Proste Procesy Stochastyczne i ich zastosowania.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Proste Procesy Stochastyczne i ich zastosowania."

Transkrypt

1 Proste Procesy Stochastyczne i ich zastosowania. Pawe J. Szab owski March 27 Pawe J. Szab owski () Wyk ad 1 March 27 1 / 17

2 Plan wyk adu: 1-3. Wst ¾ep i preliminaria- przyk ady szeregów czasowych.. Zagadnienie przybli zania jednych zmiennych losowych przez inne. Przegl ¾ad wybranych procesów stochastycznych. 4-5 Rozk ad wyk adniczy i jego w asności. Proces Poissona i jego uogólnienia Wektory losowe gaussowskie. Filtr Kalmana - Bucy Funkcja kowariancji i jej w asności, funkcje nieujemne określone tw. Herglotza i Bochnera. Elementy analizy 2 rz ¾edu. Rozwini ¾ecie Karhunena-Loève a 1. Przestrzeń Hilberta tw. o rzucie ortogonalnym na podprzestrzeń Ca ki stochastyczne: procesy o przyrostach nieskorelowanych, miary losowe o wartościach ortogonalnych, ca ka wzgl ¾edem miary losowej. Podstawowe w asności ca ki stochastycznej. Twierdzenie o rozk adzie spektralnym procesu stochastycznego i Tw. Wolda o rozk adzie na cz ¾eść deterministyczn ¾a i czysto losow ¾a procesu stochastycznego Klasy kacja szeregów czasowych: Szeregi autoregresyjne i Pawe J. Szab owski () Wyk ad 1 March 27 2 / 17

3 Literatura: 1 Robert B. Ash, Melvin F. Gardner, Topics in Stochastic Processes, Acad. Press N. York S. Francisco London, J. S. Mereditch, Estymacja i sterowanie statystycznie optymalne w uk adach liniowych, WNT, Warszawa E. Wong, Procesy Stochastyczne w teorii informacji i uk adach dynamicznych, WNT A. D. Wentzell, Wyk ady z teorii procesów stochastycznych, PWN Warszawa George E. P. Box, Gwilym M. Jenkins, Analiza Szeregów Czasowych PWN Warszawa, Luc Devroy, Làszló Györ, Nonparametric density estimation. The L 1 view. John Wiley & Sons, N. Jork M. B. Nevel son, P. Z. Chasminskij, Stochasticzeskaja approksimacja i rekurentne oceniwanije, Izdatiellstwo Nauka, Moskwa, David Wiliams, Probability with Martingales, Cambridge Mathematical textbook, Sheldon Ross, Introduction to Probability Models, A Harcourt Sc. Pawe J. Szab owski () Wyk ad 1 March 27 3 / 17

4 Nieformalny wst ¾ep Nieformalna de nicja: szereg czasowy to ci ¾ag zmiennych losowych lub inaczej proces stochastyczny z dyskretnym czasem. Jeśli jest to ci ¾ag nieskorelowanych zmiennych losowych o zerowych wartościach oczekiwanych i jednakowych wariancjach to nazywa si ¾e on dyskretnym bia ym szumem. 5 ε i i Pawe J. Szab owski () Wyk ad 1 March 27 4 / 17

5 2 2 ξ i ζ i i i Pawe J. Szab owski () Wyk ad 1 March 27 5 / 17

6 5 x i i Na pierwszy rzut oka trudno jest powiedzieć, który z tych szeregów jest bia ym szumem a który jest ci ¾agiem zale znych zmiennych losowych. Trzeba g ¾ebszej analizy. Aby to zrobić rozwa zmy np. tzw. wykresy fazowe tj. wykresy we wspó rz ¾ednych (poprzednia obserwacja, bie z ¾aca obserwacja). Mamy dla tych samych ε i ξ i 2 Pawe J. Szab owski () Wyk ad 1 4 March 27 6 / 17

7 4 5 2 ζ i x i ζ i x..5x. i i 1 Pawe J. Szab owski () Wyk ad 1 March 27 7 / 17

8 Bior ¾ac estymatory tzw. funkcji kowariancji obliczane wed ug wzoru: j kowariancja j = n i=1 obserwacja i obserwacja i+j n j dla kilku j =, 1, 2,... otrzymamy jeszcze inne spojrzenie na prezentowane szeregi czasowe: Pawe J. Szab owski () Wyk ad 1 March 27 8 / 17

9 .5.1 kowε j kowξ j j j kowζ j kowx j j j Pawe J. Szab owski () Wyk ad 1 March 27 9 / 17

10 Kilka faktów z rachunku prawdopodobieństwa. W asności kowariancji i macierzy kowariancji.. Aby unikn ¾ać niepotrzebnych formalnych komplikacji zak adamy, ze wszystkie rozwa zane zmienne losowe maj ¾a wartości oczekiwane a, b, c, d2r : cov(ax + b, cy + d) = ac cov(x, Y ). (1) cov(x, Y ) = cov(x EX, X EY ) = E (X EX )(Y EY ) (2) 3. V (X )! wynika to ze wzoru (2) przy podstawieniu X = Y. Pawe J. Szab owski () Wyk ad 1 March 27 1 / 17

11 Kilka faktów z rachunku prawdopodobieństwa. W asności kowariancji i macierzy kowariancji cov(x, Y ) = cov(y, X ); (3) cov(x, Y + Z ) = cov(x, Y ) + cov(x, Z ). jcov(x, Y )j q V (X )V (Y ). (4) De nition Zmienne losowe X i Y nazywamy nieskorelowanymi, jeśli Fact cov(x, Y ) =. Je sli zmienne losowe X i Y sa¾ niezale zne, to sa¾ nieskorelowane (lecz nie na odwrót!). Pawe J. Szab owski () Wyk ad 1 March / 17

12 Kilka faktów z rachunku prawdopodobieństwa. W asności kowariancji i macierzy kowariancji. 6. Σ X = E (X EX)(X EX) T, E (XX T ) = [X i X j ] i,j=1,...,n, jeśli X = [X 1,..., X n ] T 7. macierze Σ X, E (XX T ) s ¾a symetryczne i dodatnio pó określone. 8. Σ X+b = Σ X dla ka zdego b 2R n. Dowód tego faktu jest oczywisty. 9. Σ AX = AΣ X A T dla dowolnej macierzy A o wymiarze m n. W szczególności dla m = 1 mamy równości: 1. V ( n i=1 a i X i ) = V (a T X) = a T Σ X a = n i,j=1 a i a j cov(x i X j ) dla X = [X 1,..., X n ] T, a = [a 1,..., a n ] T. Pawe J. Szab owski () Wyk ad 1 March / 17

13 Kilka faktów z rachunku prawdopodobieństwa. W asności kowariancji i macierzy kowariancji. Jeśli zaś dodatkowo za o zyć n = 1 11.V (X + b) = V (X ), V (ax ) = a 2 V (X ) dla a, b 2R De nition Wielkość ρ i,j = cov(x i,x j ) p gdzie i, j = 1,..., n jest wspó czynnikiem V (Xi )V (X j ) korelacji zmiennych losowych X i i X j. Macierz Θ = [ρ i,j ] i,j=1,...,n zwana jest macierz ¾a korelacyjn ¾a wektora losowego X. Pawe J. Szab owski () Wyk ad 1 March / 17

14 Kilka faktów z rachunku prawdopodobieństwa. W asności kowariancji i macierzy kowariancji. Jeśli X jest n wymiarow ¾a zmienn ¾a losow ¾a, i Y- m- wymiarow ¾a zmienn ¾a losow ¾a to, macierz ¾a kowariancji wzajemnej wektora losowego X i Y nazywamy macierz Σ XY = [cov(x i, X j )] i=1,...,n;j=1,...,m. 12. Σ XY = E (X EX)(Y EY) T. 13. Jeśli X jest n-wymiarow ¾a zmienn ¾a losow ¾a, Y- m-wymiarow ¾a zmienn ¾a X losow ¾a i Z =, to Y EZ = EX EY ΣX, Σ Z = Σ YX Σ XY Σ Y. Pawe J. Szab owski () Wyk ad 1 March / 17

15 Kilka faktów z rachunku prawdopodobieństwa. Nierówności Markowa, Czebyszewa Niech X b ¾edzie jedno wymiarow ¾a zmienn ¾a losow ¾a, dla której EX i V (X ) istniej ¾a, zaś Y nieujemn ¾a zmienn ¾a losow ¾a, tak ¾a, ze EY istnieje. EY ε P(Y ε). (5) Jest to tak zwana nierówność Markowa. Aby dostać nierówność Czebyszewa z nierówności Markowa po ó zmy Y = (X EX ) 2 i ε = k 2 V (X ) i odejmijmy obie strony (5) od 1. Dostaniemy wówczas dla ka zdego k2r + nierówność: P jx q EX j < k V (X ) > 1 Nierówność ta nosi nazw ¾e nierówności Czebyszewa. 1 k 2. (6) Pawe J. Szab owski () Wyk ad 1 March / 17

16 Zagadnienie przybli zania jednych zmiennych losowych przez inne. Niech X, Y 1,..., Y n b ¾ed ¾a L 2 -zmiennymi losowym. Rozwa zmy sekwencj ¾e nast ¾epuj ¾acych problemów przybli zania jednych zmiennych losowych funkcjami innych. 1. min c2r E (X c) 2. Rozwiazanie: ¾ c opt = EX, minimalny b ¾ad przybli zenia: E (X c opt ) 2 = var(x ). 2. min a,b2r E (X b ay 1 ) 2. Rozwiazanie: ¾ a opt = cov(x,y 1) var(y 1, b ) opt = EX a opt EY 1, minimalny b ¾ad przybli zenia E (X b opt a opt EY 1 ) 2 = var(x )(1 ρ 2 X,Y 1 ) = var(x ). cov 2 (X,Y 1 ) var(y 1 ) Pawe J. Szab owski () Wyk ad 1 March / 17

17 3. Uogólnienie punktu 2. min b,a1,...,a n 2R E (X b a 1 Y 1 a n Y n ) 2 = min b2r,a2r n E (X b a T Y ) 2, gdzie oznaczono a T = (a 1,..., a n ), Y T = (Y 1,..., Y n ). Rozwiazanie: ¾ a opt = ΣY 1 Σ YX, b = EX aopty T, minimalny b ¾ad przybli zenia: E (X b aopty T ) 2 = var(x ) Σ X Y ΣY 1 Σ YX. 4. min Y F E (X Y ) 2 gdzie F jest pewnym σ-cia em. Aby rozwi ¾azać to zagadnienie potrzeba wprowadzić poj ¾ecie warunkowej warto sci oczekiwanej. Pawe J. Szab owski () Wyk ad 1 March / 17

Wybrane zagadnienia teorii procesów stochastycznych. Paweł J. Szabłowski Wydział Matematyki i Nauk Informacyjnych

Wybrane zagadnienia teorii procesów stochastycznych. Paweł J. Szabłowski Wydział Matematyki i Nauk Informacyjnych Wybrane zagadnienia teorii procesów stochastycznych Paweł J. Szabłowski Wydział Matematyki i Nauk Informacyjnych Luty 21 ii Abstract Celem wykładu jest omówienie ważnych z punktu widzenia zastosowań w

Bardziej szczegółowo

Wyk ad II. Stacjonarne szeregi czasowe.

Wyk ad II. Stacjonarne szeregi czasowe. Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych

Bardziej szczegółowo

Ocena ryzyka kredytowego

Ocena ryzyka kredytowego Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr letni 2013/14) 1 Informacje wst epne Celem tego rozdzia u jest powtórzenie pewnych wiadomości

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

Pochodne cz ¾astkowe i ich zastosowanie.

Pochodne cz ¾astkowe i ich zastosowanie. Pochodne cz ¾astkowe i ich zastosowanie. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Pochodne cz ¾astkowe i ich zastosowanie. maj 2013 1 / 18 Zanim przejdziemy do omawiania pochodnych funkcji wielu zmiennych

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

1 Regresja liniowa cz. I

1 Regresja liniowa cz. I Regresja liniowa cz. I. Model statystyczny Model statystyczny to zbiór za o zeń. Wprowadzamy model, który mo zliwie najlepiej opisuje ineresujacy ¾ nas fragment rzeczywistość. B ¾edy modelu wynikaja¾ z

Bardziej szczegółowo

Ekstrema funkcji wielu zmiennych.

Ekstrema funkcji wielu zmiennych. Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Wprowadzenie do równań ró znicowych i ró zniczkowych.

Wprowadzenie do równań ró znicowych i ró zniczkowych. Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:

Bardziej szczegółowo

Wyznaczniki, macierz odwrotna, równania macierzowe

Wyznaczniki, macierz odwrotna, równania macierzowe Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki matematycznej Adam Kiersztyn 2 godziny lekcyjne 2011-10-23 8.20-9.50 1 Rozk ad normalny Jednym z najwa

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

1 Gaussowskie zmienne losowe

1 Gaussowskie zmienne losowe Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..

Bardziej szczegółowo

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody".

Równania ró znicowe wg A. Ostoja - Ostaszewski Matematyka w ekonomii. Modele i metody. Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody". Przyk ad. Za ó zmy, ze w chwili t = 0 populacja liczy P 0 osób. Roczny wskaźnik urodzeń wynosi b = 00, a roczna

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2018/19 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

Losowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL

Losowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL MNK z losową macierzą obserwacji Równanie modelu y = X β + ε Jeżeli X zawiera elementy losowe to należy sprawdzić czy E(b β) = E[(X X ) 1 X ε]? = E[(X X ) 1 X ]E(ε) Przypomnienie: Nieskorelowane zmienne

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Rozkłady łaczne wielu zmiennych losowych

Rozkłady łaczne wielu zmiennych losowych Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 3 Motywacje Przykłady sytuacji z kilkoma zmiennymi losowymi: Antropometria: wzrost, waga ciała i grubość skóry przedramienia

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I Prezentacja wspó nansowana przez Uni ¾e Europejsk ¾a w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I 1 Co to jest analiza portfelowa? Analiza portfelowa

Bardziej szczegółowo

1 Poj ¾ecie szeregu czasowego

1 Poj ¾ecie szeregu czasowego Studia podyplomowe w zakresie przetwarzania, zarz¾adzania i statystycznej analizy danych Analiza szeregów czasowych 24.11.2013-2 godziny konwersatorium autor: Adam Kiersztyn 1 Poj ¾ecie szeregu czasowego

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick]

1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick] 1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick] wektor x R d x =(x 1,x 2,..., x d ) T wektor, punkt w przestrzeni d-wymiarowej norma wektora własności (1) kxk > 0, kxk =0tylko wtedy, gdy x =0

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Ocena ryzyka kredytowego

Ocena ryzyka kredytowego Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr zimowy 2017/18) Uwaga Niniejszy materia nie stanowi ca ości wyk adu i nie wystarcza do przygotowania

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów

6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów 6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów . Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x ()

Bardziej szczegółowo

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X

Bardziej szczegółowo

ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych)

ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych) ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ KORELACJA zmiennych jakościowych (niemierzalnych) Zadanie 1 Zapytano 180 osób (w tym 120 mężczyzn) o to czy rozpoczynają dzień od wypicia kawy czy też może preferują herbatę.

Bardziej szczegółowo

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.

Bardziej szczegółowo

Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos

Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos Spis tre ci PRZEDMOWA :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 CZ I. Wprowadzenie do modelowania ekonometrycznego ::::::::::: 13 Rozdzia 1. Modelowanie ekonometryczne ::::::::::::::::::::::::::::::

Bardziej szczegółowo

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 8.03.014 - godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ.

Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. IDEA OPISU WSPÓŁZALEśNOŚCI CECH X, Y cechy obserwowane w doświadczeniu, n liczba jednostek doświadczalnych, Wyniki doświadczenia: wartości

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2011/12 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr zimowy 2010/11) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka

Bardziej szczegółowo

Powtórka z algebry i statystyki

Powtórka z algebry i statystyki 2. Powtórka z algebry i statystyki 1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick] wektor x R d x =(x1,x2,..., xd) T wektor, punkt w przestrzeni d-wymiarowej norma wektora własności (1) kxk

Bardziej szczegółowo

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

EKONOMETRIA dr inż.. ALEKSANDRA ŁUCZAK Uniwersytet Przyrodniczy w Poznaniu Katedra Finansów w i Rachunkowości ci Zakład Metod Ilościowych Collegium Maximum,, pokój j 617 Tel. (61) 8466091 luczak@up.poznan.pl

Bardziej szczegółowo

Podstawowe modele probabilistyczne

Podstawowe modele probabilistyczne Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska

KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska KARTA PRZEDMIOTU Kod przedmiotu E/O/SOP w języku polskim Statystyka opisowa Nazwa przedmiotu w języku angielskim Statistics USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów Poziom

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Metody opracowania obserwacji 2 Kod modułu 04-A-MOO-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr letni 2015/16) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa

Bardziej szczegółowo

Metody Ekonometryczne

Metody Ekonometryczne Metody Ekonometryczne Metoda Najmniejszych Kwadratów Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 1 1 / 45 Outline Literatura Zaliczenie przedmiotu 1 Sprawy organizacyjne

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Seria 1. Zbieżność rozkładów

Seria 1. Zbieżność rozkładów Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie

Bardziej szczegółowo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo