Ćwiczenie 43. Halotron
|
|
- Zofia Kubicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczeie 4 Haloto Cel ćwiczeia Cechowaie halotou pzy użyciu pola magetyczego o zaej iducji. Wyozystaie halotou do pomiau pzestzeego ozładu pola cewi ołowej i magesu feytowego. Wpowadzeie Zasada działaia halotou Napięciem Halla azywamy óżicę potecjałów powstającą w pzewodiu z pądem, umieszczoym w polu magetyczym w ieuu postopadłym do ieuu pądu i pola. W zjawisu Halla ujawia się zależość maosopowej wielości miezalej, jaą jest apięcie Halla, od zau ładuu pzepływającego pzez pzewodi. Elemet eletoiczy wyozystujący zjawiso Halla azyway halotoem. Rysue pzedstawia schemat działaia halotou. Na ośii pądu pouszające się w halotoie działa siła Loetza F, tóa odchyla je w ieuu postopadłym zaówo do ieuu wetoa pędości v, ja ówież do ieuu wetoa iducji magetyczej B. Watość siły Loetza wyosi F = qv B gdzie q ozacza ładue eletou (lub iego ośia pądu, tóym w półpzewodiach mogą być tzw. dziuy), v jest śedią pędością uchu eletou, zaś B watością iducji magetyczej. Rys.. Zasada działaia halotou
2 Na sute odchyleia (ujemych a ys. ) ładuów q bo halotou AC aładuje się ujemie, a bo DG dodatio. Powstaje óżica potecjałów między tymi boami zwaa apięciem Halla, tóe może być zmiezoe woltomiezem. U H Z apięciem Halla związae jest pole eletycze o atężeiu EH = d, gdzie U H ozacza apięcie Halla, atomiast d szeoość wastwy pzewodzącej. Siła działająca a qu H ośii pądu ze stoy tego pola eletyczego wyosi FE = d. Zwoty siły F i F E są pzeciwe, więc pzemieszczeie się ładuów eletyczych będzie twało, dopói te ie zówoważą się, czyli U q d H = q v B, sąd U H = v B d. () Śedią pędość uchu ośiów o ładuu q moża powiązać z gęstością pądu I j = i ocetacją ośiów, czyli liczbą ośiów pądu w jedostce objętości d h mateiału halotou Ostateczie watość apięcia Halla wyosi j = v q. () U H = I B. () qh Współczyi popocjoalości c = azywamy stałą halotou. qh Szczegółowy opis zjawisa Halla jest badziej złożoy, gdyż ośiów pądu w metalach i półpzewodiach ie moża uważać za swobode, ale awet te uposzczoy model wsazuje, że: pomia stałej Halla pozwala zaleźć ocetację ośiów pądu i ustalić, czy są imi eletoy, czy dziuy, ze wzostem ocetacji ośiów maleje apięcie Halla, więc efet jest łatwiej wyywaly w mateiałach półpzewodiowych iż w metalach. Do budowy halotoów stosuje się półpzewodii w postaci litych płyte lub wastw apaowaych a ceamicze podłoże. Tudo jest pzy tym zealizować idealą symetię wastwy półpzewodia oaz metalowych dopowadzeń. Opoość wastwy półpzewodia powoduje powstaie spadu apięcia wzdłuż boów halotou, popocjoalego do pądu i. Jeżeli dopowadzeia do woltomieza (ys. ) ie zajdują się a tym samym potecjale (pzy bau pola), wtedy powstaje dodatowe apięcie U R popocjoale do pądu halotou. Miezoe apięcie wypadowe wyosi U = U H + U R = c I B + R I. (4)
3 Chaateystyi halotou idealego (bez sładia U R = R I) i zeczywistego pzedstawia ysue. Rys.. Chaateystyi halotou: ideale liia pzeywaa, zeczywiste liia ciągła Halotoy są wyozystywae do pomiaów pola magetyczego. Należy pamiętać, że haloto miezy sładową pola postopadłą do powiezchi halotou. Rozład pola magetyczego cewi ołowej i magesu W ćwiczeiu źódłem pola magetyczego jest óti soleoid o N zwojach, tóy możemy tatować jao ołowy pzewodi z wypadowym pądem N Is, gdyż długość i gubość uzwojeia jest iewiela w stosuu do jego śedicy. Iducję pola magetyczego w dowolym pucie pzestzei moża obliczyć ozystając z pawa Biota-Savata wyażoego ówaiem B = db, gdzie µ I db = 4π 0 d l. (5) Symbole występujące w ówaiu (5) wyjaśioe są w opisie ćwiczeia 4. Rówaie (5) zastosujemy do obliczeia pola w óżych putach pzestzei woół cewi ołowej. Pzedstawioe poiżej ezultaty dobze ilustują wzost tudości obliczeiowych pzy zmiejszeiu stopia symetii poblemu. (a) Śode cewi ołowej. W tym pzypadu pzyczyi db są ówe ta co do wielości ja i ieuu. Sumowaie pzyczyów, omówioe w ćw. 4, daje watość pola µ 0 N I s B0 =. (6) R (b) Oś symetii cewi. W pzypadu putów położoych a osi cewi, w odległości z od jej śoda, moża ówież uzysać a watość pola wyażeie aalitycze. W tym pzypadu pzyczyi db wyiające z pawa Biota-Savata są ówież ówe co do wielości bezwzględej,
4 µ 0 N I S dl db =, 4π (7) lecz tzeba je sumować jao wetoy (patz ys. ). Sładowe wetoów db postopadłe do osi asują się do zea, atomiast sładowe ówoległe do osi ówe db = db cosα = db R/z po zsumowaiu dają w ezultacie B0 B ( z) =, z + R (8) gdzie B 0 ozacza pole w śodu soleoidu dae wzoem (6)). Szczegóły tego obliczeia wyjaśioe są w podęcziach ([], ozdz. 0). Rys.. Rysue pomociczy do wypowadzeia ozładu pola wzdłuż osi cewi (c) Puty a śedicy cewi ołowej. Dla putów położoych poza osią symetii ozwiązaia ie da się pzedstawić w postaci zaych am fucji elemetaych. Pzedstawimy atomiast szczegóły ozwiązaia umeyczego. Pzyładem jest obliczeie B dla putów leżących a śedicy cewi ołowej, w odległości y od śoda. Obwód oła (wystaczy ozpatywać tylo połowę obwodu) dzielimy a ówych części (ys. 4). Całę (5) zastępujemy sończoą sumą pzyczyów pochodzących od elemetów l obwodu oła, µ 0 N I l B = 4π =. (9) R Z ysuu widać, że długość odcia pzewodu wyosi l = π, atomiast ąt π oeślający położeie -tego odcia wyosi α =. Sładowe wetoów l i wyoszą 4
5 π R l cosα, π R siα, 0, ( Rsiα, Rcosα y, 0). Rys. 4. Rysue pomociczy do umeyczego obliczeia pola magetyczego wzdłuż śedicy cewi ołowej Po obliczeiu iloczyu wetoowego l wzó (9) moża pzeształcić do postaci µ 0 N I S B = R = p cosα p = ( p cosα + p ) R gdzie y, () i zealizować obliczeie pzy użyciu omputea lub alulatoa pogamowaego. Rezultaty taiego podaje tabela, pzedstawiająca względą watość pola (w stosuu do pola w śodu soleoidu) jao fucję względego położeia putu y/r. Dla poówaia z espeymetem moża po postu wyozystać wyi obliczeia, gdy obwód cewi ołowe podzieloy został a = 9 części, jao wystaczająco blisa gaicy. Tabela podaje ówież wyi obliczeia dla iych watości - ja widać, podział połowy oła a = 6 części w zupełości wystacza w pzypadu małych watości stosuu y/r Tabela. Numeycze obliczeie ozładu pola magetyczego wzdłuż śedicy cewi ołowej p = y/r 0, 0, 0, 0,4 0,5 0,6 0,7 0,8 0, ,0076,0076,0076,0076,0,0,0,0,077,077,077,077,4,4,4,4,444,456,456,456,989,406,406,406,6085,6007,60,69,777,00,568,57,559,8704,807,959 5
6 W podoby sposób moża obliczyć pole w dowolym pucie pzestzei woół cewi (oeśloym pzez współzęde 0, y, z), wyoując obliczeia (9) z wetoem R siα, R cosα y z. ( ), (d) Pole a osi cewi dla z >> R, z zastosowiem do opisu pola magesu Dla dużych watości z jedya w miaowiu wzou (8) jest do pomiięcia i otzymujemy B 0 0 ( z) = µ N I R µ µ =. () z π z Watość µ = I NπR czyli iloczyu pądu i efetywej powiezchi zwojów osi azwę mometu magetyczego dipola. Pole dipola maleje odwotie popocjoalie do sześciau odległości. Wzó () zastosować możemy ta dla cewi z ealym pądem, ja i do opisu pola ótiego magesu, będącego też zbioem atomowych mometów magetyczych twozących wypadowy momet µ. Rys. 5. Liie sił pola dla dipola magetyczego (magesu feytowego) Poza osią symetii dipola (magesu) chaate liii sił jest badziej złożoy (ys. 5), iemiej w ażdym ieuu pole dipola maleje popocjoalie do sześciau odległości. Aby doświadczalie spawdzić pawo B z, zlogaytmujemy obustoie wzó () µ 0 µ lb = l lz. () π Wyes l B w fucji l z powiie być postą, tóej paamety wyzaczają doświadczalą watość wyładia potęgowego pzy z i watość mometu magetyczego magesu µ. 6
XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1
XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:
Mechanika ogólna. Równowaga statyczna Punkt materialny (ciało o sztywne) jest. porusza się ruchem jednostajnym prostoliniowym. Taki układ sił nazywa
echaika ogóla Wykład 2 odzaje sił i obciąż ążeń ówowaga odzaje ustojów w pętowych Wyzaczaie eakcji Sta ówowagi ówowaga statycza ukt mateialy (ciało o sztywe) jest w ówowadze, jeżeli eli pod wpływem układu
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Wytrzymałość śruby wysokość nakrętki
Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Definicja krętu i kręt układu materialnego
7.3.. Defiicja ętu i ęt uładu ateialego Kęte putu ateialego o asie względe putu azyway oet pędu p tego putu ateialego względe putu : p. (7.56) Z powyższej defiicji wyia, że ęt zdefiioway podobie ja oet
Blok 8: Moment bezwładności. Moment siły Zasada zachowania momentu pędu
Blo 8: Moent bezwładności Moent siły Zasada zachowania oentu pędu Moent bezwładności awiając uch postępowy ciała, posługujey się pojęciai pzeieszczenia, szybości, pzyspieszenia tego ciała oaz wypadowej
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład 0 Wprowadzenie ( ) ( ) dy x dx ( )
Rówaia óżiczkowe zwyczaje Rówaie postaci: Wykład Wpowadzeie dy x dx ( x y ( x) ) = f () Gdzie f ( x y ) jest fukcją dwóch zmieych okeśloą i ciągłą w pewym obszaze płaskim D azywamy ówaiem óżiczkowym zwyczajym
Definicje i charakteryzacja mierników efektywności finansowych:
Defiicje i chaakteyzacja mieików efektywości fiasowych: Iwestycja fiasowa akład dający iwestoowi możliwości uzyskaia w pzyszłości dodatich pzepływów fiasowych Mieiki efektywości iwestycji fiasowych:. Stopą
Wyższe momenty zmiennej losowej
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla
n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu
Fizyka I (2013/2014) Kolokwium Pytania testowe (B)
Imię i Nazwisko:... N. albm:... Gpa ćwiczeiowa:... Fizyka I (013/014) Kolokwim 18.11.013 Pytaia testowe (B) Na każde pytaie jest dokładie jeda pawidłowa odpowiedź. Należy ją zazaczyć stawiając czytely
Przejmowanie ciepła przy kondensacji pary
d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej
23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
LINIA PRZESYŁOWA PRĄDU STAŁEGO
oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
Transformacja: płytka - włókno w zorientowanej eutektyce Al-Si
MTO Mtaluiczy Tei O-lie Tasfoacja: płyta - włóo w zoietowaej eutetyce Al-i Waldea Wołczyńsi IMIM PA duacja i Kultua Kyteiu wzostu płyte lub włóie Teoia Jacsoa-Huta elacja: pzechłodzeie pędość wzostu wzost
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację
Fizyka I (2013/2014) Kolokwium Pytania testowe (A)
Imię i Nazwisko:... N. albm:... Gpa ćwiczeiowa:... Fizyka I (013/014) Kolokwim 18.11.013 Pytaia testowe (A) Na każde pytaie jest dokładie jeda pawidłowa odpowiedź. Należy ją zazaczyć stawiając czytely
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz
POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczeia - Rówaia óżicowe Rozwiązać ówaia óżicowe piewszego zędu: (a) y + y =, y = (b) y + y =!, y = Wsk Podzielić ówaie pzez! i podstawić z = y /( )! Rozwiązać ówaia óżicowe dugiego zędu: (a) + 6,
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
Wyznaczenie współczynnika dyfuzji cieplnej κ z rozkładu amplitudy fali cieplnej
ace Instytutu Mechanii Góotwou AN Tom 15, n 3-, gudzień 13, s. 69-75 Instytut Mechanii Góotwou AN Wyznaczenie współczynnia dyfuzji cieplnej κ z ozładu amplitudy fali cieplnej JAN KIEŁBASA Instytut Mechanii
Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
ĆWICZENIE PROJEKTOWE NR 4 POSADOWIENIE NA PALACH Wybrane schematy i tablice z PN-83/B :
ĆWICZENIE PROJEKTOWE NR 4 POSADOWIENIE NA PALACH Wybae schematy i tablice z PN-83/B-048 : http://www.uwm.edu.pl/edu/piotsokosz/mg.htm UWAGA! Rysuki ie są w skali!!! N = 900 kn M = 500 knm G, I L =0.3 0.0m
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne
APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość
Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego
.Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je
4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE
4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi
INSTRUKCJA DO ĆWICZENIA
NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.
A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO
10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez
Termodynamika defektów sieci krystalicznej
Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,
Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna
stalacje i Urządzeia Eletrycze Automatyi Przemysłowej Moderizacja systemu chłodzeia Ciągu echologiczego- część eletroeergetycza Wyoali: Sebastia Marczyci Maciej Wasiuta Wydział Eletryczy Politechii Szczecińsiej
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia
KATEDRA ENERGETYKI. Laboratorium Elektrotechniki UKŁAD REGULACJI PRĘDKOŚCI. Temat ćwiczenia: SILNIKA PRĄDU STAŁEGO (LEONARD TYRYSTOROWY)
KATEDRA ENERGETYKI Laboatoium Elektotechiki Temat ćwiczeia: UKŁAD REGULACJI RĘDKOŚCI SILNIKA RĄDU STAŁEGO (LEONARD TYRYSTOROWY) I. WSTĘ TEORETYCZNY 1. Chaakteystyki mechaicze silika obcowzbudego Układy
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku
Wykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ
POMAR PĘTL STEREZ MAGNETZNEJ 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DDAKTKA FZKA ĆZENA LABORATORJNE.. Opis układu pomiaowego Mateiały feomagnetyczne (feyt,
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Arytmetyka finansowa Wykład 6 Dr Wioletta Nowak
Aytmetya finansowa Wyład 6 Wioletta Nowa Ryne apitałowy zez yne apitałowy ozumie się ogół tansacji upna-spzedaży, tóych pzedmiotem są instumenty finansowe o oesie wyupu dłuższym niż o. Śodi uzysane z emisji
Energia kinetyczna układu punktów materialnych
74 egia ietycza ułau putów ateialych egią ietyczą putu ateialego o asie, pouszającego się z pęością, azyway połowę iloczyu asy putu i waatu jego pęości: Dla ułau putów ateialych o asach pouszających się
Temat ćwiczenia: OBWODY PRĄDU SINUSOIDALNEGO Pomiary w obwodzie z obciążeniem rezystancyjnym, indukcyjnym i pojemnościowym.
aboatoium eoii Obwodów emat ćwiczenia: OBODY ĄD SNSODNEGO BOOM MD omiay w obwodzie z obciążeniem ezystancyjnym, inducyjnym i pojemnościowym.. estawiamy uład połączeń obwodu ja na schemacie.. yonujemy pomiay
4. Elementy teorii powierzchni. Odwzorowanie powierzchni na powierzchnię.
Katogafia matematyczna. ementy teoii powiezchni. Odwzoowanie powiezchni na powiezchnię. 4. ementy teoii powiezchni. Odwzoowanie powiezchni na powiezchnię. 4.. Powiezchnie Powiezchnią w geometii óŝniczowej
Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo Biota-Savarta Autorzy: Zbigniew Kąkol Piotr Morawski 2018 Prawo Biota-Savarta Autorzy: Zbigniew Kąkol, Piotr Morawski Istnieje równanie, zwane prawem Biota-Savarta, które pozwala obliczyć pole B
należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia
Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2
Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )
STATYSTYCZNY OPIS UKŁADU CZĄSTEK
WYKŁAD 6 STATYSTYCZNY OPIS UKŁADU CZĄSTK Zespół statcz moża opisać: ) Klasczie pzestzeń fazowa P ( P PN, q, q q N) q Każda kofiguacja N cząstek zespołu statczego opisaa jest puktem w pzestzei fazowej.
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI
Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół
Zjawiska kontaktowe. Pojęcia.
Zjawiska kotaktowe. Pojęcia. Próżia, E vac =0 Φ m W Φ s χ E c µ E v metal półprzewodik W praca przeiesieia elektrou z da pasma przewodictwa do próżi, bez zwiększaia jego eergii kietyczej (którą ma zerową).
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Analiza I.1, zima globalna lista zadań
Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 07/08 dr iż. Sebastia
WYZNACZANIE HARMONICZNYCH PRZESTRZENNYCH SEM INDUKOWANYCH W PRĘTACH WIRNIKA JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO Z POMOCNICZYM UZWOJENIEM ZWARTYM
Pace Nauowe Instytutu Maszyn, Napędów i Pomiaów Eletycznych N 54 Politechnii Wocławsiej N 54 Studia i Mateiały N 23 23 Kzysztof MAKOWSKI * Silnii inducyjne, jednofazowe, analiza hamoniczna, symulacja,
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1
1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych
GEOMETRIA ANALITYCZNA W PRZESTRZENI
GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
THE FUZZY-PROBABILISTIC SEQUENT SYSTEM FOR CONTROL- LING THE SPARK IGNITION IN FUEL ENGINE
Joual of KONES Iteal Combustio Egies 2005, vol. 2, 3-4 THE FUZZY-PROBABILISTIC SEQUENT SYSTEM FOR CONTROL- LING THE SPARK IGNITION IN FUEL ENGINE Maiusz Topolsi Politechia Wocławsa, Wydział Eletoii Kateda
20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
Rama płaska metoda elementów skończonych.
Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
Zjawisko indukcji. Magnetyzm materii.
Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT
KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.
LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady
Teoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Przetwarzanie danych meteorologicznych
Sps teśc I Rozważaa ogóle 5 Pzetwazae daych meteoologczych Notat z wyładu pokhamaa Wyoała: Alesada Kadaś I Iomacja odowae 5 I Poces pzetwazaa daych 5 I Aalza 6 I Syteza 7 I3 Edycja wzualzacja 7 I3 Dae
Dodatkowe zagadnienia (dla zainteresowanych)
Dodatowe zagadnienia (dla zainteesowanych) Elementy ystalogafii Kyształy Kyształ- obiet wieloatomowy mający symetię tanslacyjną. Symetia tanslacyjna polega na tym że istnieją taie wetoy a, a, a3 zwane
4.1. Środek ciężkości i środek masy
4 Śode ciężości i śode as Rozpatz uład putów ateialch o asach (,,, ), a tóe działają sił ciężości (s 4) Niech położeie tch putów względe putu odiesieia O oeślają weto wodzące, ja a suu Wiadoo, że sił ciężości
Zmiana wartości pieniądza
Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
ELEKTROTECHNIKA I ELEKTRONIKA
NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce
IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych
WARTOŚĆ PIENIĄDZA W CZASIE
WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość
Model Bohra atomu wodoru
Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych
7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW
A. Kaici: warcia w sieciach eletroeergetyczych 7. OBCNA WKOŚC WARCOWCH A POOCĄ KOPUTRÓW 7.. astosowaie metody potecjałów węzłowych do obliczaia zwarć przy założeiu jedaowych sił eletromotoryczych geeratorów
Statystyka Inżynierska
Statystya Iżyiersa dr hab. iż. Jace Tarasiu GH, WFiIS 03 Wyład 4 RCHUNEK NIEPEWNOŚCI + KILK UŻYTECZNYCH NRZĘDZI STTYSTYCZNYCH Wyład w więszości oparty a opracowaiu prof.. Zięby http://www.fis.agh.edu.pl/~pracowia_fizycza/pomoce/opracowaiedaychpomiarowych.pdf
20. Model atomu wodoru według Bohra.
Model atou wodou według Boha Wybó i opacowaie zadań Jadwiga Mechlińska-Dewko Więcej zadań a te teat zajdziesz w II części skyptu Opieając się a teoii Boha zaleźć: a/ poień -tej obity elektou w atoie wodou,
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
Modele propagacji fal ELF na powierzchni Ziemi
Obsewatoium Astoomicze UJ Zakład Fizyki Wysokic Eegii Istytut Fizyki UJ Zakład Doświadczalej Fizyki Komputeowej Akademia Góiczo-Huticza Kateda Elektoiki Adzej Kułak, Jausz Młyaczyk - Kateda Elektoiki AGH
Wykład 8. Prawo Hooke a
Wykład 8 Pawo Hooke a Pod działaiem apężeń ciało tałe zmieia wó kztałt. Z doświadczeń wyika, że eżeli wielkość apężeia et mieza od pewe watości, zwae gaicą pężytości, to odkztałceie et odwacale i po uuięciu
KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI
KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:
Zbigniew Otremba, Fizyka cz.1: Mechanika 5
Zbigniew Otemba, Fizya cz.: Mechania 5. MECHANIKA Mechania - to idee odnoszące się do zozumienia i opisu wszeliego uchu. Wpowadzone tu pojęcia i wielości dają postawy innym działom fizyi oaz mechanice
KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.
KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych