Metody numeryczne. Wykład nr 10. Dr Piotr Fronczak
|
|
- Urszula Wrona
- 7 lat temu
- Przeglądów:
Transkrypt
1 Meod ecze Wkład D Po Foczak
2 Rówaa óŝczkowe cząskowe RRC lczba zech L L L F ząd ówaa: ząd awŝsze pochode 3 3 b chaakeska: lowe qas-lowe elowe
3 C B A F E D C B A b c b a : : : :: : : : : : Nelowe lowe Qas Lowe c b a Nelowe lowe Qas Lowe
4 Skp sę a RRC co awŝe dgego zęd apoplaesze w fzce Ogóla posać RRC dgego zęd B -AC Kaegoa Pzkład < elpcze Rówae Laplace a paabolcze Rówae pzewodcwa cepła > hpebolcze Rówae falowe T T k T T c G C B A G C B A
5 Mowaca dla ake klasfkac Napossze ozwązaa: RóweŜ dla badze skoplkowach ówań lokale własośc ozwązae zaleŝą od zak waŝea B -AC. elpcze C paabolcze C hpebolcze C ; ; elpsa C C paabola C hpebola C ; ; Zagadka: Skaegoz ówae Schodgea.
6 Zakłada h h h [saka kwadaowa] h h [ ] h ' ' - - h h Elpcze RRC - dwwaowe zagadee bzegowe Rówae Laplace a [ ] ' ' h { } { } [ ] [ ] '' '' h h
7 { } Sąc waz wzacza : Pzkład: saka 33 Pze począkowe pzblŝee 3 Kozsa z eod eace Jacobego lb Gassa-Sedla szbsza zbeŝość S S S3 S
8 Kozsaąc z eod dokładch p. dekopozca LU s łoŝć acez o ozaze low. Wosek: Ms wpowadzć deksowae ówań odpowadaącch pko dwwaowe sak : k a pzkład wesza P P k P... Pzkład: ówae Possoa ϕ ρ gęsość ładk f poecał h h [ ] f [ P P P P P ] f P
9 Pzkład: Powezcha poecał pz losowo ozeszczoe gęsośc ładk
10 Paabolcze hpebolcze RRC Bezwaowe ówae pzewodcwa cepła z wake począkow dla L g < < gdze L szeokość dzedz ozwązań. Wak bzegowe: b L a gdze a b są fkca ede czas a g zaleŝ ede od połoŝea.
11 Dskezaca pzesze ozwązań czas deks pzeszeń deks PołoŜee w węźle w chwl :
12 Zaeaąc pochode a óŝce oze z błęde O z błęde O. Dale paszczaąc
13 Zae zdskezowae ówae a posać Defąc / oze schea aw Elea: - pk względa pz oblcza óŝc czasowe - pk względa pz oblcza óŝc pzeszee
14 Algo schea awego // a węzłów pzeszech sak // waek bzegow [] ew[] [].; // waek począkow fo ; <; { *sep; [] fc; }; // pęla czasowa fo ; <seps; fo ; <; ew[] alpha*[-] -*alpha*[] alpha*[]; Poble: waek sablośc schea Czl eśl podzel doeę [] a so podpzedzałów. o 5-5.
15 Aalza sablośc RozwaŜ schea aw dla ówaa cepła: α α Zae asz schea a posać: α Nech D będze dokład ozwązae ówaa. Nech N będze ecz ozwązae ówaa. Zae błąd zaokągleń N D Napsz ówae sablośc eod ecze kóe opsze ewolcę błęd w akce oblczaa kolech koków czasowch. ośe esablość eośe sablość
16 Rówae sablośc będze badać za poocą aalz Foea eoda vo Neaa. Rozwązae ecze oŝe zapsać ako N D 3 Podsawaąc 3 do oze D D D D D α D D D D D α α PoewaŜ z ówaa D D D D D α
17 α Zae RozwaŜ ozkład błęd w pew kok czasow. ZałóŜ dla wgod Ŝe. Błąd oŝa zapsać w posac szeeg Foea: : s cos 5 falowa lczba k k k k k e e b Czl ówae a błąd es ake sae ak ówae a fkcę.
18 PoewaŜ ówae óŝcowe a błąd es lowe zachowae kaŝdego waz szeeg es podobe do zachowaa całego szeeg. Zae wsacz ozwaŝć wzos błęd powego waz k b e 6 Czasową zaleŝość błęd względ pząc Ŝe aplda błęd b es fkcą czas. PoewaŜ błąd ośe lb alee zwkle wkładczo z czase oŝe zapsać e e gdze k es zeczwse ale a oŝe bć zespoloe. Podsawaąc 7 do oze a a e k k a k a k a k a k e e e 7 e e e e e e 8 gdze α
19 e a e e e e e e 8 k a k a k a k a k e e e Dzeląc 8 obsoe pzez e a e k e a k k e e 9 Kozsaąc z zaleŝośc oze gdze Kozsaąc z zaleŝośc oze cos β e a e β e β cos β s e a β k β cos β s β
20 Defąc współczk wzocea błęd G Oczeke b błąd e aasał z kok a kok G Zae a k e e a e s β
21 s β s β s s β β s s β β Waek zbeŝośc schea awego
22 G G G kok czasow wkładk poęg Pzpo sobe Ŝe współczk wzocea błęd Czl: N N N G Zwóć wagę Ŝe asz schea aw [ ] α oŝe pzedsawć w posac ówaa acezowego Rówae włase z waośca włas G
23 Zae a kład ówań eowach G Meoda Jacobego Pzpoee z wkład 3 Jako ozwązae począkowe obea sę dowol weko p. weko zeow oblcza sę kolee eace: Kolee pzblŝea wozą cąg wekoów. JeŜel see gaca ego cąg wed es oa ozwązae kład ówań lowch. Cąg wekoów s bć zae cąge zbeŝ. Tw. Cąg okeślo wzoe * pz dowol wekoze es zbeŝ wed lko wed gd ρα<. ρα poeń spekal acez α a λ λ waośc włase acez α.
24 Twedzee powŝsze ów a Ŝe ab asz schea e bł ozbeŝ o wszske waośc włase G szą leŝeć a płaszczźe zespoloe bo G ogą bć zespoloe wewąz okęg o poe. W asz pzpadk waośc G bł zeczwse węc weź cekawsz pzpadek: Uwaga: sablość kaŝdego poble ehoogeczego Zasos schea: p p p p f bada paszczaąc ówae do posac hoogecze. óŝca zwkła óŝca wsecza Zasępąc Paęaąc Ŝe oaz Ŝe p p p p G e k
25 oze Dzeląc obsoe pzez p k p k p k G e G e G e p k G e G p e k G k k β e e e Wosek: schea es esabl dla kaŝdego.
26 Poa coś wklepać ; dh./; d.*dh; fo;<; { Xdoble/; [][].*ep-*x-.5*x-.5; [][].*ep-*x-.5-d*x-.5-d; }; Jede kok czasow: Wak począkowe fo;<; { L-; P; Wak bzegowe peodcze f L; f P; [][][P][]-*[][][L][]*d*d/dh/dh*[][]-[][]; }; fo;<; { [][][][]; [][][][]; };
27 MoŜa oblczć waek sablośc dla podaego schea ale e es poso G s β G Czl a ówae kwadaowe
28 Schea eaw Elea - pk względa pz oblcza óŝc czasowe - pk względa pz oblcza óŝc pzeszee Schea aw Schea eaw Wóć do ówaa cepła Bło: Teaz:
29 3 3 M M O O λ λ λ λ Zae a kład ówań z acezą ódagoalą. kó s ozwązać w kaŝd kok czasow.
30 Sablość schea eawego Posępąc aalogcze do popzedch pzpadków pze po pa pzekszałceach G s k co dae ogaczee a G: G co es spełoe dla dowolego oczwśce wększego od zea. Zae schea eaw es zawsze sabl.
31 θ θ Schea Caka-Ncholsoa MoŜe wobazć sobe badze ogól schea: gdze θ. Pz θ ½. Pewsza pochoda czasowa ako óŝca ceala w l/ Dga pochoda pzeszea ako óŝca ceala waŝoa l l l l l l l l
32 Po pa pzekszałceach l l l l l l A zae zow a kład ówań z acezą ódagoalą. MoŜa pokazać Ŝe kład es zawsze sabl. Pzewaga ad scheae eaw błąd O zaas O. Poówae scheaów:
Równania różniczkowe cząstkowe
Meod ecze Wkład Rówaa óżczkowe cząskowe d hab. Po Foczak Rówaa óżczkowe cząskowe RRC lczba zech F ząd ówaa: ząd awższe pochode 3 3 b chaakeska: lowe qas-lowe elowe C B A F E D C B A b c b a : : : : : :
Bardziej szczegółowoSpójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
Bardziej szczegółowoSpójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
Bardziej szczegółowoJohann Wolfgang Goethe Def.
"Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad
Bardziej szczegółowoDYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
Bardziej szczegółowoLaboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
Bardziej szczegółowoMETODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Bardziej szczegółowoFunkcja wiarogodności
Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza
Bardziej szczegółowo( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego
Bardziej szczegółowoZmiana bazy i macierz przejścia
Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce
Bardziej szczegółowoN ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Bardziej szczegółowoFUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Bardziej szczegółowoWnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Bardziej szczegółowoX. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
X. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE.. Wpowadzee Rozważmy ład ówań óżczowyc z waam począowym Zagadee (.) (.) azywa sę zagadeem począowym. Naszym zadaem es zalezee fc y () będącyc ozwązaem ww. ład. W dalszym
Bardziej szczegółowoPortfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
Bardziej szczegółowoLista 6. Kamil Matuszewski 26 listopada 2015
Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
Bardziej szczegółowoProjekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
Bardziej szczegółowoPermutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Bardziej szczegółowof f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
Bardziej szczegółowoRównania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
Bardziej szczegółowoAnaliza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
Bardziej szczegółowoReprezentacja krzywych...
Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc
Bardziej szczegółowoSzereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β
Bardziej szczegółowoMatematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
Bardziej szczegółowoWyznaczenie współczynników q1=1,0. Wyznaczyć częstości drgań własnych oraz amplitudy drgań wymuszonych dla następującej belki:
Wyznaczyć częośc dgań włanych oaz aludy dgań wyuzonych dla naęującej bel: 4. Sfoułowane zez wółczynn acezy zywnośc. a dgana włane Dane: N 5 g 8 N Hz π 88,496 ad/, J Soeń wobody dynacznej SSD Uład odawowy
Bardziej szczegółowoWSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORAORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX Probley prograowae celowego lorazowego to probley prograowae ateatyczego elowego, który oża sktecze zlearyzować
Bardziej szczegółowoSchrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z
Bardziej szczegółowoBADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
Bardziej szczegółowoTeoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych
ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.
Bardziej szczegółowoPłaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2
Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )
Bardziej szczegółowo(liniowy model popytu), a > 0; b < 0
MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę
Bardziej szczegółowoĆWICZENIE 3 ANALIZA WSPÓŁZALEŻNOŚCI ZJAWISK MASOWYCH
Laboaoum eod aczch ĆWICZENIE 3 ANALIZA WPÓŁZALEŻNOŚCI ZJAWIK AOWCH Jedo wozące zboowość chaaezowae ą zazwcza za pomocą welu cech óe wzaeme ę wauuą. Celem aalz wpółzależośc e wedzee cz mędz badam cecham
Bardziej szczegółowoPrzykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Bardziej szczegółowoPROGNOZY I SYMULACJE
oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi
Bardziej szczegółowoIndukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki
PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI Mosław Kweselewcz Poltechka Gdańska Wydzał Elektotechk Automatyk PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI
Bardziej szczegółowoNiezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Bardziej szczegółowoW loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Bardziej szczegółowoBadania Operacyjne (dualnośc w programowaniu liniowym)
Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)
Bardziej szczegółowoFunkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Bardziej szczegółowoMETODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Bardziej szczegółowoMECHANIKA BUDOWLI 12
Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE
Bardziej szczegółowoXXXV Konferencja Statystyka Matematyczna
XXXV Konferencja Saysyka Maeayczna MODEL OTOWOŚCI SYSTEMU TECHNICZNEO Karol J. ANDRZEJCZAK karol.andrzejczak@pu.poznan.pl Polechnka Poznańska hp://www.pu.poznan.pl/ PRORAM REERATU 1. WPROWADZENIE 2. ORMALIZACJA
Bardziej szczegółowoTeoria Sygnałów. II Inżynierii Obliczeniowej. Wykład /2019 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Tora Sygałów II Iżyr Oblczowj Wyład 8 8/9 Rozważy sończoy sygał δ () spróboway z częsolwoścą : Aalza częsolwoścowa dysrych sygałów cyfrowych f p óra js dwa razy węsza od częsolwośc asyalj f a. Oblczy jgo
Bardziej szczegółowor h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów
Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:
Bardziej szczegółowo3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
Bardziej szczegółowo1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA
. WSTĘP. MTODA ULRA. WSTĘP. MTODA ULRA Wprowadzee Mowacja pozawaa meod umerczc:. Rozwązwae bardzo dużc kosrukcj o złożoej geomer welu sopac swobod powżej mloa prz różorodm zacowau maerałów.. Śwadome wkorzswae
Bardziej szczegółowoMh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem
Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )
Bardziej szczegółowoCiągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
Bardziej szczegółowoLista 6. Kamil Matuszewski X X X X X X X X X X X X
Lsta 6 Kaml Matuszewsk 9..205 2 3 4 5 6 7 9 0 2 3 4 5 6 7 X X X X X X X X X X X X Zadae Lewa stroa: W delegacj możemy meć od do osób. Wyberamy ( k) osób a k sposobów wyberamy przewodczącego. k =.. węc
Bardziej szczegółowoTeoria i metody optymalizacji
Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:
Bardziej szczegółowo( ) ( ) ( ) ( ) ( ) ( )
,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau
Bardziej szczegółowoSprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych
Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F
Bardziej szczegółowon R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe
Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:
Bardziej szczegółowoROZKŁADY ZMIENNYCH LOSOWYCH
ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZA. Wkład węp. Teora prawdopodobeńwa elemet kombatork 3. Zmee losowe 4. Populace prób dach 5. Teowae hpotez emaca parametrów 6. Te t 7. Te 8. Te F 9. Te eparametrcze 0. Podsumowae dotchczasowego
Bardziej szczegółowoCałka krzywoliniowa nieskierowana (całka krzywoliniowa funkcji skalarnej)
WYŁAD : CAŁI RZYWOLINIOWE Nech - krwa w R : gde [ α β ] ora C [ α β]. Zaem dowol puk krwej moża predsawć w posac j k krwa adaa jes pre wekor parameracj r : r j k. Decja Jeśl krwa e ma puków welokroch.
Bardziej szczegółowo( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Bardziej szczegółowoJózef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
Bardziej szczegółowoA B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Bardziej szczegółowoEKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Bardziej szczegółowoTeoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
Bardziej szczegółowoOpracowanie wyników pomiarów
Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów
Bardziej szczegółowoKOMPUTEROWE WSPOMAGANIE TECHNOLOGII WYTWARZANIA ODLEWÓW
KOMPUEROWE WSPOMAGANIE ECHNOLOGII WYWARZANIA ODLEWÓW Jausz LELIO Mchał SZUCKI Paweł ŻAK Faculy of Foudry Egeerg Deparme of Foudry Processes Egeerg AGH Uversy of Scece ad echology Krakow I KLIEN CAD CAE
Bardziej szczegółowoZadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer
Bardziej szczegółowoInstrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u
Bardziej szczegółowoBADANIE UKŁADÓW ZAWIERAJĄCYCH WZMACNIACZE OPERACYJNE
ADANI UKŁADÓW ZAWIAJĄCYCH WZMACNIACZ OPACYJN CL ĆWICZNIA: Pozae zasady dzałaa wzmacacza operacyjego w zakrese skch częstotlwośc. Aalza kładów zawerających wzmacacze operacyje pracjące w zakrese lowym elowym.
Bardziej szczegółowo24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
Bardziej szczegółowoi = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Bardziej szczegółowoI V. N a d z ó r... 6
C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 1 d o U c h w a ł y n r 2 2. / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. P
Bardziej szczegółowoZMIENNE LOSOWE WIELOWYMIAROWE
L.Kowals Zmee losowe welowmarowe ( ΩS P ZMIENNE LOSOWE WIELOWMIAROWE - ustaloa przestrzeń probablstcza. (... - zmea losowa - wmarowa (wetor losow cąg losow. : Ω R (fuca borelowsa P : Β R [0 - rozład zmee
Bardziej szczegółowoV. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Bardziej szczegółowon n Weźmy f: 3 (x 1, x 2, x 3 ) (y 1, y 2, y 3 ) 3 Jeżeli zdefiniujemy funkcje pomocnicze f j : 3 (x 1, x 2, x 3 ) y j, dla j = 1,2,3, to
"Maemac ą jak Facuzi: cokolwiek im ię powie od azu pzekładają o a wój wła jęzk i wówcza aje ię o czmś zupełie im." Joha Wola Goehe Weźm : Jeżeli zdeiiujem ukcje pomocicze j : j dla j = o = dzie = Czli
Bardziej szczegółowoGrupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
Bardziej szczegółowoWykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x
Wykład z Podsaw maemayk dla sudenów Inżyner Środowska Wykład 8. CŁKI NIEOZNCZONE Defnca (funkca perwona) Nech F es funkcą perwoną funkc f na przedzale I, eżel F '( ) f ( ) dla każdego I. Udowodnć, że funkce
Bardziej szczegółowoEFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.
Bardziej szczegółowoS.A RAPORT ROCZNY Za 2013 rok
O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c
Bardziej szczegółowoĄ Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń
Bardziej szczegółowoŁ Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę
Bardziej szczegółowoÓ ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś
Bardziej szczegółowoJego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
Bardziej szczegółowoSystem finansowy gospodarki
System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady
Bardziej szczegółowo11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:
//4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze
Bardziej szczegółowoAnaliza Matematyczna I.1
Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj
Bardziej szczegółowoMODELE OBIEKTÓW W 3-D3 część
WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego
Bardziej szczegółowo