1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4
|
|
- Adrian Wilczyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych Analiza wariancji Na wst¾epie zapoznamy si¾e z metoda¾ pozwalajac ¾ a¾ porównywać średnie w kilku grupach. Do tego typu analiz s u zy jednoczynnikowa analiza wariancji, tzw. jednoczynnikowa ANOVA. W pliku czasdojazdu.sav mamy informacje o czasie dojazdu na uczelnie na kolejne zjazdy. Chcemy zwery kować hipotez ¾e o równości średnich czasów dojazdu w poszczególnych okresach czasu. Postawmy zatem hipotezy H 0 : 1 = 2 = 3 = 4 wobec hipotezy alternatywnej, która jest zaprzeczeniem H 0, tzn. H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4 Zgodnie ze stosowna¾ teoria¾ powinniśmy sprawdzić, czy poszczególne próby pochodza¾ z populacji o rozk adzie normalnym. Przypomnijmy sobie jak sprawdzić, czy nasz próba ma rozk ad normalny. Wybieramy AnalizanOpis statystycznyneksploracja danych. Nast ¾epnie post ¾epujemy jak na poni zszych rysunkach 1
2 Jako wynik otrzymujemy raport, w którym najistotniejszym punktem jest tabela atwo jest stwierdzić, ze za o zenie o normalności rozk adu jest spe nione. W naszym przekonaniu umacnia nas dodatkowo analiza wykresów. W klasycznej analizie wariancji dodatkowym za o zeniem jest równość wariancji. Warunek ten sprawdzamy za pomoca¾ chocia zby testu Levene a. Sprawdzenia tego dokonamy równolegle z testowaniem naszej g ównej hipotezy. Zanim przystapimy ¾ do testowania hipotezy musimy przygotować sobie nasze dane. W programie SPSS w jednej zmiennej powinny znajdować si ¾e wartości obserwacji natomiast w innej zmiennej czynnik grupujacy. ¾ Dlatego dalszej analizy dokonamy na pliku czasdojazdu1.sav, w którym nasze wartości sa¾ ju z odpowiednio przygotowane. 2
3 Wybieramy z menu jednoczynnikowa¾ ANOVA jak na poni zszym rysunku Jako zmienna¾ zale zna¾ obieramy czas, natomiast jako czynnik zmienna¾ czynnik jak na rysunku i przechodzimy na kart¾e opcje 3
4 W oknie Opcje wybieramy interesujace ¾ nas wskaźniki Jako wynik otrzymujemy raport, w którym mamy nast ¾epujace ¾ dane 4
5 z których wynika, ze za o zenie jednorodności wariancji jest spe nione oraz nie ma podstaw do odrzucenia hipotezy H 0 o równości wariancji. Ponadto zgodnie, z tym co wybraliśmy na karcie opcje otrzymaliśmy wykres reprezentujacy ¾ poszczególne średnie. Mo zemy na nim atwo sprawdzić s uszność naszego osadu. ¾ 5
6 Teraz spróbujemy stwierdzić, w której grupie jest najwy zsza średnia i pomi ¾edzy, którymi parami wyst ¾epuje statystycznie istotna ró znica pomi ¾edzy średnimi. W tym celu wykorzystamy test post-hoc 6
7 Mamy do dyspozycji wiele testów skorzystamy jednak z testu zaproponowanego przez twórc¾e analizy wariancji, tj testu NIR. Wybór ten jest jak najbardziej uzasadniony poniewa z ju z wiemy, ze wariancje sa¾ równe. W wynikowym raporcie z atwościa¾ odnajdujemy tabel ¾e 7
8 Analiza powy zszej tabeli pozwala nam stwierdzić, ze pomi ¾edzy zadna¾ para¾ nie wyst ¾epuje statystycznie istotna ró znica dla średnich. Ponadto najwy zsza średnia jest w drugiej grupie a najni zsza w 3. Teraz nadszed czas na analogiczne rozwa zania w programie Statistica. Skorzystamy z ju z przygotowanego pliku czasdojazdu. W programie Statistica testy ANOVA mo zna odszukać w kilku miejscach. Nam w zupe ności wystarczy na razie modu dost ¾epny menu StatystykanStatystyki podstawowe i tabele. 8
9 Po wskazaniu odpowiednich zmiennych przechodzimy dalej i mamy okienko, w którym mamy kilka testów zwiazanych ¾ 9
10 z analiza¾ wariancji Na zak adce "Testy ANOVA" mamy m. in. do dyspozycji testy jednorodności wariancji (1), jak równie z skategoryzowane wykresy normalności (2) pozwalajace ¾ sprawdzić nam za o zenia klasycznej analizy wariancji. 10
11 Domyślnie przy wyborze wykresów skategoryzowanych mamy jedynie same wykresy, jednak po dwukrotnym klikni ¾eciu w obszar wykresu mo zemy wybrać opcj ¾e wyświetlajac ¾ a¾ wyniki testu Shapiro-Wilka. 11
12 Oczywiście jeśli ktoś woli mieć wyznaczony histogramy z na o zonymi wynikami testu badajacego ¾ normalność to mo zna skorzystać z zak adki Statystyki opisowe. Dość ciekawym sposobem wizualizacji danych jest wykres interakcji dost¾epny na zak adce podstawowe. Jako wynik otrzymujemy wykres, na którym oprócz śred- 12
13 nich zaznaczone sa¾ 95% przedzia y ufności dla średniej. Jeśli b ¾edziemy dysponowali zapasem czasu to powrócimy do tematu i omówimy nieco bardziej skomplikowane zagadnienie jakim jest wieloczynnikowa analiza wariancji. 2 Testowanie niezale zności W wielu przypadkach interesuje nas sprawdzenie, czy istnieja¾ zale zności pomi ¾edzy pewnymi próbami. Mo zemy np. wyobrazić sobie sytuacj ¾e, ze chcemy sprawdzić czy istnieje zale zność pomi ¾edzy ocenami z "Podstaw statystyki matematycznej" oraz "Podstaw statystyki opisowej". W pliku ocenypodstawy.sav mamy informacje o ocenach pewnej grupy studentów. Chcemy dokonać wery kacji nast¾epujacych ¾ hipotez H 0 : oceny z "Podstaw statystyki matematycznej" i oceny z "Podstaw statystyki opisowej" sa¾ niezale zne H 1 : istnieje zale zność pomi¾edzy ocenami 13
14 W klasycznej statystyce do wery kacji hipotez o niezale zności stosuje si¾e test niezale zności X 2. W programie SPSS odnajdujemy go w nieco zaskakujacym ¾ miejscu Jedna¾ z naszych zmiennych wskazujemy jako zmienna¾ w wierszu, druga¾ jako kolumn ¾e (jest to bez znaczenia), w oknie statystyki wskazujemy test chikwadrat. 14
15 Jako wynik otrzymujemy raport, w którym mamy odpowiedź na interesujace ¾ nas pytanie, tabele krzy zowe zale zności pomi ¾edzy poszczególnymi ocenami oraz dość interesujacy ¾ wykres reprezentujacy ¾ zale zności opisane w tabeli krzy zowej. 15
16 W programie Statistica test ten odnajdujemy w cz ¾eści Statystyki podsta- 16
17 wowe i tabele. Po określeniu interesujacych ¾ nas zmiennych w zak adce opcje wybieramy stosowny test oraz w zak adce Wi ¾ecej wybieramy dok adne tabele dwudzielcze 17
18 Dość interesujace ¾ wyniki otrzymujemy wybierajac ¾ na zak adce Wi ¾ecej Histogramy skategoryzowane oraz Wykresy interakcji liczności. W pierwszym przypadku otrzymujemy histogramy dla poszczególnych wartości jednej zmiennej. 18
19 W naszym konkretnym przypadku sa¾ to histogramy zmiennej pso dla poszczególnych wartości psm. W drugim przypadku mamy natomiast 19
20 zobrazowane w sposób liniowy analogiczne zale zności. 20
1 Wieloczynnikowa analiza wariancji
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Wieloczynnikowa analiza wariancji
1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach
1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach Czasami chcemy rekodować jedynie cz ¾eść danych zawartych w pewnym zbiorze. W takim przypadku stosujemy rekodowanie z zastosowaniem warunku
1 Miary asymetrii i koncentracji
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki opisowej Adam Kiersztyn 3 godziny lekcyjne 2011-10-22 10.10-12.30 1 Miary asymetrii i koncentracji
1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki matematycznej Adam Kiersztyn 2 godziny lekcyjne 2011-10-23 8.20-9.50 1 Rozk ad normalny Jednym z najwa
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL
Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.2014-3 godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar
Statystyczna analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok
Statystyczna analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok Adam Kiersztyn Katedra Teorii Prawdopodobieństwa Wydzia Matematyczno - Przyrodniczy Katolicki Uniwersytet
1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów
Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 8.03.014 - godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Wyk ad II. Stacjonarne szeregi czasowe.
Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych
1 Wieloczynnikowa analiza wariancji ciag ¾ dalszy
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Wielowymiarowa analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-03-18 08.20-12.30 1 Wieloczynnikowa analiza wariancji
Pochodne cz ¾astkowe i ich zastosowanie.
Pochodne cz ¾astkowe i ich zastosowanie. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Pochodne cz ¾astkowe i ich zastosowanie. maj 2013 1 / 18 Zanim przejdziemy do omawiania pochodnych funkcji wielu zmiennych
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystyczne Podczas sprawdzania hipotez statystycznych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ na odrzuceniu hipotezy zerowej (H 0 ), gdy jest ona prawdziwa,
1 Przygotowanie ankiety
1 Przygotowanie ankiety Na dzisiejszych zaj ¾eciach skupimy si ¾e na zasadach tworzenia, wprowadzania oraz wst ¾epnej analizie danych zawartych w ankietach. Za ó zmy, ze ankieta sk ada si ¾e nast¾epujacych
Ekstrema funkcji wielu zmiennych.
Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu
Analizy wariancji ANOVA (analysis of variance)
ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza
Opracowywanie wyników doświadczeń
Podstawy statystyki medycznej Laboratorium Zajęcia 6 Statistica Opracowywanie wyników doświadczeń Niniejsza instrukcja zawiera przykłady opracowywania doświadczeń jednoczynnikowy i wieloczynnikowych w
Zadanie 1. Analiza Analiza rozkładu
Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja
Jednoczynnikowa analiza wariancji
Jednoczynnikowa analiza wariancji Zmienna zależna ilościowa, numeryczna Zmienna niezależna grupująca (dzieli próbę na więcej niż dwie grupy), nominalna zmienną wyrażoną tekstem należy w SPSS przerekodować
Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych
1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania
Wyznaczniki, macierz odwrotna, równania macierzowe
Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
Wielowymiarowa analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok
Wielowymiarowa analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok Adam Kiersztyn Katedra Teorii Prawdopodobieństwa Wydzia Matematyczno - Przyrodniczy Katolicki Uniwersytet
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie
Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością
1 Próba a populacja. Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj ¾eć statystycznych,
Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.04 - godziny konwersatorium autor Adam Kiersztyn Próba a populacja Nasze rozwa zania zaczniemy
Wprowadzenie do analizy dyskryminacyjnej
Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela
Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody".
Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody". Przyk ad. Za ó zmy, ze w chwili t = 0 populacja liczy P 0 osób. Roczny wskaźnik urodzeń wynosi b = 00, a roczna
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA
ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Bardzo silnie z poj ¾eciem populacji statystycznej zwiazane ¾ jest poj ¾ecie próby statystycznej.
Próba a populacja Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj eć statystycznych, poszczególne de nicje zostana wzbogacone o obrazowe przyk ady. Jednym z najistotniejszych poj eć jest
Przetwarzanie i analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok
Przetwarzanie i analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok Adam Kiersztyn Katedra Teorii Prawdopodobieństwa Wydzia Matematyczno - Przyrodniczy Katolicki Uniwersytet
1 Poj ¾ecie szeregu czasowego
Studia podyplomowe w zakresie przetwarzania, zarz¾adzania i statystycznej analizy danych Analiza szeregów czasowych 24.11.2013-2 godziny konwersatorium autor: Adam Kiersztyn 1 Poj ¾ecie szeregu czasowego
Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby
Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby 1. Wstęp teoretyczny Prezentowane badanie dotyczy analizy wyników uzyskanych podczas badania grupy rodziców pod kątem wpływu ich przekonań
O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym
O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe
Moduł. Rama 2D suplement do wersji Konstruktora 4.6
Moduł Rama 2D suplement do wersji Konstruktora 4.6 110-1 Spis treści 110. RAMA 2D - SUPLEMENT...3 110.1 OPIS ZMIAN...3 110.1.1 Nowy tryb wymiarowania...3 110.1.2 Moduł dynamicznego przeglądania wyników...5
Statystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
1 Regresja liniowa cz. I
Regresja liniowa cz. I. Model statystyczny Model statystyczny to zbiór za o zeń. Wprowadzamy model, który mo zliwie najlepiej opisuje ineresujacy ¾ nas fragment rzeczywistość. B ¾edy modelu wynikaja¾ z
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.48 WIESŁAWA MALSKA Wykorzystanie testu Levene a i testu Browna-Forsythe
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Wprowadzenie do równań ró znicowych i ró zniczkowych.
Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystyczne Podczas sprawdzania hipotez statystycznych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ na odrzuceniu hipotezy zerowej (H 0 ), gdy jest ona prawdziwa,
ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA
ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że kilka średnich dla analizowanej zmiennej grupującej mają jednakowe wartości średnie.
Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
ZARZĄDZANIE DANYMI W STATISTICA
Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Badanie normalności rozkładu
Temat: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby liczebność
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy
System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy modelowaniem, a pewien dobrze zdefiniowany sposób jego
Wykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Wykład dla studiów doktoranckich IMDiK PAN Biostatystyka I dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Program wykładu w skrócie 1. Hipotezy o normalności rozkładu.
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
AUTOR MAGDALENA LACH
PRZEMYSŁY KREATYWNE W POLSCE ANALIZA LICZEBNOŚCI AUTOR MAGDALENA LACH WARSZAWA, 2014 Wstęp Celem raportu jest przedstawienie zmian liczby podmiotów sektora kreatywnego na obszarze Polski w latach 2009
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności.
Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby
Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica
Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie
Ocena ryzyka kredytowego
Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr letni 2013/14) 1 Informacje wst epne Celem tego rozdzia u jest powtórzenie pewnych wiadomości
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
Metody Statystyczne. Metody Statystyczne
#7 1 Czy straszenie jest bardziej skuteczne niż zachęcanie? Przykład 5.2. s.197 Grupa straszona: 8,5,8,7 M 1 =7 Grupa zachęcana: 1, 1, 2,4 M 2 =2 Średnia ogólna M=(M1+M2)/2= 4,5 Wnioskowanie statystyczne
Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
Analiza wariancji i kowariancji
Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1
Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy