kondensat Bosego-Einsteina

Wielkość: px
Rozpocząć pokaz od strony:

Download "kondensat Bosego-Einsteina"

Transkrypt

1 kondensat Bosego-Einsteina Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

2 Podziękowania dla Dr. M. Zawady (Krajowe Laboratorium Fizyki Atomowej, Molekularnej i Optycznej: KL FAMO) za pomoc w przygotowaniu tego wykładu.

3 Stany skupienia

4 Stany skupienia

5 Stany skupienia

6 Stany skupienia

7 Stany skupienia

8 Temperatura gazu jest związana z ruchem atomów Temperatura miarą średniej energii kinetycznej ruchu cząsteczek gazu: T E = mv 2 2

9 Temperatura gazu jest związana z ruchem atomów film: temperatura Temperatura miarą średniej energii kinetycznej ruchu cząsteczek gazu: T E = mv 2 2

10 Temperatura kondensatu Bosego-Einsteina

11 Temperatura kondensatu Bosego-Einsteina

12 Aby otrzymać kondensat, należy schłodzić = spowolnić atomy film2: chłodzenie laserowe

13 Aby otrzymać kondensat, należy schłodzić = spowolnić atomy

14 Aby otrzymać kondensat, należy schłodzić = spowolnić atomy Chłodzenie laserowe wykorzystujemy pęd fotonu by obniżyć prędkość atomów kwantyzacja energii elektronu na orbitach: tylko fotony o wybranych energiach są absorbowane

15 Dygresja: Efekt Dopplera

16 Dygresja: Efekt Dopplera akustyczny optyczny

17 Dzięki efektowi Dopplera można spowalniać tylko atomy o wybranych prędkościach

18 Pułapka atomowa zbiera zimne atomy w małej objętości Pułapka magnetooptyczna 6 wiązek laserowych spowalnia wuch atomów w każdym kierunku pole magnetyczne utrzymuje spowolnione atomy w centrum pułapki

19 Pułapka atomowa zbiera zimne atomy w małej objętości Pułapka magnetooptyczna 6 wiązek laserowych spowalnia wuch atomów w każdym kierunku pole magnetyczne utrzymuje spowolnione atomy w centrum pułapki

20 Pułapka atomowa zbiera zimne atomy w małej objętości Pułapka magnetooptyczna 6 wiązek laserowych spowalnia wuch atomów w każdym kierunku pole magnetyczne utrzymuje spowolnione atomy w centrum pułapki film: pułapka magnetooptyczna

21 Pułapka atomowa zbiera zimne atomy w małej objętości Pułapka magnetooptyczna 6 wiązek laserowych spowalnia wuch atomów w każdym kierunku pole magnetyczne utrzymuje spowolnione atomy w centrum pułapki film: pułapka magnetooptyczna W pułapce magnetooptycznej osiąga się temperatury 1 mk = K. To wciąż zbyt ciepło dla kondensatu.

22 Chłodzenie przez odparowanie phys.org Dalsze chłodzenie osiąga się poprzez odparowanie z pułapki (najszybszych) najgorętszych atomów.

23 Chłodzenie przez odparowanie twinnings.com Dalsze chłodzenie osiąga się poprzez odparowanie z pułapki (najszybszych) najgorętszych atomów.

24 Chłodzenie przez odparowanie film: chlodzenie przez odparowanie

25 W wyniku chłodzenia powstaje kondensat Bosego - Einsteina (BEC) Stan materii przewidziany przez S. Bosego i A. Einsteina w 1924 r. Na stworzenie trzeba było czekać > 70 lat. Twórcy pierwszego na swiecie kondensatu: W. Ketterle, C. Wieman i E. Cornell. Nagroda Nobla z fizyki w 2001 r.

26 Kondensat Bosego-Einsteina w Toruniu W Krajowym Laboratorium Fizyki Atomowej, Molekularnej i Optycznej (KL FAMO) stworzono pierwszy w Europie Środkowej kondensat Bosego-Einsteina.

27 Z czego powstają kondensaty Bosego Einsteina? Ketterle, Wieman i Cornell 1995r.: atomy rubidu Rb Grupa Ketterle 2003r.: cząsteczki Li 2 Grupa F. Schrecka 2009r.: atomy strontu Sr i cząsteczki RbSr m.in. laboratoria w Hannoverze i w Paryżu: swobodny spadek kondensatów makroskopowe obiekty kwantowe

28 Zimne atomy a kondensat Zimne atomy są podobne do powolnych kulek. W kondensacie atomy przenikają się wzajemnie, tworząc jeden superatom. Wszystkie zajmują to samo położenie.

29 Kondensat jako superatom Atomom odpowiadają funkcje falowe. Fala jest tym dłuższa im atom lżejszy i wolniejszy: λ = h mv. Przy temperaturze T = 0.2µK funkcje falowe poszczególnych atomów nakrywają się. Atomy stają się nierozróżnialne. Tworzy się jedna funkcja falowa kondensatu.

30 Detekcja kondensatu Kondensat obserwujemy naświetlając go światłem laserowym o częstości rezonansowej.

31 Detekcja kondensatu Atomy kondensatu pochłaniają fotony i w efekcie otrzymujemy cień kondensatu.

32 Detekcja kondensatu Wszystkie informacje dotyczące kondensatu otrzymujemy badając zdjęcie jego cienia.

33 Detekcja kondensatu W czasie naświetlania kondensat jest niszczony.

34 Zdjęcie cienia chmury zimnych atomów tuż przed kondensacją.

35 Zdjęcie kondensatu Bosego-Einsteina.

36 Zdjęcie (prawie) bosego Einsteina.

37 Przejście fazowe gaz kondensat film: przejście fazowe Film jest efektem złożenia wielu zdjęć kondensatu wykonanych na kolejnych etapach chłodzenia atomów.

38 : źródło: wikipedia Wizualizacje rozkładu prędkości: chmura zimnych atomow kondensat.

39 Właściwości falowe BEC 2 kondensaty podczas zderzenia podlegają interferencji, jak fale na wodzie.

40 Laser atomowy film 6: laser atomowy Wypuszczając w kontrolowany sposób część atomów z kondensatu, możemy otrzymać laser atomowy. Laser taki świeci falami materii.

41 Kondensaty sieci optycznej film 7: siec optyczna Umieszczając kondensat w miejscu przecięcia wiązek laserowych możemy otrzymać tzw. sieci optyczne układy podobne w budowie do ciała stałego, gdzie miejsce atomów zajmują kondensaty. W łatwy sposób możemy zmieniać strukturę takiej sieci i badać jej własności.

42 Wiry w kondensacie I I Kondensat jest substancją nadciekłą: wprawiony w ruch obrotowy będzie się kręcił bez przerwy. Przy odpowiedniej prędkości obrotowej w kondensacie powstają wiry.

43 Kondensat Bosego-Einsteina: podsumowanie Zbiór ultrazimnych atomów lub cząsteczek (temperatury µk). Nowy stan materii: atomy opisane tą samą funkcją falową, są nierozróżnialne (tworzą kondensat = superatom). Makroskopowe układy kwantowe: można "sfotografować ich funkcję falową" (ściślej: rozkład przestrzenny prędkości). Kondensaty mogą dryfować, opadać, interferować między sobą, być wzbudzane, zyskać strukturę (np. wiry),...

44 Jacek Matulewski: Doświadczenie Younga, Postulaty mechaniki kwantowej, Doświadczenia interferencyjne Karolina Słowik Pomiar i dekoherencja Interpretacje mechaniki kwantowej, Fotony i splątanie Informacja kwantowa i jej przetwarzanie Kondensat Bosego - Einsteina Wkrótce: Jarosław Zaremba Kwantowa teoria atomu, Laser, Zastosowania mechaniki kwantowej

45 Jakie wyniki daje doświadczenie Younga, gdy przez szczeliny przypuszczamy: fale (wodne, elektromagnetyczne) cząstki: ziarna piasku lub soli fotony, elektrony Jaki wniosek można stąd wyciągnąć? Które z powyższych wyników zmienią się, gdy za szczelinami znajdzie się obserwator?

46 Czy oddziaływanie z układem pomiarowym może zmienić stan cząstki kwantowej?

47 Co to jest kolaps funkcji falowej? W jakiej sytuacji może zajść?

48 Jakie wyniki i z jakimi prawdopodobieństwami może dać pomiar polaryzacji fotonu w stanie / = + 2 w bazie +, a jakie w bazie?

49 Jakie wyniki i z jakimi prawdopodobieństwami może dać pomiar polaryzacji fotonu w stanie / = + 2 w bazie +, a jakie w bazie? Ile wynosi amplituda prawdopodobieństwa otrzymania w pomiarze wyniku?

50 *Czy można rozróżnić stany polaryzacji / = + 2 za pomocą pomiarów w bazie +? i \ = 2

51 Czy wszystkie wielkości fizyczne można zmierzyć jednocześnie?

52 Czy wszystkie wielkości fizyczne można zmierzyć jednocześnie? Jakich wielkości fizycznych nie można zmierzyć jednocześnie?

53 Czy wszystkie wielkości fizyczne można zmierzyć jednocześnie? Jakich wielkości fizycznych nie można zmierzyć jednocześnie? *Co można powiedzieć o funkcjach własnych wielkości, które można lub nie można zmierzyć jednocześnie?

54 Co to znaczy, że dwie wielkości fizyczne komutują?

55 Czy w dwóch kolejnych, następujących bezpośrednio po sobie pomiarach tej samej wielkości fizycznej, możemy otrzymać różne wyniki?

56 Na czym polega paradoks kota Schrödingera?

57 Jaką nazwę nosi zjawisko utraty spójności przez układ kwantowy?

58 Jaką nazwę nosi zjawisko utraty spójności przez układ kwantowy? Jaki jest jego związek z paradoksem kota Schrödingera?

59 Czy w mechanice kwantowej można stworzyć kopię znanego stanu kwantowego?

60 Czy w mechanice kwantowej można stworzyć kopię znanego stanu kwantowego? Czy można sklonować nieznany stan?

61 Czy w mechanice kwantowej można stworzyć kopię znanego stanu kwantowego? Czy można sklonować nieznany stan? Czy wystarczy do stworzenia kopii nieznanego stanu wystarczy jedna kopia oryginału?

62 Która z interpretacji mechaniki kwantowej najlepiej oddaje wyniki eksperymentów?

63 Podaj przykłady rodzajów promieniowania elektromagnetycznego.

64 Jaki jest związek między energią fotonu a częstotliwością jego drgań?

65 Co to jest polaryzacja światła?

66 Jakie są przykładowe źródła niespolaryzowanego/spolaryzowanego światła?

67 Jak można polaryzować niespolaryzowane światło?

68 Wymień przykłady zastosowań zjawiska polaryzacji.

69 Czym różni się światło kwantowe pod klasycznego?

70 Czym różni się światło kwantowe pod klasycznego? Jak nazywa się źródło światła klasycznego o najmniejszych fluktuacjach natężenia?

71 Wymień przykłady źródeł pojedynczych fotonów.

72 Na czym polega zjawisko spontanicznego parametrycznego dzielenia częstości?

73 Na czym polega zjawisko spontanicznego parametrycznego dzielenia częstości? Jak nazywają się stany, które powstają w tym zjawisku? Podaj przykład.

74 Na czym polega paradoks EPR?

75 Na czym polega paradoks EPR? Jakie dwa wyjaśnienia paradoksu proponowali Einstein, Podolski i Rosen?

76 Co miały na celu eksperymentalne testy nierówności Bella?

77 Ile informacji w stosunku do klasycznego bitu zawiera bit kwantowy? mniej niż klasyczny tyle samo co klasyczny więcej niż klasyczny

78 Ilu liczb rzeczywistych potrzeba by opisać stan kubitu?

79 Podaj przykłady układów fizycznych, w których można zakodować kubit.

80 Podaj przykłady jednokubitowych i dwukubitowych bramek logicznych.

81 Podaj działanie bramek jednokubitowych na stanach bazowych i na superpozycjach.

82 Podaj działanie bramek dwukubitowych na stanach bazowych.

83 Pokaż że bramki sterowanego zaprzeczenia i sterowanej fazy są związane bramkami Hadamarda.

84 Która z bramek jest odwracalna: klasyczna bramka XOR czy kwantowa bramka CNOT?

85 Czy do realizacji algorytmów kwantowych niezbędne są bramki wielokubitowe? Jakie?

86 Na czym polega trudność w fizycznej realizacji bramek dwukubitowych dla fotonów?

87 Co ulega teleportacji w protokole omawianym na wykładzie?

88 *Omów poznany protokół teleportacji.

89 Wybierz właściwą odpowiedź: Do przeprowadzenia teleportacji potrzebna jest para dowolnych cząstek kwantowych jedna cząstka w superpozycji położeń ( laboratorium Alicji + laboratorium Boba ) / 2 splątana para cząstek, dzielona przez Alicję i Boba

90 Czy na końcu protokołu teleportacji Alicja i Bob oboje mają po swojej kopii teleportowanego stanu?

91 Co to jest i do czego służy klucz kryptograficzny?

92 Co to jest i do czego służy klucz kryptograficzny? Czy dowolnego ciągu bitów można użyć jako klucza kryptograficznego?

93 Czy klucz kryptograficzny może być ogłoszony publicznie?

94 *Omów protokół BB84 dystrybucji klucza kryptograficznego.

95 O jakie zjawisko oparta jest kwantowa dystrybucja klucza w protokole BB84? superpozycji klonowania splątania

96 Co to znaczy, że kwantowe metody dystrybucji klucza są bezpieczne?

97 Jakie zjawisko jest podstawą szybkości algorytmów kwantowych? superpozycji klonowania splątania

98 Wymień 5 stanów skupienia materii.

99 Jaki jest związek między temperaturą gazu a predkością atomów/cząsteczek, które go tworzą?

100 Kondensat Bosego - Einsteina może powstać: w ultraniskich temperaturach w temperaturze ciekłego azotu 1.6 K w temperaturze pokojowej w ultrawysokich temperaturach (np. na powierzchni Słońca)

101 Na czym polega chłodzenie laserowe?

102 Na czym polega chłodzenie laserowe? Co to jest efekt Dopplera?

103 Na czym polega chłodzenie laserowe? Co to jest efekt Dopplera? Jak efekt Dopplera pomaga w chłodzeniu laserowym?

104 Po włączeniu pułapki magnetooptycznej: z czasem zwiększa się liczba spułapkowanych atomów z czasem zmniejsza się liczba spułapkowanych atomów

105 W zjawisku chłodzenia przez odparowanie zwiększa się liczba spułapkowanych atomów zmniejsza się liczba spułapkowanych atomów

106 Czym charakteryzuje się funkcja falowa atomów w kondensacie?

107 Na czym polega detekcja (wykonanie zdjęć) kondensatu Bosego - Einsteina?

108 Na czym polega detekcja (wykonanie zdjęć) kondensatu Bosego - Einsteina? Czy pomiar kondensatu jest destrukcyjny? Dlaczego?

109 Podaj przykład zjawiska, w którym kondensaty wykazują zachowanie o charakterze falowym.

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia

Bardziej szczegółowo

interpretacje mechaniki kwantowej fotony i splątanie

interpretacje mechaniki kwantowej fotony i splątanie mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie

Bardziej szczegółowo

o pomiarze i o dekoherencji

o pomiarze i o dekoherencji o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F

1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj

Bardziej szczegółowo

W poszukiwaniu najniższych temperatur

W poszukiwaniu najniższych temperatur 18 W poszukiwaniu najniższych temperatur Adam Wojciechowski Zakład Fotoniki IF UJ Przestrzeń kosmiczna jest bardzo zimna. Wszyscy wiemy, że gwiazdy są gorące, ale stanowią one bardzo mały jej ułamek. W

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Laboratorium FAMO. Laboratorium ultrazimnej. Laboratorium małych zespołów jonów Laboratorium inżynierii kwantowej

Laboratorium FAMO. Laboratorium ultrazimnej. Laboratorium małych zespołów jonów Laboratorium inżynierii kwantowej Laboratorium FAMO Laboratorium ultrazimnej materii Laboratorium małych zespołów jonów Laboratorium inżynierii kwantowej Otwarcie Krajowego Laboratorium FAMO - 11 maja 2002 Krajowe Laboratorium Fizyki Atomowej,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Protokół teleportacji kwantowej

Protokół teleportacji kwantowej Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne

Bardziej szczegółowo

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Temperatura i ciepło

Temperatura i ciepło Temperatura i ciepło Zerowa zasada termodynamiki Ciepło: Sposób przekazu energii wewnętrznej w skutek różnicy temperatur Ciała są w kontakcie termalnym jeżeli ciepło może być przekazywane między nimi Kiedy

Bardziej szczegółowo

W5. Komputer kwantowy

W5. Komputer kwantowy W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu

Bardziej szczegółowo

zastosowanie w komputerach kwantowych? przeskoki kwantowe (obserw. na żywo emisji/abs. pojed. fotonów w pojed. atomach)

zastosowanie w komputerach kwantowych? przeskoki kwantowe (obserw. na żywo emisji/abs. pojed. fotonów w pojed. atomach) Streszczenie W13 pułapki jonowe: siły Coulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13 1 ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem. 2 2012/13 Ruch falowy 1. Co to jest fala mechaniczna? Podaj warunki niezbędne do zaobserwowania rozchodzenia się fali mechanicznej. 2. Jaka wielkość

Bardziej szczegółowo

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka

Bardziej szczegółowo

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017

Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Kwantowe stany splątane w układach wielocząstkowych Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Otton Nikodym oraz Stefan Banach rozmawiają na ławce na krakowskich plantach

Bardziej szczegółowo

Paradoksy mechaniki kwantowej

Paradoksy mechaniki kwantowej Wykład XX Paradoksy mechaniki kwantowej Chociaż przewidywania mechaniki kwantowej są w doskonałej zgodności z eksperymentem, interpretacyjna strona teorii budzi poważne spory. Przebieg zjawisk w świecie

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja

Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga 1801 Thomas Young Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga c.d. fotodetektor + głośnik fala ciągły sygnał o zmiennym

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Historia. Zasada Działania

Historia. Zasada Działania Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia

Bardziej szczegółowo

Fizyka dla wszystkich

Fizyka dla wszystkich Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

pułapki jonowe: siły Kulomba łodzenie i pułapkowanie neutralnych atomów pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane

pułapki jonowe: siły Kulomba łodzenie i pułapkowanie neutralnych atomów pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane Streszczenie W13 pułapki jonowe: siły Kulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących

Bardziej szczegółowo

2/τ. ω fi Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2009/10. wykład 10 1/14 = 1. 2 fi 0.5

2/τ. ω fi Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2009/10. wykład 10 1/14 = 1. 2 fi 0.5 Streszczenie W9: stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują polaryzacja składowych zeemanowskich = wynik szczególnej ewolucji stanów niestacjonarnych w polu B przejścia

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19 Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Własności światła laserowego

Własności światła laserowego Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014 Program Wykładu Fizyka Wydział Zarządzania i Ekonomii Rok akademicki 2013/2014 Mechanika Kinematyka i dynamika punktu materialnego Zasady zachowania energii, pędu i momentu pędu Podstawowe własności pola

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Pierwszy polski kondensat Bosego-Einsteina

Pierwszy polski kondensat Bosego-Einsteina FOTON 98, Jesień 2007 5 Pierwszy polski kondensat Bosego-Einsteina Wojciech Gawlik Instytut Fizyki UJ 2 marca 2007 roku grupa fizyków z kilku polskich ośrodków pracująca w Krajowym Laboratorium Fizyki

Bardziej szczegółowo

XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM

XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM XIII Poznański Festiwal Nauki i Sztuki na Wydziale Fizyki UAM XIII Poznański Festival Nauki i Sztuki na Wydziale Fizyki UAM Od informatyki klasycznej do kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas

Bardziej szczegółowo

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω.

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω. Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014. Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia: Informacje ogólne Fizyka 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych, Zakład

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Przedmiot: Rodzaj przedmiotu: Kod przedmiotu: Rok: I Semestr: I Forma studiów: Rodzaj zajęć i liczba godzin 60 w semestrze: Wykład 30 Ćwiczenia

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn

Bardziej szczegółowo

Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka

Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 17 maja 2007 Materiały źródłowe Prezentacja oparta jest na publikacjach: Johann Summhammer,

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Cząstki i siły. Piotr Traczyk. IPJ Warszawa Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała

Bardziej szczegółowo

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018 Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Streszczenie W13. chłodzenie i pułapkowanie neutralnych atomów. pułapki jonowe: siły Coulomba

Streszczenie W13. chłodzenie i pułapkowanie neutralnych atomów. pułapki jonowe: siły Coulomba Streszczenie W13 pułapki jonowe: siły Coulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

Podstawy fizyki wykład 9

Podstawy fizyki wykład 9 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Streszczenie W13. pułapki jonowe: siły Kulomba. łodzenie i pułapkowanie neutralnych atomów. 9 pułapki Penninga, Paula

Streszczenie W13. pułapki jonowe: siły Kulomba. łodzenie i pułapkowanie neutralnych atomów. 9 pułapki Penninga, Paula Streszczenie W13 pułapki jonowe: siły Kulomba 9 pułapki Penninga, Paula G pojedyncze jony mogą być pułapkowane i oglądane 9 kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków

Bardziej szczegółowo

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera. MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat

Bardziej szczegółowo

Seminarium: Efekty kwantowe w informatyce

Seminarium: Efekty kwantowe w informatyce Seminarium: Efekty kwantowe w informatyce Aleksander Mądry Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Każdy kto będzie

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo