Zimne atomy w sieciach optycznych - modelina XXI wieku
|
|
- Ludwika Piasecka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zimne atomy w sieciach optycznych - modelina XXI wieku Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, Kraków, Poland 2012
2 O czym to bȩdzie Sieci optyczne Co możemy kontrolować? Wewnȩtrzne stopnie swobody i kontrolowany nieporza dek Magnetyzm i frustracja Syntetyczne pola Podsumowanie (może)
3 Potencjał optyczny V (x) = d E = α E(x) 2 I(x) δ e.g. V (x) = V 0 cos 2 (kx) jasne sieci ciemne sieci
4 Ultra zimne atomy T=300 K, v 500m/s T=10 nk v 3mm/s długość fali de Broglie a λ = h/p = mało atomów n 10 4 ale λ < n 1/3 falowy aspekt ruchu atomów h mkt pełna kontrola nad parametrami układu
5 Sieci różne wymiary różne geometrie (sieci trójka tne, heksagonalne...) możliwa dynamiczna zmiana sieci periodyczne warunki brzegowe na torusie..
6 Atomy bozony lub fermiony struktura wewnȩtrzna (podpoziomy zeemanowskie) mieszaniny b-b, f-f, b-f potencjały optyczne zależne od spinu (grupa Huleta 2001)
7 Kontrola oddziaływań - rezonans Feshbacha Zimne atomy - tylko rozpraszanie fal s -potencjał kontaktowy f (k) = a/(1 + ika) V ( r)ψ = 2π 2 a M δ( r) r (rψ) a(b) = a 0 (1 Γ B B 0 )
8 Obserwacja Destrukcyjny pomiar absorpcyjny Ekspansja balistyczna k = Mx/t n(x) = ( M t )3 W(k) 2 G(k) G(k) = r,r e ik (r r ) â râr
9 Bose-Hubbard Hamiltonian 1 Ĥ = J M i=0 ( ) â i+1âi + h.a. + M ɛ iˆn i + U 2 i=0 M ˆn i (ˆn i 1), i=1 J - hopping rate, U - interaction, ɛ j = 1 2 mω2 a 2 (j j 0 ) 2 J >> U - SF J << U Mott, energy gap U 1 H.A. Gersch and G. C. Knollman, Phys. Rev. 129, 959 (1963).
10 BH - diagram fazowy
11 Eksperyment może teraz lepiej 2 2 Sherson et al. Nature (2010)
12 Eksperyment może teraz jeszcze lepiej 3 dowolne lokalne potencjały lokalne chłodzenie - usuwanie nadmiaru entropii 3 Weitenberg et al. Nature (2011)
13 Disordered Bose-Hubbard model Ĥ = J M i=0 ( ) â i+1âi + h.a. + M ɛ iˆn i + U 2 i=0 M ˆn i (ˆn i 1), i=1 ɛ j = 1 2 mω2 a 2 (j j 0 ) 2 + x j U Expected schematic (mean-field) phase diagram:
14 A real experiment BH model realized in several one-dimensional tubes 4 : With a secondary laser along x-axis creating quasi-disorder. V (x)/e R = s 1 cos 2 (k 1 x) + s 2 cos 2 (k 2 x) + V V = s [cos 2 (k 1 y) + cos 2 (k 1 z)] s 2 << s 1 << s 4 Fallani et al.,prl98, (2007)
15 Florence experiment Preparation of the initial state by ramping the optical lattices over exponential 100ms ramp Strong modulation of the lattices to create absorption
16 Florence experiment Preparation of the initial state by ramping the optical lattices over exponential 100ms ramp Strong modulation of the lattices to create absorption
17 Florence experiment Preparation of the initial state by ramping the optical lattices over exponential 100ms ramp Strong modulation of the lattices to create absorption
18 Florence experiment Preparation of the initial state by ramping the optical lattices over exponential 100ms ramp Strong modulation of the lattices to create absorption
19 Florence experiment Preparation of the initial state by ramping the optical lattices over exponential 100ms ramp Strong modulation of the lattices to create absorption
20 Florence experiment For no disorder peaks at U, 2U but quite broad For strong disorder observations consistent with Bose glass expected behaviour
21 Disorder in spinor S = 1 Bose-Hubbard 5 Ĥ = t i,j,σ â iσâjσ + i [ U0 2 ˆn i (ˆn i 1) + U ) ] 2 (Ŝ2 2 i 2ˆn i µˆn i Disorder in µ or in U 0 or in U Ła cki et al., Phys. Rev. A (2011)
