t) a) (t ) [(t 7) + 5(t)] a3) ((t 4)) ((t 7 ) sin(t 7 )) a5) (t ) ((t) cos(t)) a6) ((t)e 3t ) ((t) cos(5t)) a7) ((t 3)) (4) ((t)t) a) ((t 5) sin(t )) ((t )(t ) 3 )) a9) [(t ) (t 4)] [ (t) + 3(t )] a) (t ) [(t) t (t s) sin 4sds] (oczywiście ró zniczkowanie nale zy rozumieć w sensie dystrybucyjnym) 6) Korzystajac ¾ z twierenia Borela wyznaczyć transformat ¾e odwrotna¾ do F (s) = (o ile zachoi konieczność zmudnego ca kowania mo zna pozostawić wynik w postaci ca ki splotowej) a) s +s = s s+ a) s 3 +s = s s + a3) s s+3 = (s ) s+3 a4) s 9! a5) (s +! ) (! > ) s a6) (s +! ) (! > ) a7) e s (s + )
11 a) e 5s (s 3s + ) a9) s 3 +s +5s a) (s +)(s +4s+3) 7) Niech a ; a ; ; a n ; b ; b ; ; b m R i niech () y (n) + a n y (n ) + + a y + a y = b m (m) + + b + b. Jak wiadomo (p. odp. twierenie), dla ka zdej dystrybucji (wymuszenia) D + istnieje dok adnie jedna (odpowiedź) dystrybucja y D + taka, ze zachoi równość () - fakt ten b ¾eiemy zapisywać symbolicznie 99K y. Wykazać, ze je zeli 99K y, 99K y, 99K y, R, t >, to 6.) + 99K y + y 6.) () 99K (y) 6.3) ( t ) 99K ( t y) (uk ad LTI - linear time-invariant system ) ) Wykazać, ze je zeli h D+ jest odpowieia¾ impulsowa¾ uk adu () (czyli (t) = 99K h) oraz H jest transmitancja¾ operatorowa¾ uk adu (), to ( (n) + a n (n ) + + a + a ) h = b m (m) + + b + b, Lfhg = H oraz dla ka zdej dystrybucji D + 99K h. 9) Dla podanego uk adu LTI wyznaczyć transmitancj ¾e operatorowa¾ H(s) oraz odpowiedź impulsowa¾ h(t). Je zeli uk ad jest stabilny, to wyznaczyć transmitancj ¾e widmowa¾ b h(!) = H(i!) i widmo amplitudowe (wzmocnienie uk adu) M(!) = jh(i!)j. Wykonujac ¾ ró zniczkowanie dystrybucyjne dokonać bezpośredniego sprawenia, ze istotnie h jest odpowieia¾ impulsowa. ¾ (Propozycja dodatkowa korzystajac ¾ np. z programu Geogebra narysować wykresy h; M (oczywiście, o ile h jest dystrybucja¾ regularna).) ¾ a) y + ay = b (a > ; b R) a) y 3y = a3) y + y = 3 + a4) y +! y = (! > ) a5) y +! y = (! > ) a6) y = a7) y = a) y + 3y + y = a9) y + 3y + y =
12 a) y + y + y = a) y + y + 5y = a) y + y + 5y = + a3) y y = a4) y y y + y = a5) y + 3y + y + y = + + a6) y + 3y + y + y = + a7) y + 3y + y + y = a) y = a9) y (4) + 5y + 4y = + 4 a) y (4) + 5y + 4y = ) Dla uk adów z zadania 9) wyznaczyć odpowiedź na wymuszenie (t) = j) (t) j) U (t t ) (t > ; U R) j3) (t)t j4) ((t) (t )) j5) ((t) (t ))t j6) (t) sin(!t) (! > ) j7) (t ) sin(t ) j) U (t t ) (t > ; U R) j9) [(t t )] (t > ) j) [(t)] j) [(t)] + 3(t) j) [(t)t] j3) [(t) sin(t)] j4) [(t) cos(t)] j5) (t)e t j6) (t) +t j7) (t) cos 5 t j) (t) ln( + 3 p jtj) (w przypadku konieczności zmudnego ca kowania (lub wr¾ecz niewykonalnego w klasie funkcji elementarnych) wynik mo zna pozostawić w postaci ca ki splotowej w mo zliwie najprostszej postaci) ADANIA DODATKOWE ) Niech w obwoie jednooczkowym z "liniowymi elementami R; L lub C" w ¾ aczone b ¾eie źród o napi¾ecia, którego przebieg opisuje e D+. Sprawić, czy poprawnie zosta o napisane równanie, w którym wejściem jest e, a wyjściem spadek napi¾ecia u na wskazanym elemencie lub prad ¾ i w obwoie. Wyznaczyć transmitancj ¾e operatorowa¾ H(s), odpowiedź impulsowa¾ h(t), transmitancj ¾e widmowa¾ b h(!) = H(i!) i widmo amplitudowe (wzmocnienie uk adu) M(!) = jh(i!)j. Wyznaczyć odpowiedź uk adu na wymuszenie a) e(t) = U (t) (U R)
13 b) e(t) = U ((t) (t t )) (t > ; U R) c) e(t) = (t)u sin(!t) (U R) d) e(t) = (t)u e t (U R; > ).) RC (u = u C ).) RL (u = u L ) u + RC u = RC e i + RC i = R e u + R L u = e i + R L i = L e.3) RLC (u = u C ) (u = u L ) u + R L u + LC u = LC e u + R L u + LC u = e i + R L i + LC i = L e. (w.3 proponuj ¾e dobrać konkretne "wygodne" wartości wspó czynników RLC tak, aby "obejrzeć" trzy przypadki - gdy wyró znik mianownika transmitancji jest dodatni,ujemny, równy zero) 3
MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i
MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )
Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1
Podstawowe wzor rachunku ró zniczkowego Zestaw. Rachunek ró zniczkow i ca kow a) (f () g ()) = f () g () + f () g () b) f (g ()) = f (g ()) g () f() c) g() = f ()g() f()g () d) ( n ) = n n g () e) (log
1 Wiadomości wst ¾epne
Wiadomości wst ¾ene. Narysować wykresy funkcji elementarnych sin cos tg ctg a ( a 6= ) log a ( a 6= ) arcsin arccos arctg arcctg Podać ich dziedziny i rzeciwdziedziny.. Roz o zyć na u amki roste wyra zenie
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
WSTEP ¾ DO ANALIZY MATEMATYCZNEJ
st ep do analizy matematycznej STEP DO ANALIZY MATEMATYCZNEJ Rachunek zdań, funkcja zdaniowa, kwanty katory Zad. Udowodnić nastepujace prawa rachunku zdań (tautologie): a) p _ (s q) b) p, s (s p) c) (
Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Zadania o liczbach zespolonych
Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i
Wyznaczniki, macierz odwrotna, równania macierzowe
Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec
Konkurs Matematyczny, KUL, 30 marca 2012 r.
Konkurs Matematyczny, KUL, 30 marca 01 r. W pustych kratkach obok liter A) B) C) D) nale zy wpisać s owo TAK lub NIE. Zadanie zostanie uznane za rozwiazane, jeśli wszystkie cztery odpowiedzi sa poprawne.
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
Opracowa : Zbigniew Skoczylas. Studenci wydzia ów W2, W4 oraz W7 opracowuja ¾ten materia samodzielnie. x 3 y 5 z 3 : 2x : (x 2 y 2 ) ; ; e) : 2+1
Algebra z geometri a analityczn a A - MAP 1140 Algebra z geometri a analityczn a B - MAP 1141 Lista zadań na rok akademicki 009/010 Opracowa Zbigniew Skoczylas Wyra zenia algebraiczne. Indukcja matematyczna
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Wyk ad II. Stacjonarne szeregi czasowe.
Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)
Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Wprowadzenie do równań ró znicowych i ró zniczkowych.
Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:
Równania różniczkowe zwyczajne zadania z odpowiedziami
Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne
Matematyka 2. Metoda operatorowa Transformata Laplace a
Matematyka 2 Metoda operatorowa Transformata Laplace a Literatura M.Gewert, Z.Skoczylas; Równania różniczkowe zwyczajne; Oficyna Wydawnicza GiS, Wrocław, 1999 D.Mozyrska, E.Pawłuszewicz, R.Stasiewicz;
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
ALGEBRA I GEOMETRIA ANALITYCZNA
ALGEBRA I GEOMETRIA ANALITYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ALGEBRA I GEOMETRIA ANALITYCZNA Kolokwia i egzaminy Wydanie piętnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2014 Marian
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Ekstrema funkcji wielu zmiennych.
Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu
Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17
41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla
Praca domowa - seria 2
Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =
Równania różniczkowe zwyczajne Zadania z odpowiedziami
Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw
Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody".
Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody". Przyk ad. Za ó zmy, ze w chwili t = 0 populacja liczy P 0 osób. Roczny wskaźnik urodzeń wynosi b = 00, a roczna
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
Rachunek ró»niczkowy funkcji jednej zmiennej
Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =
MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).
MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),
Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)
Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij
Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10
Matematyka A kolokwium, 7 maja, godz 8: : Poprawiłem: godz :, 4 września r 3 p Rozwiazać x t x t xt = x t x t xt = 6 + t cos3t + 36te 3t 7e 3t Pierwiastkami równania charakterystycznego = λ λ = λ + 3λ
(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),
Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1
Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (
u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C
Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-R2G1P-021 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 200 Instrukcja
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej
. Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość
PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
Przeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Egzamin z matematyki dla I roku Biochemii i Biotechnologii
Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Analiza Matematyczna 2. Ćwiczenia
Analiza Matematyczna. Ćwiczenia Bogdan Balcerzak 4 Spis treści RACHUNEK CA KOWY JEGO ASTOSOWANA. Ca ka oznaczona................................... Geometryczne zastosowania ca ki oznaczonej....................3
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
na egzaminach z matematyki
Błędy studentów na egzaminach z matematyki W opracowaniu omówiłem typowe błędy popełniane przez studentów na kolokwiach i egzaminach z algebry oraz analizy. Ponadto podaję błędy rzadziej spotykane, które
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA
PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował