Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
|
|
- Sylwester Kowalski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1
2 Dokument, regiony, klawisze: Dokument Mathcada realizuje obliczenia i ma postać publikacji; składa się z regionów: (1) tekstów, (2) wzorów, (3) wykresów; Ważniejsze klawisze: ["] - rozpoczyna region tekstowy [:] - przypisuje zmiennej wartość np.: bok:5*cm [.] - poprzedza cz. ułamkową liczby np.: [=] - oznacza wyświetl wartość np.: bok^2= [ ] - spacja - zwiększa zaznaczenie np.: [;] - symbol zakresu np.: i:1;5 oznacza: i ma być ciągiem arytmetycznym od 1 do 5 (co 1) [^] - wstawia wykładnik potęgi [[] - wstawia indeks (numer elementu wektora lub macierzy) 3 Autor Zalecana postać dokumentu Nagłówek (czego dotyczą obliczenia) Dane: Objasnienia danych Obliczenia Wyniki pośrednie Wyniki końcowe Wykres 4 2
3 Podstawowe typy regionów matematycznych Polecenie Składnia: 1) Wyświetlanie wartości wyrażenia 2) Definicja zmiennej lokalnej (nadaje wartość zmiennej) 3) Definicja zmiennej globalnej (nadaje wartość zmiennej) wyrażenie = a więc także: zmienna = zmienna := wyrażenie zmienna wyrażenie 4) Definicja funkcji użytkownika naz_fun(parametry) := wyrażenie 5) Def. zmiennej zakresowej (ciągu arytmetycznego) zmienna := a1, a2; an 6) Def. zm. indeksowanej (elem. wektora lub macierzy) zmienna indeks := wyrażenie 7) Definicja całej macierzy jako zmiennej złożonej zmienna := [ macierz ] 8) Równania i nierówności solve block 5 TYPY i przykłady regionów matematycznych Aby Mathcad mógł realizować obliczenia musi rozpoznawać polecenia jakie mu wydajemy. Dlatego musimy wpisywać tylko dopuszczalne typy regionów matematycznych przedstawione poniżej, a ich budowa mysi być zgodna z regułami Mathcad a 6 3
4 Kolejność regionów: Zmienne w wyrażeniach muszą mieć wartości wyznaczone wcześniej czyli na lewo lub powyżej od bieżącego regionu. wyjątkiem są dane globalne wstawiane symbolem [ ] Jednostki miar: Wartości danych można mnożyć przez symbole jednostek miar Wyniki: Po podwójnym kliknięciu można zmienić precyzję wyniku. Wpisanie innej jednostki miary przy wyniku spowoduje przeliczenie (konwersję) na takie jednostki Zmienne zakresowe (ciągi arytmetyczne) - mogą być używane tylko jako: (1) indeksy elem. macierzy, (2) argumenty funkcji 7 Tworzenie wykresu X-Y: 1) Zdefiniuj funkcję: Y(x):= wyrażenie 2) Określ początek i koniec przedziału: Xp, Xk 3) Wyznacz przyrost Dx tak aby otrzymać np. 50 lub 100 punktów wykresu 4) Wygeneruj ciąg wartości zmiennej niezależnej (x) jako zmienną zakresową 5) Wstaw wykres X-Y z palety symboli i wpisz przy osiach (w środkowych znacznikach) nazwę zmiennej oraz funkcji. 6) Powiększ wykres (ciągnąc za uchwyt) i sformatuj (po podwójnym kliknięciu) 8 4
5 Mathcad - wykład 2 Funkcje standardowe i funkcje użytkownika Indeksy, wektory, macierze, operacje macierzowe Wykresy funkcji dwu zmiennych: z(x,y) Numeryczne rozwiązywanie równań: a) wielomianowych (pierwiastki wielomianu) b) układów równań liniowych (macierzowo) c) układów równań nieliniowych (graficznie i Given... Find) Pochodne i całki Animacje Symboliczne rozwiązywanie równań 9 FUNKCJE 1) Wywoływanie funkcji standardowych. 2) Definiowanie i wywoływanie funkcji użytkownika 10 5
6 Pamiętaj, że: Funkcje funkcja zawsze po nazwie ma nawias a w nim argumenty - po tym Mathcad odróżnia funkcje od zmiennych Mathcad daje do dyspozycji bardzo wiele gotowych funkcji wbudowanych (build in function). Oprócz tego użytkownik może definiować dowolne funkcje własne przy pomocy definicji funkcji 11 Wstawianie funkcji z wykazu: Opis funkcji 12 6
7 Definiowanie nowych funkcji: Użytkownik może więc definiować nowe funkcje według schematu: nazwa_funkcji(parametry) := wyrażenie_z_parametrami Przykład: 13 Wektory, macierze i zmienna ORIGIN Zmienna systemowa ORIGIN decyduje o tym czy numerowanie elementów tablic ma rozpoczynać się od ZERA czy od JEDEN Aby uniknąć problemów - zawsze zaczynaj zadania z wektorami czy macierzami od zdefiniowania wartości zmiennej ORIGIN np.: ORIGIN
8 Paleta operacji macierzowych 15 Sposoby definiowania wektora a) jako zm. indeksowana zadana wzorem b) jako zm. indeksowana o wpisanym ciągu dowolnych wartości c) jako macierz kolumnowa d) jako wybrana kolumna macierzy e) przez wczytanie danych z pliku 16 8
9 Definiowanie elementów macierzy w zależności od indeksów. Funkcje macierzowe 17 Wykres 3D - powierzchniowy 18 9
10 Rozwiązywanie równania wielomianowego (znajdowanie miejsc zerowych wielomianu) Dla znalezienia rozwiązań równania W(x)=0 (gdzie W(x) jest wielomianem N-tego stopnia) wystarczy wykonać w Mathcadzie 2 kroki 1) zdefiniować wektor zawierający N+1 współczynników wielomianu - w kolejności od wyrazu wolnego aż do współczynnika przy najwyższej potędze x. 2) użyć funkcji polyroots wstawiając powyższy wektor jako jej argument Wynikiem (wartością) funkcji polyroots będzie wektor szukanych pierwiastków, w tym także zespolonych. 19 Przykład 20 10
11 Macierzowe rozwiązywanie układu równań liniowych (4 kroki): 1) Uporządkuj równania 2) Zdefiniuj macierz współczynników przy niewiadomych 3) Zdefiniuj wektor wyrazów wolnych 4) Wyznacz i wyświetl rozwiązanie jako: 21 Rozwiązywanie układu równań metodą GIVEN... FIND Aby w Mathcadzie rozwiązać dowolny układ równań i nierówności (także nieliniowych) wystarczy wykonać 4 kroki: 1. Nadać wartości startowe wszystkim niewiadomym. 2. Wpisać słowo kluczowe: given 3. Wpisać układ równań i nierówności stosując specjalny "wytłuszczony" znak = 4. Zastosować funcję FIND do znalezienia rozwiązań 22 11
12 Przykład metody GIVEN... FIND - znaleźć analitycznie współrzędne punktu P1 23 Jedno z wielu rozwiązań Metoda Given... Find znajduje tylko jedno z wielu rozwiązań (jeśli jest ich wiele). Aby decydować - które chcemy rozwiązanie należy przede wszystkim odpowiednio ustalać wartości startowe niewiadomych a znacznie mniejszy wpływ mają nierówności 24 12
13 Pochodne i całki Dla wyznaczania wartości pochodnych i całek, mamy operatory na palecie Calculus: Można też otrzymać wzory pochodnych i całek ze wzorów funkcji przy pomocy Przekształceń Symbolicznych: Differentiate oraz Integrate 25 Tworzenie animacji Zmiany parametrów funkcji można przedstawiać w postaci animacji czyli ruchomych wykresów. Animacja to film złożony z poszczególnych ramek - ang.: FRAMES W celu utworzenia animacji trzeba uzależnić jeden z argumentów funkcji od zmiennej FRAME czyli numeru ramki
14 Przykłady ANIMACJI za strony: 27 Symboliczne rozwiązywanie równań - czyli rozwiązania w postaci wzorów 28 14
15 Użycie menu Symbolics kursor ustawić przy zmiennej: 29 Symboliczne rozwiązywanie równań - sposób drugi Aby rozwiązać pojedyncze równanie np. x 2-4=21 można: 1) zapisać równanie z użyciem logicznego = lub [Ctrl] [=] 2) ustawić kursor w równaniu i z paska Symbolic kliknąć solve i nacisnąć ENTER x solve Gdy jest więcej zmiennych to trzeba po solve dać przecinek i wpisać nazwę zmiennej: b b 2 4 a c 2 2 a z 2 a + b z + c solve, z b b 2 4 a c a
16 Symboliczne rozwiązanie układu równań Aby otrzymać nie wyniki liczbowe ale rozwiązanie układu w postaci wzorów trzeba w nowym dokumencie nie wpisywać danych tylko: 1) zacząć od razu od słowa Given, 2) wpisać układ równań (i ewentualnie nierówności) 3) wpisać funkcję Find z niewiadomymi jako argumentami a zamiast = wstawić symbol 31 Przykład Początkowe wartości x, y można pominąć 32 16
Czwicienie 2 1. Wektory i macierze
Czwicienie 2 1. Wektory i macierze Wektor można definiować jako ciąg (patrz ćw.7) lub przez wstawienie macierzy o jednej kolumnie lub jednym wierszu (z palety przycisków "macierze i wektory"). Rozwiązywanie
Obliczenia Symboliczne
Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych
MathCAD cz.1. Spis treści wykładu:
Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1)Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
1. WSTĘP. www.mathsoft.com, www.mathcad.com
MATHCAD-W strona. WSTĘP MATHCAD to uniwersalny program do obliczeń matematycznych o bardzo dużych możliwościach. Jest łatwy do opanowania, nie wymaga nauki języka programowania a więc jest idealny dla
PODSTAWY MATHCADA. 1. Interfejs graficzny programu. 1.1. Pasek menu
PODSTAWY MATHCADA PODSTAWY MATHCADA...3 1. Interfejs graficzny programu...3 1.1. Pasek menu...3 1.2. Pasek narzędzi podstawowych...4 1.3. Pasek narzędzi formatujących...4 1.4. Pasek operatorów matematycznych...4
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Numeryczne rozwiązywanie równań i układów równań
Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
for - instrukcja pętli "dla" umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw4.mcd /9 Katedra Inmatyki Stosowanej - Studium Podstaw Inmatyki PAKIET MathCad - Część IV. PROGRAMOWANIE MathCad posiada możliwości tworzenia prostych podprogramów,
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Wprowadzenie do programu SmathStudio
2015 Wprowadzenie do programu SmathStudio Karol Pereta Wiesław Bielak Grzegorz Piątkowski Maj 2015r. 1. SMATHSTUDIO ŚRODOWISKO PRACY...3 2. OBLICZANIE WARTOŚCI ZMIENNYCH...4 3. OBLICZENIA SYMBOLICZNE...
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Wprowadzenie do programu MATHCAD
Wprowadzenie do programu MATHCAD Zaletami programu MathCad, w porównaniu do innych programów służących do obliczeń matematycznych, takich jak Matlab, Mathematica, są proste i intuicyjne zasady pracy z
MathCAD cz.1. Spis treści wykładu:
Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1) Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów
INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad. dr inż.
INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad dr inż. Paweł Surdacki Instytut Podstaw Elektrotechniki i Elektrotechnologii Politechniki
MATHCAD Obliczenia symboliczne
MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.
1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
1. Uruchamianie i obsługa MathCAD'a 6.0
Mathcad - zadanie 1 http://www.kkiem.agh.edu.pl/dydakt/mcad/zad/1uruch.htm 1 z 1 2011-10-05 22:29 1. Uruchamianie i obsługa MathCAD'a 6.0 1.1. Uruchom Windows i z menu START uruchom MathCAD'a Jeśli Mathcad
2. DZIAŁANIA NA WIELOMIANACH
WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -
Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy
1 Podstawowym przeznaczeniem arkusza kalkulacyjnego jest najczęściej opracowanie danych liczbowych i prezentowanie ich formie graficznej. Ale formuła arkusza kalkulacyjnego jest na tyle elastyczna, że
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz
Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:
ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
Wykresy. Lekcja 10. Strona 1 z 11
Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
CZĘŚĆ III. OBLICZENIA I WYKRESY BEZ PROGRAMOWANIA...9
SPIS TREŚCI 3 SPIS TREŚCI CZĘŚĆ III. OBLICZENIA I WYKRESY BEZ PROGRAMOWANIA...9 13. ARKUSZE KALKULACYJNE...11 13.1. Wprowadzenie...11 13.2. Elementy ekranu Excel'a...12 13.3. Kursory w Excel'u i Calc'u...13
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
Równania liniowe i nieliniowe
( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."
EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący
EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 3: Macierze i wykresy Cel: wykonywanie obliczeń na wektorach i macierzach, wykonywanie wykresów Czas wprowadzenia 25 minut,
Zadanie 8. Dołączanie obiektów
Zadanie 8. Dołączanie obiektów Edytor Word umożliwia dołączanie do dokumentów różnych obiektów. Mogą to być gotowe obiekty graficzne z galerii klipów, równania, obrazy ze skanera lub aparatu cyfrowego.
Wstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Obliczenia inżynierskie arkusz kalkulacyjny. Technologie informacyjne
Obliczenia inżynierskie arkusz kalkulacyjny Technologie informacyjne Wprowadzanie i modyfikacja danych Program Excel rozróżnia trzy typy danych: Etykiety tak określa sie wpisywany tekst: tytuł tabeli,
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia
Temat 23 : Poznajemy podstawy pracy w programie Excel. 1. Arkusz kalkulacyjny to: program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników, utworzony (w
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!
Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Dodawanie grafiki i obiektów
Dodawanie grafiki i obiektów Word nie jest edytorem obiektów graficznych, ale oferuje kilka opcji, dzięki którym można dokonywać niewielkich zmian w rysunku. W Wordzie możesz zmieniać rozmiar obiektu graficznego,
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:
dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.
ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY
Dodatkowo klasa powinna mieć destruktor zwalniający pamięć.
Zadanie 1. Utworzyć klasę reprezentującą liczby wymierne. Obiekty klasy powinny przechowywać licznik i mianownik rozłożone na czynniki pierwsze. Klasa powinna mieć zdefiniowane operatory czterech podstawowych
PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1
Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Wykresy. Informatyka Arkusz kalkulacyjny Excel dla WINDOWS. Excel. cz.4. Wykresy. Wykresy. Wykresy. Wykresy
Zespół Szkół Agrotechnicznych i Ogólnokształcących im.józefa Piłsudskiego w śywcu Excel Informatyka Arkusz kalkulacyjny Excel dla WINDOWS cz.4 Najlepszym sposobem prezentacji danych jest prezentacja graficzna.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów
Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna
83 Przekształcanie wykresów funkcji (cd.) 3
Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2
zna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Edytor tekstu MS Word 2010 PL. Edytor tekstu to program komputerowy umożliwiający wprowadzenie lub edycję tekstu.
Edytor tekstu MS Word 2010 PL. Edytor tekstu to program komputerowy umożliwiający wprowadzenie lub edycję tekstu. SP 8 Lubin Zdjęcie: www.softonet.pl Otwieranie programu MS Word. Program MS Word można
WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2
- 1 - MS EXCEL CZ.2 FUNKCJE Program Excel zawiera ok. 200 funkcji, będących predefiniowanymi formułami, słuŝącymi do wykonywania określonych obliczeń. KaŜda funkcja składa się z nazwy funkcji, która określa
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
MS Excel. Podstawowe wiadomości
MS Excel Podstawowe wiadomości Do czego służy arkusz kalkulacyjny? Arkusz kalkulacyjny wykorzystywany jest tam gdzie wykonywana jest olbrzymia ilość żmudnych, powtarzających się według określonego schematu
Edycja wyrażeń, definiowanie zmiennych i funkcji
Strona z Edycja wyrażeń, definiowanie zmiennych i funkcji Kursory Krzyżyk - - pozwala umiejscowić równanie, wykres lub pole tekstowe na stronie. Punkt wstawienia - - "pionowa kreska" - używany do edycji
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
IX. Wskaźniki.(3 godz.)
Opracowała: dr inż. Anna Dubowicka Uczelniane Centrum Komputerowe PK IX. Wskaźniki.(3 godz.) Wskaźnik jest zmienną, która zawiera adres innej. 1. Definiowanie wskaźników. typ * nazwa ; gdzie: znak * informuje
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Zadania rachunkowe z termokinetyki w programie Maxima
Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.4 Slajd 1 Excel Slajd 2 Wykresy Najlepszym sposobem prezentacji danych jest prezentacja graficzna. Z pomocą
MATHCAD OBSŁUGA PROGRAMU
MATHCAD PODSTAWOWE INFORMACJE (OBSŁUGA PROGRAMU) WPROWADZENIE DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 1. INFORMACJE OGÓLNE Mathcad umożliwia rozwiązywanie zagadnień z
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
Instalacja
Wprowadzenie Scilab pojawił się w Internecie po raz pierwszy, jako program darmowy, w roku 1994 Od 1990 roku pracowało nad nim 5 naukowców z instytutu INRIA (Francuski Narodowy Instytut Badań w Dziedzinie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy