2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

Wielkość: px
Rozpocząć pokaz od strony:

Download "2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów"

Transkrypt

1 07 R. Robert Gajewski: Mathcad Prime 4 0. Calculate numerically and present results in different formats and precision. 0. Oblicz numerycznie i przedstaw wyniki w różnych formatach i z różną precyzją. 3 sin π ln e sin = ln ln e 3 4 sin π 6-3 = 5-6 ln 3 4 sin ln e - sin π = ln - sin 6 6

2 07 R. Robert Gajewski: Mathcad Prime Calculate values of the following integrals 08. Oblicz wartości ponższych całek tan ( x) tan dx ( x) dx = cos (x) cos (x) dx dx = x - x 0 0 π 4 cos ( x) cos ( x) dx dx = cos (x) ( + x) cos (x) ( + x) 0 0 4

3 3 07 R. Robert Gajewski: Mathcad Prime Calculate values of derivatives for x= 09. Oblicz wartości pochodnej dla x= x d dx sin ( 3 x) 4 cos ( x) d = dx sin ( 3 x) cos( x) d dx ln x + x + d dx ln x + = x + 3 d dx ( x- i) d = i= dx ( x- i) i= 3 (x)

4 4 07 R. Robert Gajewski: Mathcad Prime 4 0. Calculate sums of n elements of series 0. Oblicz sumy n wyrazów ciągów liczbowych n 5 i n n i = = 5 i= n ( i - ) = = 5 i= n i = = = i i ( i + ) ( i + ) i= = = i i ( i + ) = = i i ( i + )

5 5 07 R. Robert Gajewski: Mathcad Prime 4 4b. Perform calculations fo given data - create function and units if necessary. Display results of calculations in dm. 4b. Przeprowadź obliczenia dla podanych danych - utwórz funkcję i jednostki jeśli to konieczne. Podaj wynik obliczeń w decymetrach. a 90 b.3 α 60 P ( b, b, kat) b b sin (kat) pole P ( a, b, α) = pole =

6 6 07 R. Robert Gajewski: Mathcad Prime 4 5. Create and format plots of the following functions. Three roots should be visible Using range variables calculate values of functions in the range [a,b]. 5. Zdefiniuj poniższe funkcjei, utwórz ich wykresy i sformatuj je. Powinny być widoczne trzy pierwiastki. Korzystając ze zmiennej zakresowej wyznacz wartości dla przedziału [a,b]. f (x) x 3 + x - x n 5 a -3 b 3 krok b- a n xx a, a+ krok b f (x) =x 3 + x - x f (x) f (xx) -3 x xx

7 7 07 R. Robert Gajewski: Mathcad Prime 4 Create plot using parametric representation Utwórz wykres korzystając z reprezentacji parametrycznej 9 ( x - ) + 4 ( y + ) =36 ( x - ) ( y + ) + = 4 9 sin (r) + cos (r) = = x - sin (r) y + =cos (r) 3 x = sin (r) + y=3 cos (r) cos(r) - Sprawdzenie = =.49 9 sin(r) + x=0 4 ( y + ) =36-9=7 ( y + ) = 7 4 y=0.598 y=-.598 y=0 9 ( x - ) =36-4 4=0 ( x - ) = 0 9 x=.49 x=-0.49

8 8 07 R. Robert Gajewski: Mathcad Prime 4 6. For the functions from the previous point find two roots closest to 0 one positive and one negative. Calculate the positive root using interval and the negative one using guess value. Compare accuracy of results. 6. Dla funkcji z poprzedniego polecenia wyznacz dwa pierwiastki najbliższe 0 - jeden dodatni i jeden ujemny. Wyznacz pierwiastek dodatni określając przedział a ujemny zgadując jego wartość. Porównaj dokładnośc wyników. f (x) =x 3 + x - x f (x) x 3 + x - x x ( f (x), x, -, 0) = x x ( f (x), x) = f (x) - -3 x

9 9 07 R. Robert Gajewski: Mathcad Prime 4 0. Generate the following matrices using the minimal number of operations. Do not insert all elements manually! 0. Utwórz (wygeneruj) poniższe macierze wykonując możliwie najmniejsza liczbę operacji. Nie wprowadzaj wszystkich elementów ręcznie z klawiatury. n 5 i n j n c9= c9 i, j ( i j, 0 i+ j, j) c9 = c8= c8 i, j ( i+ j =n +,, 0) c8 =

10 0 07 R. Robert Gajewski: Mathcad Prime 4. Find at least one value of parameter for which matrices are singular. Znajdź co najmniej jedną wartośc parametu p dla którego macierz jest osobliwa. p p 0 cos (p) p - p p A (p) 0 cos(p) p - wa (p) A (p) p ( wa (p), p, -3, -) = p 4 p ( wa (p), p) = wa (p) p

11 07 R. Robert Gajewski: Mathcad Prime 4 3. Calculate n partial sums of the following series using only one formula. The number of summed elements for subsequent sums is specified in [ ]. Store results in the form of a vector. Let n= Oblicz n sum częściowych dla poniższych ciągów liczbowych (szeregów) używając tylko jednego wzoru. Liczba sumowanych wyrazów dla poszczególnych sum jest zawarta w nawiasach [...]. Wyniki zapisz w wektorze. Niech n=5... [ ] n 5 i n g - i i T = g [ 4 8 6] s 3 4 i g i j= j T s = [ ]

12 07 R. Robert Gajewski: Mathcad Prime Calculate limits and present in simpliest form 04. Oblicz granice i przedstaw w najprostszej postaci lim n -3 n 4 n - 5 lim -3 n 4 n - 5 simplify - n lim x x - 5 x - lim x - 5 x - simplify x lim y 0 - cos (y) cos ( y) y - cos (y) cos ( y) simplify 3 lim y 0 y

13 3 07 R. Robert Gajewski: Mathcad Prime Calculate derivatives and present them in simpliest form 05. Oblicz pochodne i przedstaw wyniki w najprostszej postaci d dy ln y + y - d dy ln y + simplify 4 y - y - y 4-4 d dx sin (x) 3 cos ( x) cos ( 3 x) d cos dx sin(x) simplify (x) cos( x) cos ( x) d sin ( 3 y) e d simplify sin( 3 y) 6 cos( 3 y) dy dy

14 4 07 R. Robert Gajewski: Mathcad Prime Calculate integrals and present them in simpliest form 06. Oblicz całki i przedstaw je w najprostszej postaci dx 5 x - dx simplify 5 x - 5 x - 5 d 3 + z 3 z z + 5 z d 3 z + 3 z z + 5 z simplify ln z z + 5 x e x x dx x dx simplify x ( x - )

15 5 07 R. Robert Gajewski: Mathcad Prime Perform the following symbolic calculations 07. Przeprowadź poniższe obliczenia symboliczne a. rewrite expressions a. zapisz w inny sposób cos: sin (x) sin (x) rewrite, cos - cos(x) b. simplify expressions b. uprość wyrażenia x + ( + x) + ( 5 - x) 3 x + ( + x) + ( 5 - x) 3 simplify 6 x - x 3-70 x + 9 d. collect terms d. zgrupuj wyrazy a: a b + ( a+ b) ( a, b) a b + ( a+ b) collect, a ( b + ) a + b a+ b

16 6 07 R. Robert Gajewski: Mathcad Prime Perform the following symbolic calculations 07. Przeprowadź poniższe obliczenia symboliczne e. expand expression e. rozwiń wyrażenia ( a+ b) ( a+ b) expand a + a b+ b f. factor expressions f. wykonaj faktoryzację wyrażeń (rozkład na czynniki) w 3 + w - 3 w w - 3 w + 0 factor ( w + 5) ( w - ) ( w - ) w 3 g. find coefficients of a polynomial g. znajdź współczynniki wielomianu 5 ( x - ) 4 - ( x - ) 4 - coeffs

17 7 07 R. Robert Gajewski: Mathcad Prime Perform the following symbolic calculations 07. Przeprowadź poniższe obliczenia symboliczne h. Perform partial fraction decomposition h. Wykonaj rozkład na ułamki proste w + ( w - ) w - w + w + parfrac ( w - ) w - w + - w - w w - w + ( w - ) i. Substitute variables: x=y+ i. Podstaw zmienne: x=y+ ( x + ) ( x+ y- 5) x y+ 4 substitute, x =y + ( x + ) ( x+ y- 5) simplify ( y - 3) ( y + 5) x y+ 4 y + y + j. Expand to series j. Rozwiń w szereg - x series, 5 + x+ x + x 3 + x 4 - x

18 8 07 R. Robert Gajewski: Mathcad Prime 4 5. For given vectors vx and vy find appropriate trend lines. Create plot. 5. Dla danych wektorów vx i vy znajdź linie trendu. Zilustruj wykresem. a. linear function (funkcja liniowa) vx = {,, 3, 4}, vy = {4., 4.9, 6., 7.} vx vy b 3 a line ( vx, vy) = (x) vy a x+ b vx x

19 9 07 R. Robert Gajewski: Mathcad Prime 4 6. Find solution of linear equations using approriate function from group Solving. Check the solution calculating residua 6. Znajdź rozwiązanie liniowego układu równań korzystając z odpowieniej funkcji z grupy Solving. Sprawdź rozwiązanie wyznaczając residua. ln() A cos (4) 5 sin (6) = log(8) x lsolve ( A, b) = r A x- b= 0 0 b 3

20 0 07 R. Robert Gajewski: Mathcad Prime 4 6a. Solve set of equations symbolically and numerically for p= 6a. Rozwiąż układ równań symbolicznie i numerycznie dla p= p x = cos (p) x p A (p) cos (p) b x (p) A (p) - - cos - lsolve ( A (p), b) (p) p p - cos (p) - cos (p) - p - cos (p) - p cos (p) - p cos (p) cos (p) - p - p cos (p) - p x (p) A (p) - simplify - cos - b (p) p p - cos (p) - cos (p) - p x () = 0.35

21 07 R. Robert Gajewski: Mathcad Prime 4 7. Find all roots of polynomial using appropriate function from group Solving. 7. Znajdź wszystkie pierwiastki wielomianu korzystając z odpowieniej funkcji z grupy Solving w =x 4 + x 3-3 x - 4 x+ 4 (x) p x x 3-3 x - 4 x + 4 coeffs pr polyroots (p) = 3 w (x) + x 3-3 x - 4 x + 4 x w (x) x

22 07 R. Robert Gajewski: Mathcad Prime 4 8. Find intersection points for pairs of curves. 8. Znajdź punkty przecięcia par krzywych. x + y =9 y =sin (x) + x ( x, r) Guess Values x y 3 3 Constraints x + y =9 y =sin (x) + x sin(r) Solver x y ( x, y) = sin (x) x Guess Values x - y -3 3 cos(r) x Constraints Solver x + y =9 y =sin (x) + x x y ( x, ) = -.83

23 3 07 R. Robert Gajewski: Mathcad Prime 4 Find intesection of ellipse with axes Znajdź punkty przecięcia elipsy z osiami 9 ( x - ) + 4 ( y + ) = Guess Values Constraints Solver x - y 0 y=0 9 ( x - ) + 4 ( y + ) =36 x (x) = sin(r) + 3 cos(r) - Guess Values Constraints Solver x 0 y x=0 9 ( x - ) + 4 ( y + ) =36 y ( ) = 0.598

24 4 07 R. Robert Gajewski: Mathcad Prime 4 9. Find the minimal distance between the curve and the point (, ) 9. Znajdź najmniejsza odległośc między krzywą a punktem (, ) y=e x P=[ ] vx [ ] vy [ ] d (x) ( x - ) + x - x x ( d, x) = x y =.79 vx x vy y 3 vy x vx x

25 5 07 R. Robert Gajewski: Mathcad Prime Find the minimal distance between curves. 30. Znajdź najmniejsza odległość między krzywymi. y=e x y=-x d ( x, x) ( x - x) + x + x x -0.5 x -0. x x x ( d, x, x) = -0.7 y y -x x y vx x vy y x 0-0 -x - x

26 6 07 R. Robert Gajewski: Mathcad Prime 4 3. Find one local miniumu and maximum of a given function closest to 0 3. Dla danej funkcji znajdź jedno lokalne miniumum i maksimum najbliższe 0 y= sin (x) e 0. x f (x) sin (x) 0. x x -5 x ( f, x) = x - x ( f, x) = -.47 x3 x3 ( f, x3) =.67 x x4 ( f, x4) = sin (x) 0. x x

27 7 07 R. Robert Gajewski: Mathcad Prime 4 9. For the given vector b calculate creating appropriate function... a. how many elements are greater than given value (parameter of fuction) 9. Dla danego wektora b wyznacz tworząc odpowiednią funkcję... a. ile elementów wektora jest większych niż dana liczba (parametr funkcji) ii 9 i ii b i i + i + T b = [ ] function Main n = 0 loop i from 0 to 8 if w[i] > d then n = n + end if end loop output n end function f ( w, d) l length (w) n 0 for i l if w > d i n n + n f ( b,.) = 3

28 8 07 R. Robert Gajewski: Mathcad Prime 4 0. For the given matrix calculate creating appropriate function: 0. Dla danej macierzy oblicz tworząc odpowiednią funkcję i ( j + ) + j ( i+ ) ii 3 jj 9 i ii j jj A i, j A = a. how many elements are greater than d (a parameter of the function) and their sum a. ile jest elementów w macierzy większych niż d (parametr funkcji) i ich sumę f9 ( w, d) n 0 s 0 l length (w) for i l if w > d i n n + s s+ w i [ l n s] f0 ( M, d) n 0 s 0 r rows (M) c cols (M) for i r for j c if M > d i, j n n + s s+ M i, j [ n s] f0 ( A, 5) = [ ]

29 9 07 R. Robert Gajewski: Mathcad Prime 4 3. Create functions calculating sums of series (elements). Add only elements greater than eps. 3. Utwórz funkcję obliczającą sumy wyrazów ciągów. Dodawaj elementy większe niż eps. +! +! +! 3 function Main input eps s = 0 i = 0 wyr = loop while wyr > eps s = s + wyr i = i + wyr = wyr / i end loop end function +. =e f4 (eps) s 0 i 0 r while r> eps s s+ r i i + r r i [ i - s ] f4 (0.00) = [ 6.78] f4 (0.000) = [ 7.78]

30 30 07 R. Robert Gajewski: Mathcad Prime 4 3. Create functions calculating sums of series (elements). Add only elements greater than eps. 3. Utwórz funkcję obliczającą sumy wyrazów ciągów. Dodawaj elementy większe niż eps = function Main input eps s = 0 wyr = loop while Abs(wyr) > eps s = s + wyr wyr = -wyr / end loop end function f5 (eps) s 0 r while r > eps s s+ r r -r s f5 (0.000) = f5 (0.0000) =

31 3 07 R. Robert Gajewski: Mathcad Prime 4 3. Create functions calculating sums of series (elements). Add only elements greater than eps. 3. Utwórz funkcję obliczającą sumy wyrazów ciągów. Dodawaj elementy większe niż eps = function Main input eps s = 0 i = wyr = / ( * ) loop while wyr > eps s = s + wyr i = i + wyr = / (i * (i + )) end loop end function f7 (eps) s 0 i r while r> eps s s+ r i i + r i ( i + ) [ i - s ] f7 (0.00) = [ ]

32 3 07 R. Robert Gajewski: Mathcad Prime 4 3. Create functions calculating sums of series (elements). Add only elements greater than eps. 3. Utwórz funkcję obliczającą sumy wyrazów ciągów. Dodawaj elementy większe niż eps = π function Main input eps s = 0 i = znak = wyr = loop while Abs(wyr) > eps s = s + wyr i = i + znak = -znak wyr = znak / i end loop end function f6 (eps) s 0 i z r while r > eps s s+ r i i + z -z r z i i - s f6 (0.00) = [ ]

33 33 07 R. Robert Gajewski: Mathcad Prime 4 5. Create functions expanding to the Taylor series the following functions: 5. Utwórz funkcje rozwijające w szereg Taylora poniższe funkcje: sin (x) =x - x3 + x5 - x7 +. 3! 5! 7! f8 ( x, eps) s 0 i r x while r > eps s s+ r i i + r -r x x ( i - ) i i - s f8 (, 0.) = [ ] sin () = 0.84 f8 (, 0.00) = [ ]

for - instrukcja pętli "dla" umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j

for - instrukcja pętli dla umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw4.mcd /9 Katedra Inmatyki Stosowanej - Studium Podstaw Inmatyki PAKIET MathCad - Część IV. PROGRAMOWANIE MathCad posiada możliwości tworzenia prostych podprogramów,

Bardziej szczegółowo

MATHCAD Obliczenia symboliczne

MATHCAD Obliczenia symboliczne MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

, h(x) = sin(2x) w przedziale [ 2π, 2π].

, h(x) = sin(2x) w przedziale [ 2π, 2π]. Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences. The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)

Bardziej szczegółowo

Sin[Pi / 4] Log[2, 1024] Prime[10]

Sin[Pi / 4] Log[2, 1024] Prime[10] In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)). MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions Matematyka 3 Suma szeregu? Sum i max Sum[f, {i, i max }] evaluates the sum f. Sum[f, {i, i min, i max }] starts with i = i min. Sum[f, {i, i min, i max, di}] uses steps di. Sum[f, {i, {i 1, i 2, }}] uses

Bardziej szczegółowo

Równania nieliniowe. LABORKA Piotr Ciskowski

Równania nieliniowe. LABORKA Piotr Ciskowski Równania nieliniowe LABORKA Piotr Ciskowski przykład 1. funkcja fplot fplot ( f, granice ) fplot ( f, granice, n, linia, tol ) [ x, y ] = fplot ( )» fplot ( sin(x*x)/x, [ 0 4*pi ] )» fplot ( sin(x*x)/x,

Bardziej szczegółowo

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

PORTFOLIO Próbki tekstu składanego systemem L A TEX

PORTFOLIO Próbki tekstu składanego systemem L A TEX PORTFOLIO Próbki tekstu składanego systemem L A TEX Autor: Spis treści Wstęp. Wprowadzenie...................................... Warunki korzystania z usługi............................ Przykładowe próbki

Bardziej szczegółowo

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie

Bardziej szczegółowo

Hard-Margin Support Vector Machines

Hard-Margin Support Vector Machines Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==

Bardziej szczegółowo

Matematyka dla DSFRiU zbiór zadań

Matematyka dla DSFRiU zbiór zadań I Matematyka dla DSFRiU zbiór zadań do użytku wewnętrznego Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i. i= 5 ( ) i i=

Bardziej szczegółowo

Czwicienie 2 1. Wektory i macierze

Czwicienie 2 1. Wektory i macierze Czwicienie 2 1. Wektory i macierze Wektor można definiować jako ciąg (patrz ćw.7) lub przez wstawienie macierzy o jednej kolumnie lub jednym wierszu (z palety przycisków "macierze i wektory"). Rozwiązywanie

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Wstęp do chemii kwantowej - laboratorium. Zadania

Wstęp do chemii kwantowej - laboratorium. Zadania Wstęp do chemii kwantowej - laboratorium. Zadania 2 października 2012 1 Wstęp Używanie maximy jako kalkulatora Zadanie 1 1. Oblicz 2+2*2 2. Oblicz 18769 3. Oblicz 2 10 4. Oblicz 7/8 i 7.0/8.0 5. Oblicz

Bardziej szczegółowo

Chapter 1: Review Exercises

Chapter 1: Review Exercises Chpter : Review Eercises Chpter : Review Eercises - Evlute the following integrls:..... 6. 8. ( + ) 9. +.. ( + ). ( ). 8. 9....... 6. 7. (csc + + ) sin tn 6. ( )( + ) 7. ) 8.. + ( + )( ). ( ) sin sin sec

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera: Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Zastosowania pochodnych

Zastosowania pochodnych Zastosowania pochodnych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 SZACOWANIE NIEPEWNOŚCI POMIAROWEJ Przykład: objętość kuli Kulka z łożyska tocznego ma średnicę 2,3 mm, co oznacza, że objętość

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

1 Wartości własne oraz wektory własne macierzy

1 Wartości własne oraz wektory własne macierzy Szymon Toruńczyk Wartości własne oraz wektory własne macierzy Niech A będzie kwadratową macierzą n n Wówczas A wyznacza przekształcenie liniowe przestrzeni R n w siebie Niech v R n będzie pewnym niezerowym

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Wprowadzenie do programu MATHCAD

Wprowadzenie do programu MATHCAD Wprowadzenie do programu MATHCAD Zaletami programu MathCad, w porównaniu do innych programów służących do obliczeń matematycznych, takich jak Matlab, Mathematica, są proste i intuicyjne zasady pracy z

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

SzeregFouriera-Legendre a

SzeregFouriera-Legendre a SzeregFouriera-Legendre a Szereg Fouriera-Legendre a : n=0 P n (t) f n Współczynniki f n = Pn (t) f (t) dt - Pn (t) 2 dt - = 2 n + Pn 2 - (t) f (t) dt Pn - (t) 2 dt = 2 2 n + Zadanie Policz kwadrat normy

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE.   Strona 1 KURS SZEREGI Lekcja 1 Szeregi Fouriera ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zaznacz poprawną odpowiedź: a) Szereg Fouriera

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ FUNKCJI

ZASTOSOWANIA POCHODNEJ FUNKCJI Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,

Bardziej szczegółowo

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia: Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

3. Operacje na zbiorach (1) Sprowadź poniższe zdania dotyczące zbiorów do postaci zdań logicznych i sprawdź ich prawdziwość.

3. Operacje na zbiorach (1) Sprowadź poniższe zdania dotyczące zbiorów do postaci zdań logicznych i sprawdź ich prawdziwość. 1. Zapis matematyczny i elementy logiki matematycznej (1) Zapisz, używając symboliki matematycznej zdania: (a) Liczby x i y mają wspólny dzielnik większy od 2. (b) Jeśli x i y różnią się o 1, to nie mają

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia: ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

KLASA II LO Poziom rozszerzony (wrzesień styczeń)

KLASA II LO Poziom rozszerzony (wrzesień styczeń) KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Obliczenia symboliczne w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS Temat: Funkcja logarytmiczna (i wykładnicza)/ Logarithmic (and exponential) function Typ lekcji: Lekcja ćwiczeniowa/training

Bardziej szczegółowo