Fizyka materii skondensowanej i struktur półprzewodnikowych (1101-4FS22) Michał Baj

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka materii skondensowanej i struktur półprzewodnikowych (1101-4FS22) Michał Baj"

Transkrypt

1 Fzya ate sodesowaej stutu półpzewodowych FS Mchał Baj Załad Fzy Cała Stałego Istytut Fzy Dośwadczalej Wydzał Fzy Uwesytet Waszaws Fzya ate sodesowaej stutu półpzewodowych - wyład 4 1

2 Pla wyładu 4 Eleety echa watowej w cele stały: potecjał peodyczy yształ, twedzee Blocha, fucja Blocha stefy Blloua wau peodyczośc Boa-Kaaa Stutua pasowa staów eletoowych: odel pustej sec odel eletoów pawe swobodych odel casego wązaa etoda p, teso asy efetywej Fzya ate sodesowaej stutu półpzewodowych - wyład 4

3 Fucja Blocha, u exp, fucja Blocha 1. weto falowy ależy do pewszej stefy Blloua jest dobą lczbą watową; ueuje óże ozwązaa odpowadające teu saeu des pas u, Własośc fucj Blocha. fucja apltuda blochowsa jest fucją peodyczą z oese sec: u u,, s Fzya ate sodesowaej stutu półpzewodowych - wyład 4 3

4 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 4 Fucja Blocha 3. : 4. wya z putu popzedego,, G exp '' exp exp ' exp, '' '' ' ', G C G G C G G G G G G G E E

5 Fucja Blocha 5. Z ezeczośc haltoau względe wesj czasu bez pola agetyczego: E E 6. Jeśl opeacja wesj pzestzeej ależy do gupy putowej yształu, to ezależe od spu: E E Fzya ate sodesowaej stutu półpzewodowych - wyład 4 5

6 Fucja Blocha Pzypade tywaly stały potecjał a węc taże peodyczy! V 0 E ozwązae są fale płase też fucje Blocha z u exp exp E V0 z wde eeg: W ty pzypadu A u jest watoścą własą opeatoa pędu cost: Fzya ate sodesowaej stutu półpzewodowych - wyład 4 6

7 Pęd ystalczy wazpęd Czy zawsze fucja Blocha opsuje eleto o dobze oeśloy pędze? pˆ u exp u exp,, u u p u exp exp fucja Blocha w ogólośc e opsuje eletou o dobze oeśloy pędze e jest w ogólośc watoścą własą opeatoa pędu u, wyjąte jest pzypade, edy jest fucją stałą a węc fucją oesową, dla tóej ażdy oes jest doby,, azywa sę wazpęde lub pęde ystalczy, Fzya ate sodesowaej stutu półpzewodowych - wyład 4 7

8 Pęd ystalczy wazpęd pzy oddzaływau z y wazcząsta eletoy, fooy, agoy etc. uwęzoy w ysztale pawdzwy cząsta pzeający pzez yształ p. fotoy, eutoy pawo zachowaa pędu ależy zastąpć pawe zachowaa wazpędu: ' ' p p pawo zachowaa eeg e ulega w ysztale zae: ' E E G Fzya ate sodesowaej stutu półpzewodowych - wyład 4 8

9 Stefy Blloua Fzya ate sodesowaej stutu półpzewodowych - wyład 4 9

10 Stefy Blloua Pzypoee waże własośc fucj Blocha: 1.. E, G, G E wystaczy węc, jeśl chodz o zależość od wetoa falowego, ogaczyć sę p. do obszau ajejszych co do długośc wetoów, leżących wewątz oó pytywej sec odwotej. Taa oóa jest wystaczający obszae zeośc wetoa falowego. Koóa pytywa w sec odwotej sostuowaa w ta sa sposób, ja oóa Wgea-Setza w sec Bavas azywa sę pewszą stefą Blloua Fzya ate sodesowaej stutu półpzewodowych - wyład 4 10

11 Stefy Blloua Pewsza duga stefa Blloua w dwuwyaowej, wadatowej sec odwotej Płaszczyzy tutaj le dzelące a pół odpowede wetoy sec odwotej wyzaczają obszay ależące do olejych stef Blloua. Każda stefa a taą saą objętość tutaj powezchę Fzya ate sodesowaej stutu półpzewodowych - wyład 4 11

12 Stefy Blloua Weto dalej: g z gacy I stefy Blloua: G G z defcj stefy Blloua G g g G G g G g Weto: g G ' leży po pzecwej stoe I stefy Blloua jest ówoważy wetoow w sese własośc fucj Blocha. Dla wetoów g tych spełoy jest waue Lauego: g ' G Stay z gacy I stefy Blloua odpowadają eletoowy falo stojący Fzya ate sodesowaej stutu półpzewodowych - wyład 4 1

13 Stefy Blloua Pewsza stefa Blloua dla stutuy fcc - czteastośca Odległośc: d L 3 a d X a Fzya ate sodesowaej stutu półpzewodowych - wyład 4 13

14 Stefy Blloua Stutua hesagoala Stutua bcc H. Ibach, H. Lüth, Sold-State Physcs Fzya ate sodesowaej stutu półpzewodowych - wyład 4 14

15 Wau peodyczośc Boa-Kaaa Fzya ate sodesowaej stutu półpzewodowych - wyład 4 15

16 Wau peodyczośc Boa-Kaaa yształy są sończoych ozaów oża wpowadzć wau bzegowe zaa fucj falowej a bzegach yształu powadz to jeda do tego, że wszyste fale eletoowe, secowe etc. będą stojące, co w welu wypadach utuda ops poeważ w yształach aosopowych dog swobode eletoów są dużo ejsze ż ozay yształów, ajwygodejszy ozwązae jest pzyjęce tzw. wauów peodyczośc Boa-Kaaa: N ja j ; j 1, a gdze j są wetoa sec Bavas, a duży lczba całowty, ta że N jest zędu ozau całego ja j Lj yształu, 3 N j Fzya ate sodesowaej stutu półpzewodowych - wyład 4 16

17 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 17 Wau peodyczośc Boa-Kaaa w pzypadu fucj Blocha ay: żądae, aby powadz do: dozwoloe wetoy falowe staową dysetą seć putów ówoee ozłożoą w pzestze wetoa falowego; oóę eleetaą sec odwotej stefę Blloua wypeła tach putów. Tyle też będze staów w ażdy paśe. ogą być óże, ale ajczęścej pzyjujey tae sae j j j j j j j j a N u a N a N u a N exp exp exp 1 exp j j a N Z a N a N a N 3 1 * * * 1 1 1,, 3 1 N N N 3 1,, N N N

18 Stutua pasowa staów eletoowych Model pustej sec Fzya ate sodesowaej stutu półpzewodowych - wyład 4 18

19 Zależość dążącego do zea daje: Model pustej sec E E G E E G G w pzypadu jedowyaowy:, dla potecjału peodyczego, ale H. Ibach, H. Lüth, Sold-State Physcs Fzya ate sodesowaej stutu półpzewodowych - wyład 4 19

20 Model pustej sec P. Y. Yu, M. Cadoa, Fudaetals of Secoductos Fzya ate sodesowaej stutu półpzewodowych - wyład 4 0

21 Model pustej sec w pzypadu tójwyaowy stutua sc: Ch. Kttel, Wstęp do fzy cała stałego Fzya ate sodesowaej stutu półpzewodowych - wyład 4 1

22 Model pustej sec W obaze zeduoway do I stefy Blloua występuje wele óżych zależośc E oecze jest ch ueowae ue pasa: E Fucje Blocha bez uwzględea spu są węc ueowae wetoe falowy oaz dese pasa :,, u exp Fzya ate sodesowaej stutu półpzewodowych - wyład 4

23 Nazewctwo pas, gupa wetoa falowego pusta seć Stutua daetu achu etodą pseudopotecjału P. Y. Yu, M. Cadoa, Fudaetals of Secoductos Fzya ate sodesowaej stutu półpzewodowych - wyład 4 3

24 Nazewctwo pas, gupa wetoa falowego Weto jest dobą lczbą watową; dla ażdego ówoważego ' G fucja Blocha jest taa saa Co obą opeacje syet z wetoe falowy a węc z fucja falowy? Czy tasfoują go w ówoważy u czy też e? ' G Zbó tych opeacj syet pełej gupy putowej yształu, tóe tasfoują day weto falowy w ówoważy u staow gupę wetoa falowego putowej yształu jest podgupą pełej gupy W zależośc od tego, czy jest jaś syetyczy pute 1BZ p., X, L, czy leży a jaś syetyczy euu p. L, czy też e gupa wetoa falowego jest a Dla 0 put stefy Blloua ażda opeacja gupy putowej yształu pzepowadza go w weto u ówoważy, a węc gupa wetoa falowego z putu ówa sę pełej gupe putowej yształu ' G Fzya ate sodesowaej stutu półpzewodowych - wyład 4 4

25 Nazewctwo pas, gupa wetoa falowego Stay lasyfujey azyway epzywedly epezetacja odpowedch gup wetoa falowego. Pzyjęło sę w ty wypadu używać w azwach epezetacj azw putów euów w stefe Blloua Pzyład: stutua bledy cyowej, gupa putowa T d. epezetacje epzywedle: A 1 1-wy., A 1-wy., E -wy., T 1 3-wy., T 3-wy.. Gupa wetoa falowego z putu też T d. Teaz jeda azewctwo e: BSW Boucaet, Soluchows, Wge P. Y. Yu, M. Cadoa, Fudaetals of Secoductos Fzya ate sodesowaej stutu półpzewodowych - wyład 4 5

26 Nazewctwo pas, gupa wetoa falowego Weto falowy z putu L lub a euu L: opeacje, tóe pzepowadzają ta weto w ówoważy u twozą gupę C 3v. Tzy epzywedle epezetacje: A 1 1-wy., A 1-wy., E -wy. L 1, L, L 3 L 1, L, L 3 Podobe z pute X gupa D d czy z eue gupa C v. epezetacje: X 1, X, X 3, X 4 wszyste 1- wy., X 5 -wy. oaz 1,, 3, 4 wszyste 1-wy.. P. Y. Yu, M. Cadoa, Fudaetals of Secoductos Fzya ate sodesowaej stutu półpzewodowych - wyład 4 6

27 Nazewctwo pas, gupa wetoa falowego Uwzględee spu Mechaa watowa uczy, że obót fucj spowej woół wybaej os tutaj z o ąt f daje wy: c 1 c S zf f f U exp exp c1 exp c Dla ąta f otzyujey: c 1 c!!! a węc obót fucj spowej o ąt e jest opeacją tożsaoścową. Dodae taej opeacj do gupy podwaja lczbę eleetów gupy gupy podwóje Fzya ate sodesowaej stutu półpzewodowych - wyład 4 7

28 Nazewctwo pas, gupa wetoa falowego P. Y. Yu, M. Cadoa, Fudaetals of Secoductos Fzya ate sodesowaej stutu półpzewodowych - wyład 4 8

29 Nazewctwo pas, gupa wetoa falowego GaAs Fzya ate sodesowaej stutu półpzewodowych - wyład 4 9

30 Stutua pasowa staów eletoowych Model pawe swobodych eletoów Fzya ate sodesowaej stutu półpzewodowych - wyład 4 30

31 Model pawe swobodych eletoów Bez potecjału: stay a gacy stefy zdegeeowae Fale eletoowe z gacy stefy spełają waue Bagga Dla G/ /a ay obację lową fal padającej: exp Gx odbtej: Gx exp Ich tefeecja powadz do powstaa fal stojących Fzya ate sodesowaej stutu półpzewodowych - wyład 4 31

32 Model pawe swobodych eletoów Gx Gx Gx exp exp cos Gx Gx Gx exp exp s W pzypadu ezającego potecjału oba stay uszą eć óże eege: Ch. Kttel, Wstęp do fzy cała stałego Fzya ate sodesowaej stutu półpzewodowych - wyład 4 3

33 Model pawe swobodych eletoów Weźy zeczywsty potecjał pzycągający, w tóy tylo foueowse sładowe są óże od zea: Gx V exp Gx V cos Gx V x V exp G G W oolcy G/ G/h ożey poszuwać ozwązaa w postac obacj lowej ozwązań dla eletou swobodego: x G G C1 exp h x C exp h x Fzya ate sodesowaej stutu półpzewodowych - wyład 4 33

34 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 34 Model pawe swobodych eletoów Podstawee do ówaa Schödgea daje: ozwązae: C C E G V V E G h h V G G V G G G G E h h h h h h

35 E a.u. Model pawe swobodych eletoów Eege obu staów: E E - w jedostach G/ Fzya ate sodesowaej stutu półpzewodowych - wyład 4 35

36 Model pawe swobodych eletoów Współczy C 1 C : C 1, C O C 1 C O C 1 C w jedostach G/ Fzya ate sodesowaej stutu półpzewodowych - wyład 4 36

37 Model pawe swobodych eletoów H. Ibach, H. Lüth, Sold-State Physcs Fzya ate sodesowaej stutu półpzewodowych - wyład 4 37

38 Stutua pasowa staów eletoowych Metoda casego wązaa LCAO lea cobato of atoc obtals Fzya ate sodesowaej stutu półpzewodowych - wyład 4 38

39 Metoda casego wązaa LCAO dość dobze opsuje pasa eletoowe powstałe a baze wewętzych powło eletoowych atou; słabo dzała dla eletoów pzewodctwa OK p. do opsu pas d etal pzejścowych czy pas walecyjych yształów owalecyjych 1. Bazą do poszuwaa ozwązaa pobleu będą fucje falowe jedoeletoowe eletoów zajdujących sę a pozoach E swobodych atoów A ozeszczoych w węzłach sec ystalczej: H A E gdze H A jest haltoae eletou zwązaego pzez swobody ato A ueszczoy w puce Fzya ate sodesowaej stutu półpzewodowych - wyład 4 39

40 Metoda casego wązaa LCAO. Haltoa eletou pzyblżee jedoeletoowe!, w potecjale pochodzący od wszystch atoów: H H A v V 3. Jeśl -ty ato ueszczoy jest w ysztale, a eleto początowo a zwązay dzała taże potecjał pochodzący od wszystch pozostałych atoów: 4. Eleto jest jeda elatywe sle zwązay pzez swój ato, potecjał v jest słaby oże być tatoway jao zabuzee A v V A v Fzya ate sodesowaej stutu półpzewodowych - wyład 4 40

41 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 41 Metoda casego wązaa LCAO 5. Pzyblżoego ozwązaa szuay w postac: tóa a wszele własośc fucj Blocha, p.: 6. Eega: a exp exp exp ] exp[ G G G H E exp ] [ ] exp[ exp exp T T T T T T

42 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 4 Metoda casego wązaa LCAO 7. Lczyy oę pzy założeu ałego aywaa sę fucj falowych dla e jest to oecze, ale upaszcza achu: 8. Stąd watość oczewaa eeg: N dv dv ] exp[ * *, dv v E N E ] [ ] exp[ 1 *,

43 Metoda casego wązaa LCAO 9. Dalsze postępowae w ajpostszej wesj polega a: ogaczeu sę do wyazów dagoalych w człoe zaweający E uwzględeu aywaa sę fucj falowych co ajwyżej ajblższych sąsadów w człoe zaweający zabuzee v 10. Jeśl jeszcze fucje są sfeycze syetycze stay s, to cał aywaa zależą wyłącze od odległośc poędzy poszczególy węzła otzyujey: E E A B exp[ ] gdze suowae odbywa sę wyłącze po węzłach odpowadających ajblższy sąsado : * A v dv * B v dv Fzya ate sodesowaej stutu półpzewodowych - wyład 4 43

44 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 44 Metoda casego wązaa LCAO 11. Wy suowaa z putu 10 zależy od stutuy dla tóej wyoujey achu!!!: p. dla sc ay: dla bcc: dla fcc: 0, 0, 0;, 0, 0; 0,, a a a cos cos cos a a a B A E E z y x cos cos cos 8 a a a B A E E z y x.. cos cos 4 p c a a B A E E z y

45 Metoda casego wązaa LCAO H. Ibach, H. Lüth, Sold-State Physcs Fzya ate sodesowaej stutu półpzewodowych - wyład 4 45

46 Stutua pasowa staów eletoowych ówae p, teso asy efetywej Fzya ate sodesowaej stutu półpzewodowych - wyład 4 46

47 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 47 ówae p Fucja Blocha jest doby ozwązae jedoeletoowego ówaa Schödgea z peodyczy potecjałe: Po podstaweu postac fucj Blocha sóceu pzez czy otzyujey: Jest to tzw. ówae p. Często wyozystywae jest oo do oblczeń etoda achuu zabuzeń eeg fucj falowych staów odpowadających, jeśl zay ozwązaa w : u exp,, exp,, E V 0 0 ' ˆ ˆ,,,, u E u E u V p u H ' ˆ ˆ , 0, 0, u E u V p u H

48 Fzya ate sodesowaej stutu półpzewodowych - wyład 4 48 ówae p, teso asy efetywej Peły haltoa: Zabuzee: Fucj eeg poszuujey w aach achuu zabuzeń odpowedo dla staów ezdegeeowaych lub zdegeeowaych blso leżące pasa ' ' ˆ ˆ ˆ,,, 0 u E u H H u H p H ˆ ' ˆ 0, u ' E

Fizyka materii skondensowanej i struktur półprzewodnikowych (1101-4FS22) Michał Baj

Fizyka materii skondensowanej i struktur półprzewodnikowych (1101-4FS22) Michał Baj Fzya ate sodesowaej stutu półpzewodowych 1101-4FS Mchał Baj Załad Fzy Cała Stałego Istytut Fzy Dośwadczalej Wydzał Fzy Uwesytet Waszaws 017-03- Fzya ate sodesowaej stutu półpzewodowych - wyład 4 1 Pla

Bardziej szczegółowo

Fizyka materii skondensowanej i struktur półprzewodnikowych (1101-4FS22) Michał Baj

Fizyka materii skondensowanej i struktur półprzewodnikowych (1101-4FS22) Michał Baj Fzya mate sodesowaej stutu półpzewodowych -4FS Mchał Baj Załad Fzy Cała Stałego Istytut Fzy Dośwadczalej Wydzał Fzy Uwesytet Waszaws 9-3-3 Fzya mate sodesowaej stutu półpzewodowych - wyład 3 Pla wyładu

Bardziej szczegółowo

Półprzewodniki (ang. semiconductors).

Półprzewodniki (ang. semiconductors). Półpzwod ag. smcoductos. Uwsytt Waszaws 5 Podstawy modlu jdoltoowgo Twdz Blocha Co z tą pustą pzstzą? Pzyjmjmy, ż w węzłach sc zajduj sę mały potcjał V V mały potcjał cos a ozważymy pzypad jdowymaowy Ja

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

y Y : r R ; n Dobór zmiennych objaśniających do modelu ekonometrycznego Oznaczenia: Y - zmienna objaśniana, Postać macierzowa:

y Y : r R ; n Dobór zmiennych objaśniających do modelu ekonometrycznego Oznaczenia: Y - zmienna objaśniana, Postać macierzowa: Dobó zec objaśającc do odeu eooetczego Ozaczea Y - zea objaśaa,,.,, - potecjae zee objaśające. Postać acezowa Y,. Współcz oeacj R, R, gdze ;,.,, ; ;,.,,, Postuat dotczące zec objaśającc Wso pozo zeośc

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Novosibirsk, Russia, September 2002

Novosibirsk, Russia, September 2002 Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

Przetwarzanie danych meteorologicznych

Przetwarzanie danych meteorologicznych Sps teśc I Rozważaa ogóle 5 Pzetwazae daych meteoologczych Notat z wyładu pokhamaa Wyoała: Alesada Kadaś I Iomacja odowae 5 I Poces pzetwazaa daych 5 I Aalza 6 I Syteza 7 I3 Edycja wzualzacja 7 I3 Dae

Bardziej szczegółowo

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982. Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Wykład 13 Teoretyczny opis właściwości kryształów

Wykład 13 Teoretyczny opis właściwości kryształów Wyład 3 Teoetyczy opis właściwości yształów Opis ścisły patyczie ieożliwy są to ułady zbyt sopliowae. c 3 3 atoów Wyład 3 Rozdział: Pasa eegetycze Rozdział te ie ależy do ajłatwiejszyc ozdziałów w siążce,

Bardziej szczegółowo

miąższość warstwy wodonośnej zadana głębokość wody w studni krzywa depresji podłoże nieprzepuszczalne

miąższość warstwy wodonośnej zadana głębokość wody w studni krzywa depresji podłoże nieprzepuszczalne 4 Pemyław Baa www.a.aow.pl\~pbaa Utaloy dopływ wody do tud upełej Według teo Duputa, woda do tud dotaje ę w poób adaly. Le ewpotecjale mają tałt ół, tóyc śedce mejają ę wa bloścą tud, a c śod leżą w jej

Bardziej szczegółowo

Rama płaska metoda elementów skończonych.

Rama płaska metoda elementów skończonych. Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni

Bardziej szczegółowo

Nieparametryczna ANOVA

Nieparametryczna ANOVA Nepaametyza NOV Jeżel z pewyh względów założee omaloś błędów w modelu NOV efetów stałyh est e do pzyęa, to moża zbudować ogóleszy model e ozystaąy z tyh ępuąyh założeń. ozważmy pewe epaametyzy odpowed

Bardziej szczegółowo

Wiązania chemiczne i cząsteczki. Atom -powtórzenie Cząsteczki. Cząsteczki. Cząsteczki. Cząsteczki Przybliżenie Borna Oppenheimera

Wiązania chemiczne i cząsteczki. Atom -powtórzenie Cząsteczki. Cząsteczki. Cząsteczki. Cząsteczki Przybliżenie Borna Oppenheimera -3-3 Wązaa chemcze cząstecz Jace.Szczyto@fuw.edu.pl http://www.fuw.edu.pl/~szczyto/ H 3 C 6 O OC 6 H 3 OC 6 H 3 Jace.Szczyto@fuw.edu.pl http://www.fuw.edu.pl/~szczyto/ tom -powtózee H 7 C 8 O O H 7 C 8

Bardziej szczegółowo

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

Statystyka Wykład 9 Adam Ćmiel A3-A4 311a

Statystyka Wykład 9 Adam Ćmiel A3-A4 311a st hpotzy owj opaty a oaz waygodośc ozważay popzdo pob tstowaa hpotzy o ówośc watośc oczwaych w popuacjach o ozładach N =... jst szczgóy pzypad pwgo ogójszgo pobu tstowaa: od: =+ gdz jst wto obswacj Uwaga:

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, techologa oaz modelowae wzostu kyształów Stasław Kukowsk Mchał Leszczyńsk Istytut Wysokch Cśeń PA 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@upess.waw.pl, mke@upess.waw.pl Zbgew

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

σ r z wektorem n r wynika

σ r z wektorem n r wynika Wyład Napęża głów Pozuamy płazczyzy dowol achylo do o uładu wpółzędych o t właośc by wto apęża a t płazczyź był wpółoowy z wtom wtom tóy otu tę płazczyzę w pztz (wtom do omalym). a) pzypad ogóly b) płazczyza

Bardziej szczegółowo

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

Dodatek 10. Kwantowa teoria przewodnictwa I

Dodatek 10. Kwantowa teoria przewodnictwa I Dodate 10 Kwatowa teoria przewodictwa I Teoria lascza iała astępujące aaet: (1) zierzoe wartości średiej drogi swobodej oazał się o ila rzędów wielości więsze iż oczeiwae () teoria ie dawała poprawc zależości

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem.

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem. . Hofma Wyłady z ermodyam techczej chemczej Wydzał Chemczy PW erue: echologa chemcza sem.3 215/216 WYKŁAD 3-4. D. Blase reatorów chemczych E. II zasada termodyam F. Kosewecje zasad termodyam D. BILANE

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

Blok 8: Moment bezwładności. Moment siły Zasada zachowania momentu pędu

Blok 8: Moment bezwładności. Moment siły Zasada zachowania momentu pędu Blo 8: Moent bezwładności Moent siły Zasada zachowania oentu pędu Moent bezwładności awiając uch postępowy ciała, posługujey się pojęciai pzeieszczenia, szybości, pzyspieszenia tego ciała oaz wypadowej

Bardziej szczegółowo

Procent prosty Gdy znamy kapitał początkowy i stopę procentową

Procent prosty Gdy znamy kapitał początkowy i stopę procentową cet psty Gdy zay aptał pczątwy stpę pcetwą F = + I aptał ńcwy, pczątwy, dset I = I = stpa pcetwa (w stsuu czy) F = ( + ) aledaze dsetwe 360/360, 365/365, 360/365, 365/360 es wyaży w latach (dla óżych esów

Bardziej szczegółowo

+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba

+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba Atomy weloelektoowe: ekulombowsk potecał (cetaly) kedy? ektóe atomy weloelektoowe (p. alkalcze) maą elekto w śede odległ. od ąda >> ż odległośc pozostałych elektoów, el. walecyy kadłub atomu Róże stay

Bardziej szczegółowo

Ćwiczenie 43. Halotron

Ćwiczenie 43. Halotron Ćwiczeie 4 Haloto Cel ćwiczeia Cechowaie halotou pzy użyciu pola magetyczego o zaej iducji. Wyozystaie halotou do pomiau pzestzeego ozładu pola cewi ołowej i magesu feytowego. Wpowadzeie Zasada działaia

Bardziej szczegółowo

4. Elementy teorii powierzchni. Odwzorowanie powierzchni na powierzchnię.

4. Elementy teorii powierzchni. Odwzorowanie powierzchni na powierzchnię. Katogafia matematyczna. ementy teoii powiezchni. Odwzoowanie powiezchni na powiezchnię. 4. ementy teoii powiezchni. Odwzoowanie powiezchni na powiezchnię. 4.. Powiezchnie Powiezchnią w geometii óŝniczowej

Bardziej szczegółowo

Dodatkowe zagadnienia (dla zainteresowanych)

Dodatkowe zagadnienia (dla zainteresowanych) Dodatowe zagadnienia (dla zainteesowanych) Elementy ystalogafii Kyształy Kyształ- obiet wieloatomowy mający symetię tanslacyjną. Symetia tanslacyjna polega na tym że istnieją taie wetoy a, a, a3 zwane

Bardziej szczegółowo

Równoległe połączenie pojemności liniowych. Szeregowe połączenie pojemności liniowych. Przekształcenie gwiazda-trójkąt i odwrotne

Równoległe połączenie pojemności liniowych. Szeregowe połączenie pojemności liniowych. Przekształcenie gwiazda-trójkąt i odwrotne . letostatya. Kodesatoy Wyład I. KŁADY POŁĄZŃ KONDNSATOÓW. NGIA POLA LKTOSTATYZNGO. WYTZYMAŁOŚĆ LKTYZNA DILKTYKÓW ówoległe połączee pojemośc lowych Zostae oeśloa pojemość zastępcza uładu ówolegle połączoych

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Meod ecze Wkład Rówaa óżczkowe cząskowe d hab. Po Foczak Rówaa óżczkowe cząskowe RRC lczba zech F ząd ówaa: ząd awższe pochode 3 3 b chaakeska: lowe qas-lowe elowe C B A F E D C B A b c b a : : : : : :

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC 4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana

Bardziej szczegółowo

Johann Wolfgang Goethe Def.

Johann Wolfgang Goethe Def. "Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

Tablice wzorów Przygotował: Mateusz Szczygieł

Tablice wzorów Przygotował: Mateusz Szczygieł Tablce zoó Pzygotoał: Mateusz Szczygeł DKATORFIASOWY.COM.PL . Oczekaa stoa zotu - adoodobeństo zaśca daego zdazea ożla do zealzoaa stoa zotu. Waaca aaca stoy zotu oczekaa stoa zotu [ ] 3. Odchylee stadadoe

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. odelowae pzepływu ceczy pzez ośod poowate Wyład VI OZWIAZANIA ZAGADNIEŃ PZEPŁYWU FILTACYJNEGO ETODAI ANALITYCZNYI. 6. Zagadea jedowymaowe fltacj. 6.. Oeślee śedego współczya fltacj dla pzepływu pzez ośode

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

LINIA PRZESYŁOWA PRĄDU STAŁEGO

LINIA PRZESYŁOWA PRĄDU STAŁEGO oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto

Bardziej szczegółowo

KONSTRUOWANIE ENERGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULARNEGO

KONSTRUOWANIE ENERGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULARNEGO KONSTUOWANIE ENEGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULANEGO Dwa etay: "ozsądny model eneg otencalne dobó oczątowych watośc aametów Doasowane aametów w tace symulac Oddzaływana ótozasęgowe enega otencalna

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lecja 4 Nearametrycze testy stotośc ZADANIE DOMOWE www.etraez.l Stroa 1 Część 1: TEST Zazacz orawą odowedź (tylo jeda jest rawdzwa). Pytae 1 W testach earametryczych a) Oblczamy statystyę

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

4. ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH (MES) W AKUSTYCE

4. ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH (MES) W AKUSTYCE 4. ZAOOWAIE E W AUYCE Astya w bdowtwe. 4. ZAOOWAIE EODY ELEEÓW OŃCZOYCH (E) W AUYCE ożej zostae rzedstawoe sorłowae ateatyze słżąe do aalzy staów staloyh ja estaloyh, rzebeg al astyzej, zastosowayh w rograe

Bardziej szczegółowo

JEDNOSTKI SI (przeliczanie) PRZEDROSTKI do tworzenia nazw i symboli jednostek krotnych

JEDNOSTKI SI (przeliczanie) PRZEDROSTKI do tworzenia nazw i symboli jednostek krotnych JEDNSTI SI pzelzae DŁUGŚĆ BJĘTŚĆ GĘSTŚĆ 9-9 6 µ µ -6 - - 6-6 d d - d - d g/ - g/ g/ g/ Mg/ g/ g/ Mg/ STĘŻENIE MLWE ol/d ol/ ol/ ol/d ol/ ol/d - ol/ ol/ - ol/d ol/ ol/d PZEDSTI do twozea azw ybol jedote

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

X. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

X. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE X. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE.. Wpowadzee Rozważmy ład ówań óżczowyc z waam począowym Zagadee (.) (.) azywa sę zagadeem począowym. Naszym zadaem es zalezee fc y () będącyc ozwązaem ww. ład. W dalszym

Bardziej szczegółowo

Podsumowanie W6ef. Zeemana ef. Paschena-Backa

Podsumowanie W6ef. Zeemana ef. Paschena-Backa Z na podstawie W. Gawli - Wstęp do Fiyi Atoowej, wyład 7 /8 Podsuowanie W6ef. Zeeana ef. Paschena-Baca B g B F F I B I I a B g g ) ( S L B S L A B ) ( = = 3 P,, + I=/ = Ato w polu eletrycny: joniacja polowa:

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

Metody numeryczne. Wykład nr 10. Dr Piotr Fronczak

Metody numeryczne. Wykład nr 10. Dr Piotr Fronczak Meod ecze Wkład D Po Foczak Rówaa óŝczkowe cząskowe RRC lczba zech L L L F ząd ówaa: ząd awŝsze pochode 3 3 b chaakeska: lowe qas-lowe elowe C B A F E D C B A b c b a : : : :: : : : : : Nelowe lowe Qas

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Przejmowanie ciepła przy kondensacji pary

Przejmowanie ciepła przy kondensacji pary d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

teorii optymalizacji

teorii optymalizacji Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1 XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Mechanika kwantowa III

Mechanika kwantowa III Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2

INSTRUKCJA DO ĆWICZENIA NR 2 KATEDRA MECHANIKI STOSOWANEJ Wydzał Mehazy POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Wyzazee położee środka ężkoś układu mehazego Dr ż. K. Kęk 1.

Bardziej szczegółowo

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k Statystya Wyład Adam Ćmel A4 5 cmel@agh.edu.pl Pojęce statysty Pojęce statysty w statystyce matematyczej jest odpowedem pojęca zmeej losowej w rachuu prawdopodobeństwa. Nech X(X,...,X ) będze próbą z pewej

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

3. Struktura pasmowa

3. Struktura pasmowa 3. Stutua pasmowa Funcja Blocha Quasi-pęd, sić odwotna Pzybliżni pawi swobodngo ltonu Dziua w paśmi walncyjnym Masa ftywna Stutua pasmowa (), pzyłady Półpzwodnii miszan lton w ysztal sfomułowani poblmu

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera) Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI Mosław Kweselewcz Poltechka Gdańska Wydzał Elektotechk Automatyk PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Teora metoy optymalzacj Nelowe zaae optymalzacj bez ograczeń umerycze metoy teracyje optymalzacj m x R f = f x Algorytmy poszuwaa mmum loalego zaaa programowaa elowego: Bez ograczeń Z ograczeam Algorytmy

Bardziej szczegółowo

Cząsteczki. Folie:

Cząsteczki. Folie: Cząsteczk Fole: Jacek.Szczytko@fuw.edu.l htt://www.fuw.edu.l/~szczytko/t Hamltoa cząsteczk Hamltoa woektoowy j ektoy K-atomy < < K j j K K e e Z Z e Z M m H h h 0 0 0 4 4 4 ˆ πε πε πε ˆ H ˆ ˆ ˆ V T T H

Bardziej szczegółowo