Ocena ryzyka kredytowego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ocena ryzyka kredytowego"

Transkrypt

1 Marcin Studniarski Ocena ryzyka kredytowego (semestr letni 2013/14) 1 Informacje wst epne Celem tego rozdzia u jest powtórzenie pewnych wiadomości z mojego wyk adu z Ryzyka inwestycji nansowych, g ównie w celu ustalenia oznaczeń i terminologii. Treść tego rozdzia u nie b edzie przedmiotem odrebnych pytań egzaminacyjnych, ale jej znajomość jest niezb edna do zrozumienia dalszej cz eści wyk adu. W ramach tego wyk adu rozwa zamy ryzyko kredytowe, które wynika z mo zliwości niedotrzymania warunków kontraktu przez osob e lub instytucj e, której udzielono kredytu. 1.1 Podzia ryzyka kredytowego 1. Ryzyko niedotrzymania warunków - ryzyko niedokonania przez druga stron e p atności wynikajacych z kontraktu. 2. Ryzyko wiarygodności kredytowej - mo zliwość zmiany wiarygodności kredytowej drugiej strony. 1.2 Przestrzeń probabilistyczna Niech b edzie dowolnym zbiorem zdarzeń elementarnych. Prawdopodobieństwo przypisujemy podzbiorom zbioru nale z acym do tzw. klasy zdarzeń F, gdzie F 2. Zak adamy, ze F jest -cia em podzbiorów, tzn. spe nia nastepujace warunki: S1. F 6= ;. S2. Je zeli A 2 F, to na 2 F. S3. Je zeli A i 2 F dla i = 1; 2; :::, to S 1 A i 2 F. Z powy zszych warunków wynika, ze do F nale z a zdarzenia: (zdarzenie pewne) i ; (zdarzenie niemo zliwe). Najmniejsze -cia o zawierajace wszystkie zbiory otwarte w R n nazywamy -cia em zbiorów borelowskich w R n i oznaczamy B(R n ). Prawdopodobieństwem nazywamy dowolna funkcje P : F! R spe niajac a warunki: A1. P (A) 0 dla ka zdego A 2 F, A2. P () = 1, 1

2 A3. Je zeli A i 2 F dla i = 1; 2; ::: oraz A i \ A j = ; dla i 6= j, to P! 1[ 1X A i = P (A i ): (1) Przestrzenia probabilistyczna nazywamy trójke (; F; P ), gdzie jest dowolnym zbiorem, F jest -cia em podzbiorów, a P jest prawdopodobieństwem określonym na F. 1.3 Zmienne losowe Niech (; F; P ) b edzie przestrzenia probabilistyczna. Zmienna losowa (wek- torem losowym) o wartościach w R n nazywamy odwzorowanie X :! R n takie, ze dla dowolnego zbioru borelowskiego A w R n zbiór X 1 (A) nale zy do F. Mo zna wykazać, ze X jest zmienna wtedy i tylko wtedy, gdy dla ka zdego uk adu liczb 1 ; :::; n 2 R mamy X 1 (( 1; 1 ] ::: ( 1; n ]) 2 F: Uwaga. Jeśli jest zbiorem skończonym i F = 2, to ka zda funkcja X :! R n jest zmienna losowa. Rozk adem prawdopodobieństwa zmiennej losowej X :! R n nazywamy funkcje P X : B(R n )! R dana P X (B) := P (X 1 (B)) dla B 2 B(R n ): (2) Mówimy, ze zmienna losowa X ma rozk ad dyskretny, je zeli istnieje taki zbiór przeliczalny S R n, ze P X (S) = 1. Uwaga. Jeśli jest zbiorem skończonym i F = 2, to mo zna przyjać S := X() (zbiór skończony) i wtedy P X (S) = P X (X()) = P (X 1 (X())) = P () = 1: Zatem ka zda zmienna losowa określona na skończonym zbiorze zdarzeń elementarnych ma rozk ad dyskretny. 1.4 Wartość oczekiwana zmiennej losowej o rozk adzie dyskretnym Wartościa oczekiwana (lub średnia) zmiennej losowej X :! R o rozk adzie dyskretnym, przyjmujacej skończenie wiele wartości, nazywamy liczb e EX := X i2i x i P (X = x i ); (3) gdzie X() = fx i g i2i, I skończony zbiór indeksów, a P (X = x i ) jest skróconym zapisem wyra zenia P (f! 2 : X(!) = x i g). 2

3 Wartościa oczekiwana wektora losowego X = (X 1 ; :::; X n ) :! R n, gdzie wszystkie zmienne losowe X i przyjmuja skończenie wiele wartości, nazywamy wektor EX := (EX 1 ; :::; EX n ): (4) 1.5 Wartość oczekiwana zmiennej losowej w przypadku ogólnym W przypadku dowolnej zmiennej losowej X :! R mówimy, ze ma ona wartość oczekiwana, je zeli jest ca kowalna, tzn. Z jxj dp < 1: Wówczas wartościa oczekiwana zmiennej losowej X nazywamy liczb e Z EX := XdP: (5) De nicja (5) jest uogólnieniem de nicji (3). W ogólnym przypadku do zde niowania wartości oczekiwanej wektora losowego u zywamy wzoru (4) przy za o zeniu, ze wszystkie wspó rz edne maja wartość oczekiwana. Twierdzenie 1. Niech X i Y b ed a zmiennymi losowymi na o warto sciach w R. Za ó zmy, ze istnieja warto sci oczekiwane EX i EY. Wówczas: (a) Je sli X 0, to EX 0. (b) jexj E jxj. (c) Dla dowolnych a, b 2 R istnieje warto sć oczekiwana ax + by i E(aX + by ) = aex + bey. (6) 1.6 Wariancja i odchylenie standardowe zmiennej losowej Niech X :! R b edzie zmienna losowa. Jeśli E (X EX) 2 < 1, to te liczb e nazywamy wariancja zmiennej losowej X i oznaczamy Var X = D 2 X := E (X EX) 2 : (7) Wariancj e mo zna inaczej zapisać nast epujaco: Var X = E(X 2 ) (EX) 2 : (8) Ze wzorów (7) i (3) wynika, ze jeśli X przyjmuje skończona ilość wartości x i, i 2 I, to Var X = X P (X = x i )(x i EX) 2 : (9) i2i W asności wariancji. Jeśli X jest zmienna losowa, dla której E(X 2 ) < 1, to istnieje Var X i spe nia warunki (a) Var X 0. 3

4 (b) Var(X) = 2 Var X ( 2 R). (c) Var(X + ) = Var(X) ( 2 R). (d) Var X = 0 wtedy i tylko wtedy, gdy zmienna losowa X jest sta a z prawdopodobieństwem 1. Odchyleniem standardowym zmiennej losowej X nazywamy pierwiastek z wariancji: X = DX = p Var X: (10) 1.7 Niezale zność zmiennych losowych Zmienne losowe X 1 ; :::; X n o wartościach w R, określone na zbiorze, gdzie (; F; P ) jest przestrzenia probabilistyczna, nazywamy niezale znymi, je zeli dla dowolnych zbiorów B 1 ; :::; B n 2 B(R) zachodzi równość P (X 1 2 B 1 ; :::; X n 2 B n ) = P (X 1 2 B 1 ) ::: P (X n 2 B n ): (11) W powy zszym wzorze wyra zenie po lewej jest skróconym zapisem wyra zenia P f! 2 : X 1 (!) 2 B 1 ^ ::: ^ X n (!) 2 B n g; podobna uwaga dotyczy wyra zeń po prawej stronie. Twierdzenie 2. Je zeli zmienne losowe X 1 ; :::; X n sa niezale zne i maja warto sć oczekiwana, to istnieje warto sć oczekiwana iloczynu Q n X i i zachodzi równo sć! ny ny E X i = EX i : (12) Twierdzenie 3. Przy za o zeniach Twierdzenia 2 zachodzi równo sć Var! X i = Var X i : (13) 1.8 Kowariancja i wspó czynnik korelacji zmiennych losowych Kowariancja ca kowalnych zmiennych losowych X i Y, spe niaj acych warunek E jxy j < 1, nazywamy liczb e Cov(X; Y ) := E [(X EX) (Y EY )] : (14) Z powy zszej de nicji i z Twierdzenia 1(c) wynika, ze Cov(X; Y ) = E(XY ) EX EY: (15) Jeśli Cov(X; Y ) = 0, to zmienne losowe X i Y nazywamy nieskorelowanymi; w przeciwnym przypadku skorelowanymi. Korzystajac z nierówności Schwarza dla ca ek, mo zna wykazać nast epujac a nierówność: jcov(x; Y )j p Var X Var Y ; (16) 4