22 W stronȩ magnetyzmu Atomy neutralne - co robić Sztuczne pola Naturalny pomysł - obrót H 1 = p2 2M + Mω2 r 2 (p A)2 ΩL z = 2 2M + M 2 (ω2 Ω 2 )r 2 dla A = MΩ x, r = x 2 + y 2. Tworzenie wirów Niestabilność Ω ω Obracaja ce siȩ sieci optyczne Inne podejście odwzorowanie obsadzeń oczek sieci na podpoziomy magnetyczne
23 Kwantowy model Isinga 6 6 Simon et al., Nature (2011)
24 Sfrustrowany magnetyzm klasyczny 7 3 silne wia zki pod ka tem 2π/3 - trójka tna sieć rurek, każda z mikro-bec. E({θ i }) = <i,j> J ij S i S j S i = [cos θ i, sin θ i ] 7 Struck et al., Science (2011)
25 Kontrola nad tunelowaniem 8 Modulowanie sieci optycznej (np. czȩstości) efektywna siła efektywne tunelowanie. J eff = JJ 0 (Ka/ ω) Pisa group (Arimondo) - potwierdzenie eksperymentalne (2007) (2009) przejście stan nadciekły - izolator Motta Eliptyczna trajektoria F(t) = F c cos(ωt)e x + F s sin(ωt)e y pozwala zmieniać oba tunelowania w eksperymencie.. J = J 0 (af c / ω)j orig J = J 0 (a Fc 2 + 3Fs 2 /2 ω)j orig 8 Eckardt, Weiss, Holthaus PRL (2005)
26 Nietrywialne zespolone tunelowanie 9 H 0 = p2 2m + V (x) + K 1x cos(ωt) + K 2 x cos(2ωt + ϕ) J eff = J J 2k (K 1 )J k (K 2 )e ikϕ, k= złamanie symetrii odwrócenia strzałki czasu Frustracja w sieci trójka tnej Dla bozonów, fermionów, mieszanin... 9 Sacha, Targońska, JZ, Phys. Rev. A (2012)
27 Zespolone tunelowanie i strumienie Syntetyczne pole magnetyczne syntetyczny strumień przez elementarna plakietkȩ (oczko sieci). J ij = J exp[iθ ij ] U nas: Φ P = θ ij + θ jk θ li podobny schemat dla bozonów Struck et al., PRL (2012) inny Aidelsburger et al. PRL (2012) - wykorzystanie przejść Ramanowskich. też Jimenez-Garcia et al. PRL (2012)
28 Nieabelowe pola z cechowaniem-propozycje 10 j J ij JU ij = J exp[i A(r)dl] i H = J a i,σ U ija j,σ + H onsite <i,j> σ,σ B i = 1 2 ɛ iklf kl F kl = k A l l A k i [A k, A l ] Pȩtla Wilsona W = U ij U jk..u li. Dla 2-spinorów trw Hauke et al., PRL (2012)
29 Efekt Einsteina-de Haasa w sieci 11 oddziaływanie dipol-dipol (magnetyczne) sprzȩżenie orbitalnych i spinowych stopni swobody rezonans w zewnȩtrznym polu magnetycznym H = i + U a [ (E a gµ B B) a i a i + E b b i b i + U ab a i b i a ib i (1) 2 a 2 i i,j a 2 i + U b 2 b i 2 b 2 i + D(b 2 i a 2 i + a 2 [ J a a i a j + J b b i b j ] i b 2 i ) (2) ]. (3)
30 Higgs mode in the lattice 12 Ponownie Bose-Hubbard - tym razem w 2D j = J/U Parametr porza dku Ψ 12 Endres et al. Nature (2012)
31 Higgs mode in the lattice 12 Ponownie Bose-Hubbard - tym razem w 2D j = J/U Parametr porza dku Ψ To taki Higgs na miarȩ naszych możliwości Endres et al. Nature (2012)
32 Podsumowanie Zimne atomy - unikalne narzȩdzie badawcze Bliski kontakt teorii z eksperymentem Pełna kontrola nad parametrami O czym nie mówiłem symulatory kwantowe długozasiȩgowe anizotropowe potencjały jony w sieciach optycznych badania dynamiki termalizacja, dochodzenie do równowagi... Rysunki: m.in. z I. Bloch et al, Nature Physics 2012, I. Bloch et al, RMP (2008)
33 Podziȩkowania: Sponsors: Fundacja na rzecz Nauki Polskiej MPD: Physics of Complex Systems at Jagiellonian University MNiSW i NCN poprzez granty: obecnie MAESTRO
Kondensat Bosego-Einsteina okiem teoretyka
Kondensat Bosego-Einsteina okiem teoretyka Krzysztof Sacha Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński Plan: Kondensacja Bosego-Einsteina. Teoretyczny opis kondensatu. Przyk lady.
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Atom ze spinem i jądrem
Atom ze spinem i jądrem Powtórzenie E 3s 2s 3p 2p 3d Ruch w polu ekranowym znosi degenracje ze wzgledu na l 1s Li l Powtórzenie 5 2 P 3/2 F=I+J 5P F= I-J 5 2 P 1/2 struktura subtelna struktura nadsubtelna
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa?
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa? szczegółowe zastosowania kwantowego szumu śrutowego J. Tworzydło Instytut Fizyki Teoretycznej Uniwersytet Warszawski Sympozjum Instytutu Fizyki
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz
Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Atomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *
Najzimniejsze atomy. Tadeusz Domański. Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie.
Odolanów, 10 lipca 2008 r. Najzimniejsze atomy Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman Referat be dzie dotyczyć : kondensacji i nadciekłości
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Chłodzenie jedno-wymiarowego gazu bozonów
Chłodzenie jedno-wymiarowego gazu bozonów Piotr Deuar (IF PAN) Emilia Witkowska, Mariusz Gajda (IF PAN) Kazimierz Rzążewski (CFT PAN) Cover of Phys. Rev. Lett., 1 Apr 2011 E. Witkowska, PD, M. Gajda, K.
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
V. RÓWNANIA MECHANIKI KWANTOWEJ
V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Nadpłynność i nadprzewodnictwo
Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...
Nadprzewodnictwo niekonwencjonalne: nowe ciecze kwantowe
Nadprzewodnictwo niekonwencjonalne: nowe ciecze kwantowe Józef Spałek Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, 30-348 Kraków Plan: 1. Dlaczego nadprzewodnictwo niekonwencjonalne?
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Manipulacja ultrazimną materią kwantową:
UNIWERSYTET JAGIELLOŃSKI W KRAKOWIE Manipulacja ultrazimną materią kwantową: od układów z polem cechowania po lokalizację fal materii Arkadiusz Kosior Praca doktorska napisana pod opieką prof. dra hab.
Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN
Spektroskopia mionów w badaniach wybranych materiałów magnetycznych Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Cel i obiekty badań 4. Przykłady otrzymanych
Najgorętsze krople materii wytworzone na LHC
Najgorętsze krople materii wytworzone na LHC Adam Bzdak AGH, KZFJ Plan Wprowadzenie do A+A Przepływ eliptyczny, trójkątny, hydrodynamika Odkrycie na LHC w p+p i p+a Korelacje 2- i wielu-cząstkowe Podsumowanie
Streszczenie W13. chłodzenie i pułapkowanie neutralnych atomów. pułapki jonowe: siły Coulomba
Streszczenie W13 pułapki jonowe: siły Coulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów zastosowanie w komputerach kwantowych? przeskoki
Własności transportowe niejednorodnych nanodrutów półprzewodnikowych
Własności transportowe niejednorodnych nanodrutów półprzewodnikowych Maciej Wołoszyn współpraca: Janusz Adamowski Bartłomiej Spisak Paweł Wójcik Seminarium WFiIS AGH 13 stycznia 2017 Streszczenie nanodruty
Fotonika. Plan: Wykład 11: Kryształy fotoniczne
Fotonika Wykład 11: Kryształy fotoniczne Plan: Kryształy fotoniczne Homogenizacja długofalowa Prawo załamania dla kryształów fotonicznych, superkolimacja Tw. Blocha, kryształy, kryształy fotoniczne, kryształy
Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:
do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność
Szczegółowy wgląd w proces chłodzenia jedno-wymiarowego gazu bozonów
Szczegółowy wgląd w proces chłodzenia jedno-wymiarowego gazu bozonów Piotr Deuar (IF PAN) Emilia Witkowska, Mariusz Gajda (IF PAN) Kazimierz Rzążewski (CFT PAN) Cover of Phys. Rev. Lett., 1 Apr 2011 E.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Henryk Szymczak Instytut Fizyki PAN
NNnnNowe kwazicząstki w magnetykach Henryk Szymczak Instytut Fizyki PAN Zjazd Fizyków 2015 1 Enrico Fermi: nigdy nie należy lekceważyć przyjemności, jaką każdy z nas odczuwa, słysząc coś, o czym już wie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader
Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Barbara Piętka, Paweł Kowalczyk Wydział Fizyki Uniwersytet
Streszczenie W13. pułapki jonowe: siły Kulomba. łodzenie i pułapkowanie neutralnych atomów. 9 pułapki Penninga, Paula
Streszczenie W13 pułapki jonowe: siły Kulomba 9 pułapki Penninga, Paula G pojedyncze jony mogą być pułapkowane i oglądane 9 kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki
Ultra zimne atomy bozonowe. ze słabym magnetycznym. oddziaływaniem dipolowym w sieciach optycznych. Joanna PIETRASZEWICZ
ROZPRAWA DOKTORSKA Ultra zimne atomy bozonowe ze słabym magnetycznym oddziaływaniem dipolowym w sieciach optycznych Joanna PIETRASZEWICZ Promotor: prof. dr hab. Mariusz GAJDA Promotor pomocniczy: dr Tomasz
Frustracja i współzawodnictwo oddziaływań magnetycznych w związkach międzymetalicznych ziem rzadkich. Ł. Gondek
Frustracja i współzawodnictwo oddziaływań magnetycznych w związkach międzymetalicznych ziem rzadkich Ł. Gondek Plan wystąpienia Cel badań Metodologia badań Badane materiały Wybrane wyniki Wnioski ogólne
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:
Laser atomowy. Tomasz Kawalec. 15 stycznia Laser optyczny i atomowy Dotychczasowe realizacje Nowy pomysł Zimne atomy w ZOA
Tomasz Kawalec 15 stycznia 2009 ENS, Laboratoire Kastler Brossel Zakład Optyki Atomowej Tomasz Kawalec Seminarium optyczne 15 stycznia 2009 1 / 27 Tomasz Kawalec 15 stycznia 2009 ENS, Laboratoire Kastler
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
W dotychczasowych rozważaniach dotyczących różnych układów fizycznych (w tym i atomu wodoropodobnego)
3.1.4 17. Teoria spinu 1/ 196 Rozdział 17 Teoria spinu 1/ 17.1 Wprowadzenie braki dotychczasowej teorii W dotychczasowych rozważaniach dotyczących różnych układów fizycznych w tym i atomu wodoropodobnego
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Bładzenie przypadkowe i lokalizacja
Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)
Wykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
Zasada najmniejszego działania
Zasada najmniejszego działania S = T dtl(x, ẋ) gdzie L(x, ẋ) jest lagrangianem. Dokonajmy przesuniecia x = x + y, ẋ = ẋ + ẏ, gdzie y(0) = y(t ) = 0. Wtedy T T S = dt L(x, ẋ ) = dt L(x + y, ẋ = ẋ + ẏ) 0
II.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Spektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych
Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Wprowadzenie do układów skorelowanych
Wprowadzenie do układów skorelowanych Rafał Topolnicki Wrocław, 16 grudnia 2010 Wprowadzenie do układow skorelowanych Wrocław, 16 grudnia 2010 1 / 53 Plan Plan Formalizm drugiej kwantyzacji, Idea modelu
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu
Statystyki kwantowe. P. F. Góra
Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
(U.15) Spin 1/2. Rozdział Spin 1/2 w polu magnetycznym Wprowadzenie Pole statyczne i pole zmienne w czasie
3.0.004 36. (U.5) Spin / 40 Rozdział 36 (U.5) Spin / 36. Spin / w polu magnetycznym 36.. Wprowadzenie Będziemy tu rozważać cząstkę obdarzoną spinem / oddziałującą z zewnętrznym polem magnetycznym. Cząstką
- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k
Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Nanofizyka co wiemy, a czego jeszcze szukamy?
Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO
(obserw. na Ŝywo emisji/abs. pojed. fotonów w pojed. atomach) a) spontaniczne ciśnienie światła (rozpraszają en. chłodzą)
Streszczenie W11 pułapki jonowe: siły Kulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki
Zadania z Fizyki Statystycznej
Zadania z Fizyki Statystycznej 1. Wyznaczyć skok wartości pochodnej ciepła właściwego w temperaturze krytycznej dla gazu bozonów, w temperaturze w której pojawia się konensacja [1].. Wyznaczyć równanie
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową
korelacje i nieporzadek
Nanopierscienie: orelacje i nieporzade Maciej Masa asi, Uniwersytet Sl Katowice Współpraca: Marcin Mierzejewsi Katarzyna Czaja z Zaneta Sled Kazimierz 25 PODSTAWY: PIRŚCIŃ W POLU MAGNTYCZNYM w nieobecności
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej
Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej Tomasz Sowiński Seminarium CFT p.1/17 Nieliniowa mechanika kwantowa Dwa konteksty nielinowej mechaniki kwantowej: czy istnieja