5 przy czym równość zachodzi wtedy i tylko wtedy gdy z prawdopodobieństwem 1 zmienne losowe X i Y zwiazane sa zale znościa liniowa, tzn. istnieja takie liczby a, b 2 R, ze P fy = ax + bg = 1: (17) Wspó czynnikiem korelacji zmiennych losowych X i Y o dodatnich odchyleniach standardowych nazywamy liczb e Corr(X; Y ) := Cov(X; Y ) X Y = Cov(X; Y ) p Var X Var Y : (18) Z nierówności (16) wynika, ze jcorr(x; Y )j 1, a równość zachodzi tylko w przypadku liniowej zale zności mi edzy zmiennymi X i Y. Z Twierdzenia 2 i z równości (15) wynika, ze jeśli zmienne losowe X i Y sa niezale zne i maja wartość oczekiwana, to sa nieskorelowane. Za ó zmy teraz, ze zmienne losowe X i Y przyjmuja skończenie wiele wartości i ze dany jest rozk ad prawdopodobieństwa pary zmiennych losowych (X; Y ), tzn. dane sa skończone ciagi liczbowe x 1 ; :::; x n i y 1 ; :::; y n oraz ciag liczb dodatnich p 1 ; :::; p n takie, ze p i = 1 oraz P (X = x i ; Y = y i ) = p i, i = 1; :::; n: (19) Wówczas, korzystajac z wzoru (3) na wartość oczekiwana, mo zemy zapisać wzór (14) w postaci Cov(X; Y ) = p i (x i EX) (y i EY ) : (20) 1.9 Wariancja sumy zmiennych losowych Dotychczas podaliśmy wzór na wariancj e sumy zmiennych losowych jedynie w przypadku zmiennych losowych niezale znych (wzór (13)). Obecnie podamy wzór dla przypadku ogólnego. Twierdzenie 4. Je zeli zmienne losowe X 1 ; :::; X n maja wariancj e, to istnieje te z wariancja sumy P n X i i zachodzi równo sć Var! X i = Var X i + 2 X 1i<jn Cov(X i ; X j ): (21) Wniosek. Je zeli zmienne losowe X 1 ; :::; X n maja wariancj e i sa parami nieskorelowane, to zachodzi równo sć (13) Dystrybuanta zmiennej losowej Dystrybuanta zmiennej losowej X :! R nazywamy funkcje F : R! [0; 1] określona F (t) := P (X t): (22) 5

6 Twierdzenie 5. Dystrybuanta F zmiennej losowej X ma nast epujace w asno sci: (a) F jest niemalejaca. (b) F jest prawostronnie ciag a. (c) lim t! 1 F (t) = 0, lim t!+1 F (t) = 1. Twierdzenie 6. Je zeli funkcja F : R! [0; 1] spe nia warunki (a) (c) Twierdzenia 5, to jest dystrybuanta pewnej zmiennej losowej; jej rozk ad jest wyznaczony jednoznacznie. Twierdzenie 7. Je zeli F jest dystrybuanta zmiennej losowej X, to dla ka zdego t 2 R, P (X < t) = F (t ) := lim s!t F (s): (23) Niech X = (X 1 ; :::; X n ) :! R n b edzie zmienna n-wymiarowa (wektorem losowym). Rozk ad prawdopodobieństwa zmiennej losowej X jest zde niowany ogólnie (2). Rozk ad ten nazywamy rozk adem acznym wektora losowego X. Gdy znamy rozk ad aczny, to znamy tak ze rozk ad ka zdej wspó rz ednej: P (X j 2 B) = P (X 1 2 R; :::; X j 1 2 R; X j 2 B; X j+1 2 R; :::; X n 2 R): (24) Rozk ady (24) nazywamy rozk adami brzegowymi wektora losowego X. Dystrybuanta wektora losowego X nazywamy funkcje F : R n! [0; 1] określona F (t 1 ; :::; t n ) := P (X 1 t 1 ; :::; X n t n ): (25) Dystrybuantami brzegowymi F 1 ; :::; F n nazywamy dystrybuanty odpowiednio zmiennych losowych X 1 ; :::; X n Zmienne losowe zwiazane z ryzykiem kredytowym Ryzyko kredytowe b edziemy rozpatrywać jako ryzyko niedotrzymania warunków umowy przez kredytobiorc e (osob e lub instytucj e). Dla banku udzielajacego wielu kredytów istotna jest tak ze ocena ryzyka jednoczesnego wystapienia wielu przypadków niewyp acalności klientów oraz badanie zale zności mi edzy tymi zdarzeniami losowymi Przypadek pojedynczego kredytobiorcy Podstawowa zmienna losowa, która tutaj rozwa zamy, jest strata, oznaczana przez L (od ang. loss). Jest ona dana L := EAD SEV Y; (26) gdzie EAD (exposure at default) maksymalna wartość, jaka mo ze być utracona w przypadku niedotrzymania warunków umowy przez kredytobiorc e. Jest to wartość ustalona, a wiec nie jest zmienna losowa. 6

7 SEV (severity) zmienna losowa o wartościach w przedziale [0; 1]; podaje ona, jaki procent wartości EAD jest faktycznie tracony przy zajściu zdarzenia niedotrzymania warunków; Y zmienna losowa o wartościach w zbiorze f0; 1g; przyjmuje wartość 0, gdy kredytobiorca dotrzyma warunków, a 1 w przeciwnym przypadku. Zmienna Y nazywamy wskaźnikiem niedotrzymania warunków. Ponadto de niujemy: LGD (loss given default) strata (jako procent wartości EAD) w przypadku niedotrzymania warunków. Jest to parametr modelu, który zwykle wyznacza sie z wzoru LGD = E(SEV ): (27) P D (probability of default) prawdopodobieństwo niedotrzymania warunków. Wówczas wartość oczekiwana wskaźnika niedotrzymania warunków wyra za sie EY = 1 P D + 0 (1 P D) = P D: (28) Za ó zmy, ze bank udzieli kredytu w wysokości K jednostek pieni edzy na okres 1 roku, a stopa oprocentowania tego kredytu wynosi R. W przypadku dotrzymania warunków umowy bank otrzyma po roku kwot e EAD = K(1 + R): (29) Jest to jednocześnie maksymalna kwota, jaka bank mo ze stracić w przypadku niedotrzymania warunków. W praktyce w wi ekszości przypadków bankowi udaje si e odzyskać cz eść tej kwoty. Wysokość tej odzyskanej kwoty przyjmujemy jako EAD(1 LGD). Wartość oczekiwana kwoty uzyskanej przez bank po roku wynosi zatem K(1 + R)(1 P D) + K(1 + R)(1 LGD)P D = K(1 + R)[(1 P D) + (1 LGD)P D]: (30) Przyjmuje si e, ze wartość ta powinna być równa kwocie kredytu wolnej od ryzyka, tj. obliczonej dla tzw. stopy procentowej wolnej od ryzyka (risk-free rate), oznaczanej R f : K(1 + R)[(1 P D) + (1 LGD)P D] = K(1 + R f ): (31) Z równości (31) mo zna otrzymać dwa inne wzory: 1) Wzór na implikowane prawdopodobieństwo niedotrzymania (implied default probability) jest to prawdopodobieństwo niedotrzymania warunków umowy wynikajace z przyj etego modelu: P D = 1 1+R f 1+R LGD : (32) 2) Wzór na spread kredytowy (credit spread), czyli ró znice miedzy stopa procentowa uwzgledniajac a ryzyko a stopa wolna od ryzyka: LGD P D R R f = (1 + R f ) 1 LGD P D : (33) 7

8 Oczekiwana strata (expected loss) nazywamy wartość oczekiwana straty (26). Zak adaj ac niezale zność zmiennych losowych SEV i Y, otrzymujemy na mocy Twierdzenia 2 oraz (27) i (28) EL = E(EAD SEV Y ) = EAD E(SEV ) E(Y ) = EAD LGD P D: (34) Nieoczekiwana strata (unexpected loss) nazywamy odchylenie standardowe straty (26) L = p Var L = p Var(EAD SEV Y ) = EAD p Var(SEV Y ): (35) Twierdzenie 8. Je zeli zmienne losowe SEV i Y sa niezale zne, to L = EAD p Var(SEV )P D + LGD 2 P D(1 P D): (36) Portfel wielu kredytów B edziemy teraz rozwa zać ryzyko portfela P z o zonego z m kredytów. Podstawowa zmienna ryzyka w tym przypadku jest strata z portfela L P określona mx mx L P := L i = EAD i SEV i Y i ; (37) gdzie wszystkie zmienne z dolnym indeksem i dotycza i-tego kredytu. Oczekiwana strata z portfela P jest równa, zgodnie z (34), mx mx E(L P ) = E(L i ) = EAD i LGD i P D i ; (38) przy za o zeniu, ze dla ka zdego i zmienne losowe SEV i i Y i sa niezale zne. Nieoczekiwana strata z portfela P nazywamy odchylenie standardowe (L P ) straty z portfela. Twierdzenie 9. v u mx (L P ) = t EAD i EAD j Cov (SEV i Y i ; SEV j Y j ): (39) i;j=1 Twierdzenie 10. Za ó zmy, ze poziom straty w przypadku niedotrzymania warunków jest sta y i jest taki sam dla wszystkich sk adników portfela: SEV i LGD i = LGD; 8i 2 f1; :::; mg: (40) Wówczas v u mx (L P ) = t EAD i EAD j LGD 2 ij qp D i (1 P D i )P D j (1 P D j ); gdzie i;j=1 (41) ij := (SEV i Y i ; SEV j Y j ) = (Y i ; Y j ): (42) 8

9 1.12 Warunkowa wartość oczekiwana Niech (; F; P ) b edzie przestrzenia probabilistyczna. Dla dowolnego A 2 F takiego, ze P (A) > 0, zde niujmy funkcje P A : F! R P A (B) := P (Bj A) = P (B \ A) : (43) P (A) Mo zna atwo wykazać, ze P A jest rozk adem prawdopodobieństwa na, tzn. spe nia aksjomaty (A1) (A3) de nicji prawdopodobieństwa. Dla dowolnej zmiennej losowej X :! R posiadajacej wartość oczekiwana de niujemy jej warunkowa wartość oczekiwana pod warunkiem zajścia zdarzenia A nastepujaco: Z E (Xj A) := XdP A : (44) Wzór podany w poni zszym twierdzeniu oznacza, ze E (Xj A) jest średnia wartościa zmiennej losowej X na zbiorze A. Twierdzenie 11. Je zeli P (A) > 0 i X jest zmienna o skończonej warto sci oczekiwanej, to E (Xj A) = 1 Z XdP: (45) P (A) A Zde niujemy teraz warunkowa wartość oczekiwana wzgl edem -cia a generowanego przez co najwy zej przeliczalna liczb e zdarzeń. Do tego potrzebne nam b edzie nastepujace oznaczenie: dla dowolnego zdarzenia A 2 F, symbol 1 A oznacza zmienna określona nastepujaco: 1 A (!) := 1 dla! 2 A; 0 dla! 2 na: (46) Niech = S i2i A i, gdzie I jest zbiorem skończonym lub przeliczalnym, zaś zdarzenia A i o dodatnim prawdopodobieństwie stanowia rozbicie przestrzeni. Niech G = (A i ; i 2 I) b edzie najmniejszym -cia em zawierajacym zbiory A i. Dla dowolnej zmiennej losowej X :! R posiadajacej wartość oczekiwana de niujemy jej warunkowa wartość oczekiwana pod warunkiem -cia a G jako zmienna E (Xj G) :! R zde niowana E (Xj G) (!) := X E (Xj A i ) 1 Ai (!);! 2 : (47) i2i Twierdzenie 12. Warunkowa warto sć oczekiwana E (Xj G) posiada nast epujace w asno sci: (a) E (Xj G) jest mierzalna wzgl edem -cia a G. (b) Je zeli B 2 G, to Z Z XdP = E (Xj G) dp: (48) B B 9

10 Powy zsze twierdzenie umo zliwia uogólnienie de nicji warunkowej wartości oczekiwanej na przypadek dowolnego -cia a G. Warunkowa wartościa oczekiwana zmiennej losowej X pod warunkiem -cia a G nazywamy dowolna zmienna E (Xj G) spe niajac a warunki (a) i (b) Twierdzenia 12. Twierdzenie 13. Niech G b edzie dowolnym -cia em zawartym w F i niech X :! R b edzie zmienna posiadajac a warto sć oczekiwana. Wówczas: (a) Istnieje warunkowa warto sć oczekiwana dla X pod warunkiem G i jest ona wyznaczona jednoznacznie z dok adno scia do zdarzeń o prawdopodobieństwie zero: je zeli Y 1 i Y 2 sa takimi warto sciami oczekiwanymi dla X, to P (Y 1 6= Y 2 ) = 0. (b) Zachodzi równo sć EX = E(E (Xj G)): (49) Je zeli X :! R jest zmienna posiadajac a wartość oczekiwana, a Y :! R n dowolnym wektorem losowym, to mo zemy zde niować warunkowa wartość oczekiwana zmiennej losowej X przy warunku zmiennej losowej Y : E (Xj Y ) := E (Xj (Y )) ; (50) gdzie (Y ) oznacza najmniejsze -cia o, przy którym zmienna losowa Y jest mierzalna. Wówczas z wzoru (49) otrzymujemy EX = E(E (Xj Y )): (51) Dla dowolnego zdarzenia B 2 F i dowolnego -cia a G F, prawdopodobieństwem warunkowym B wzgl edem G nazywamy zmienna P (Bj G) określona P (Bj G) := E (1 B j G) : (52) Analogicznie do (50), określamy prawdopodobieństwo warunkowe zdarzenia B wzgl edem zmiennej losowej Y : P (Bj Y ) := P (Bj (Y )) = E (1 B j (Y )) : (53) Funkcje h : R n! R m nazywamy borelowska, je zeli h 1 (B) 2 B(R n ) dla ka zdego B 2 B(R m ). Twierdzenie 14. Je zeli X :! R jest zmienna posiadajac a warto sć oczekiwana, a Y :! R n dowolnym wektorem losowym, to istnieje funkcja borelowska h : R n! R taka, ze E (Xj Y ) = h(y ): (54) 10

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr zimowy 2010/11) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

Ocena ryzyka kredytowego

Ocena ryzyka kredytowego Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr zimowy 2017/18) Uwaga Niniejszy materia nie stanowi ca ości wyk adu i nie wystarcza do przygotowania

Bardziej szczegółowo

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki matematycznej Adam Kiersztyn 2 godziny lekcyjne 2011-10-23 8.20-9.50 1 Rozk ad normalny Jednym z najwa

Bardziej szczegółowo

Wyk ad II. Stacjonarne szeregi czasowe.

Wyk ad II. Stacjonarne szeregi czasowe. Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr zimowy 2012/13) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 8.03.014 - godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar

Bardziej szczegółowo

Pochodne cz ¾astkowe i ich zastosowanie.

Pochodne cz ¾astkowe i ich zastosowanie. Pochodne cz ¾astkowe i ich zastosowanie. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Pochodne cz ¾astkowe i ich zastosowanie. maj 2013 1 / 18 Zanim przejdziemy do omawiania pochodnych funkcji wielu zmiennych

Bardziej szczegółowo

Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody".

Równania ró znicowe wg A. Ostoja - Ostaszewski Matematyka w ekonomii. Modele i metody. Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody". Przyk ad. Za ó zmy, ze w chwili t = 0 populacja liczy P 0 osób. Roczny wskaźnik urodzeń wynosi b = 00, a roczna

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr letni 2015/16) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

Wyk ady z analizy portfelowej, cz¾eść I

Wyk ady z analizy portfelowej, cz¾eść I Marcin Studniarski Wyk ady z analizy portfelowej, cześć I (semestr letni 2007/08) Wyk ady sa udost epniane na stronie: http://math.uni.lodz.pl/marstud/ Pytania prosz e kierować na adres: marstud@math.uni.lodz.pl

Bardziej szczegółowo

1 Poj ¾ecie szeregu czasowego

1 Poj ¾ecie szeregu czasowego Studia podyplomowe w zakresie przetwarzania, zarz¾adzania i statystycznej analizy danych Analiza szeregów czasowych 24.11.2013-2 godziny konwersatorium autor: Adam Kiersztyn 1 Poj ¾ecie szeregu czasowego

Bardziej szczegółowo

Ekstrema funkcji wielu zmiennych.

Ekstrema funkcji wielu zmiennych. Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu

Bardziej szczegółowo

1 Regresja liniowa cz. I

1 Regresja liniowa cz. I Regresja liniowa cz. I. Model statystyczny Model statystyczny to zbiór za o zeń. Wprowadzamy model, który mo zliwie najlepiej opisuje ineresujacy ¾ nas fragment rzeczywistość. B ¾edy modelu wynikaja¾ z

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2018/19 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy

Bardziej szczegółowo

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I Prezentacja wspó nansowana przez Uni ¾e Europejsk ¾a w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I 1 Co to jest analiza portfelowa? Analiza portfelowa

Bardziej szczegółowo

1 Wieloczynnikowa analiza wariancji

1 Wieloczynnikowa analiza wariancji Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Wieloczynnikowa analiza wariancji

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Proste Procesy Stochastyczne i ich zastosowania.

Proste Procesy Stochastyczne i ich zastosowania. Proste Procesy Stochastyczne i ich zastosowania. Pawe J. Szab owski March 27 Pawe J. Szab owski () Wyk ad 1 March 27 1 / 17 Plan wyk adu: 1-3. Wst ¾ep i preliminaria- przyk ady szeregów czasowych.. Zagadnienie

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2011/12 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystyczne Podczas sprawdzania hipotez statystycznych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ na odrzuceniu hipotezy zerowej (H 0 ), gdy jest ona prawdziwa,

Bardziej szczegółowo

1 Próba a populacja. Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj ¾eć statystycznych,

1 Próba a populacja. Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj ¾eć statystycznych, Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.04 - godziny konwersatorium autor Adam Kiersztyn Próba a populacja Nasze rozwa zania zaczniemy

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

Wyznaczniki, macierz odwrotna, równania macierzowe

Wyznaczniki, macierz odwrotna, równania macierzowe Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach

1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach 1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach Czasami chcemy rekodować jedynie cz ¾eść danych zawartych w pewnym zbiorze. W takim przypadku stosujemy rekodowanie z zastosowaniem warunku

Bardziej szczegółowo

Wprowadzenie do równań ró znicowych i ró zniczkowych.

Wprowadzenie do równań ró znicowych i ró zniczkowych. Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:

Bardziej szczegółowo

1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4

1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4 Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Analiza wariancji Na wst¾epie zapoznamy

Bardziej szczegółowo

1 Miary asymetrii i koncentracji

1 Miary asymetrii i koncentracji Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki opisowej Adam Kiersztyn 3 godziny lekcyjne 2011-10-22 10.10-12.30 1 Miary asymetrii i koncentracji

Bardziej szczegółowo

Bardzo silnie z poj ¾eciem populacji statystycznej zwiazane ¾ jest poj ¾ecie próby statystycznej.

Bardzo silnie z poj ¾eciem populacji statystycznej zwiazane ¾ jest poj ¾ecie próby statystycznej. Próba a populacja Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj eć statystycznych, poszczególne de nicje zostana wzbogacone o obrazowe przyk ady. Jednym z najistotniejszych poj eć jest

Bardziej szczegółowo

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Konkurs Matematyczny, KUL, 30 marca 2012 r.

Konkurs Matematyczny, KUL, 30 marca 2012 r. Konkurs Matematyczny, KUL, 30 marca 01 r. W pustych kratkach obok liter A) B) C) D) nale zy wpisać s owo TAK lub NIE. Zadanie zostanie uznane za rozwiazane, jeśli wszystkie cztery odpowiedzi sa poprawne.

Bardziej szczegółowo

1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL

1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.2014-3 godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Matematyka II. De nicje, twierdzenia 21 czerwca 2011

Matematyka II. De nicje, twierdzenia 21 czerwca 2011 Matematyka II De nicje, twierdzenia 2 czerwca 20 K. Dobrowolska, W. Dyczka, H. Jakuszenkow, Matematyka dla studentów studiów technicznych, cz. 2, HELPMATH, ódź 2007 M. Gewert, Z. Skoczylas, Analiza matematyczna

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

WSTEP ¾ DO ANALIZY MATEMATYCZNEJ

WSTEP ¾ DO ANALIZY MATEMATYCZNEJ st ep do analizy matematycznej STEP DO ANALIZY MATEMATYCZNEJ Rachunek zdań, funkcja zdaniowa, kwanty katory Zad. Udowodnić nastepujace prawa rachunku zdań (tautologie): a) p _ (s q) b) p, s (s p) c) (

Bardziej szczegółowo

Wyk ady z algorytmów genetycznych Cz¾eść 2: Model algorytmu genetycznego przy dowolnej reprezentacji rozwi azań ¾

Wyk ady z algorytmów genetycznych Cz¾eść 2: Model algorytmu genetycznego przy dowolnej reprezentacji rozwi azań ¾ Wyk ady z algorytmów genetycznych Cz¾eść 2: Model algorytmu genetycznego przy dowolnej reprezentacji rozwi azań ¾ Marcin Studniarski Wydzia Matematyki i Informatyki Uniwersytetu ódzkiego Algorytm RHS i

Bardziej szczegółowo

1 Przygotowanie ankiety

1 Przygotowanie ankiety 1 Przygotowanie ankiety Na dzisiejszych zaj ¾eciach skupimy si ¾e na zasadach tworzenia, wprowadzania oraz wst ¾epnej analizie danych zawartych w ankietach. Za ó zmy, ze ankieta sk ada si ¾e nast¾epujacych

Bardziej szczegółowo

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2, Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka

Bardziej szczegółowo

Teoretyczne podstawy algorytmów komputerowego modelowania procesów Markowa

Teoretyczne podstawy algorytmów komputerowego modelowania procesów Markowa Teoretyczne podstawy algorytmów komputerowego modelowania procesów Markowa Adam Kiersztyn 28 czerwca 20 Streszczenie W tej pracy przedstawimy najwa zniejsze rezultaty zawarte w przygotowywanej rozprawie

Bardziej szczegółowo

Teoria algorytmów ewolucyjnych

Teoria algorytmów ewolucyjnych Marcin Studniarski Teoria algorytmów ewolucyjnych Wyk ad dla doktorantów Semestr letni 0/3 Klasyczny algorytm genetyczny Rozwa zamy funkcj e określona na przestrzeni euklidesowej: f : R n! R. Za- ó zmy,

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Zmienne losowe. Statystyka w 3

Zmienne losowe. Statystyka w 3 Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na

Bardziej szczegółowo

1 Wieloczynnikowa analiza wariancji ciag ¾ dalszy

1 Wieloczynnikowa analiza wariancji ciag ¾ dalszy Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Wielowymiarowa analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-03-18 08.20-12.30 1 Wieloczynnikowa analiza wariancji

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy.

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy. Obligacje De nicja Obligacj nazywamy papier warto sciowy maj acy, charakter wierzycielski. Obligacj jest zaci agni, eciem, po_zyczki przez instytucj e, sprzedaj ac, obligacj e, u jej nabywcy. Sprzedaj

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

Statystyczna analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok

Statystyczna analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok Statystyczna analiza danych z wykorzystaniem pakietów SPSS i Statistica Skrypt dla studentów 2012 rok Adam Kiersztyn Katedra Teorii Prawdopodobieństwa Wydzia Matematyczno - Przyrodniczy Katolicki Uniwersytet

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

1 Wiadomości wst ¾epne

1 Wiadomości wst ¾epne Wiadomości wst ¾ene. Narysować wykresy funkcji elementarnych sin cos tg ctg a ( a 6= ) log a ( a 6= ) arcsin arccos arctg arcctg Podać ich dziedziny i rzeciwdziedziny.. Roz o zyć na u amki roste wyra zenie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo