1 Regresja liniowa cz. I
|
|
- Nina Marta Janowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Regresja liniowa cz. I. Model statystyczny Model statystyczny to zbiór za o zeń. Wprowadzamy model, który mo zliwie najlepiej opisuje ineresujacy ¾ nas fragment rzeczywistość. B ¾edy modelu wynikaja¾ z nieuwzgl¾ednienia wszystkich czynników, b ¾ednego uwzgl¾edenia czynników oraz z losowego zaburzenia. Model statystyczny ma opisywać sk adnik systematyczny, to co pozostaje to losowe reszty. sk adnik systematyczny() & wynik obserwacji model statystyczny.& sk adnik systematyczny(2) sk adnk losowy(). sk adnk losowy(2) (reszty) Zak adamy, ze sk adnik losowy ()(zaburzenie losowe, b ¾ ad losowy) jest wynikiem dzia ania ma o istotnych zdarzeń. Czego spodziewamy si ¾e od reszt? Powinny być niezale zne o średniej 0, i sta ej wariancji (równomiernie roz o zona chmurka punktów), cz¾esto zak ada si¾e, ze maja¾ rozk ad normalny (pomocne za o zenie w technikach obliczeniowych). Budowa modelu statystycznego: Ustalenie za o zeń modelu (identy kacja modelu) Estymacja parametrów modelu Wyznaczenie reszt i ocena poprawności modelu model poprawny Zastosowanie modelu (prognoza).2 Model regresji liniowej.& model niepoprawny Powrót na poczatek ¾ algorytmu I ETAP:Ustalenie za o zeń modelu Ze wzgl ¾edu na przyj ¾ete za o zenie o liniowej zale zności mi ¾edzy zmiennymi nasz model jest postaci: Y = 0 + X + " Y jest zmienna¾ zale zna ¾(inaczej zmienna¾ objaśniana), ¾ której wartości chcemy wyjaśnić lub przewidzieć X jest zmienna¾ niezale zna ¾ (inaczej zmienna¾ objaśniajac ¾ a) ¾ nazywana¾ te z predyktorem, zak adamy, ze zmienna ta nie jest zdegenerowana do sta ej. W przeciwnym przypadku problemu regresji nie by oby sensu rozwa zać.
2 Uwaga Umawiamy si ¾e, ze warto sci X sa¾ ustalone (brak losowo sci). " jest b ¾edem losowym (inaczej zak óceniem, szumem), jedynym źród em losowości 0 to wyraz wolny b ¾ed acy ¾ punktem przeci¾ecia linii Y = 0 + X z osia¾ rz ¾ednych. jest wspó czynnikiem kierunkowym, czyli tangensem kata ¾ pod którym linia Y = 0 + X nachylona jest do osi odci¾etych. Y = 0 + X {z } sk adnik systematyczny + {z} " sk adnik losowy y i = 0 + x i + " i, i = ; :::; n Dodatkowe za o zenia modelu: Jeśli dodatkowo " i sa¾ nieskorelowane, o tym samym rozk adzie E (") = 0 V ar (") = 2 " N 0; 2 to mówimy o modelu normalnej regresji liniowej. Przyk ad RYSUNEK!!! Uwaga 2 W modelu regresji obie zmienne sa¾ losowe, a w regresji tylko Y jest losowa. W asności W modelu normalnej regresji liniowej: " i? " j, i 6= j Uwaga 3 W asno sci 2 B ¾edy (") sa¾ jednakowo rozproszone wokó linii regresji tzn. ich rozk ad jest identyczny (w tym identyczna srednia i odchylenie) W asności 3. E (Y ) = 0 + X, (E (Y jx) = 0 + X) 2. V ar (Y ) = 2, (V ar (Y jx) = 2 ) 0, i 6= j 3. Cov (" j ; y i ) = 2, i = j II Etap: Estymacja parametrów modelu (obecny wyk ad skoncentruje si ¾e wokó tego etapu) Estymatory parametrów 0 i oznaczamy odpowiednio b 0 i b. Na podstawie n-elementowej próby (x i ; y i ), i = ; :::; n oszacowany model regresji jest postaci: Y = b 0 + b X + e 2
3 gdzie e reprezentuje zaobserwowane b ¾edy, czyli reszty z dopasowania linii regresji b 0 + b X do zbioru obserwacji Y czyli e = Y b 0 b X Dla poszczególnych par punktów mamy zwiazek ¾ Linia regresji: y i = b 0 + b x i + e i, i = ; :::; n e i = y i b 0 b x i by = b 0 + b X by i = b 0 + b x i, i = ; :::; n Wartości by i nazywa si¾e estymatorami y i, wartościami teoretycznymi lub prognozowanymi wartościami Y. -Metoda najmniejszych kwadratów: SSE = e 2 i = (y i by i ) 2 SSE b0 ; b = 2 y i 0 b b x i min b 0 ; b 2 y i 0 b b x i Szukamy b 0 ; b realizujacymi ¾ b0 ; b = 0 0 b0 ; b = 0 b = SS xy SS x b 0 = y b x gdzie SS x = SS xy = (x i x) 2 (x i x) (y i y) 3
4 Uwaga 4 Terminologia: uk ad równań normalnych: ( 0 = P n y i n b b P n 0 x i 0 = P n x iy i 0 b P n x P n i b x2 i W asności 4. (x; y) nale zy do linii regresji 2. Uk ad równań normalnych jest równwa zny z 0 = P n e i 0 = P n x ie i b = r SSy SS x b XY by i y = b (x i x) Uwaga 5 b 0 i b sa¾ warto sciami (relizacjami) estymatorów prawdziwych parametrów regresji..3 Twierdzenie Gaussa-Markowa (przypadek jednowymiarowy) Lemat V ar b0 = 2 n + x2 ; V ar b = 2 S xx S XX Twierdzenie Gaussa i Markowa W modelu regresji liniowej nieobcia zonymi, ¾ liniowymi estymatorami parametrów 0 i o najmniejszej wariancji w klasie estymatorów liniowych sa¾ estymatory wyznaczone metoda¾ najmniejszych kwadratów (BLUE =best linear unbiased estimator). Wniosek E b0 = 0, E b = Ćwiczenie. Zaproponować (sztuczny) model regresji liniowej. 2. Wygenerować pary punktów z tego modelu. 3. Przeprowadzíc estymacj ¾e parametrów 4. Narysować wygenerowane pary punktów wraz z linia¾ regresji 5. Interpretacja Solution y i = 0 + x i + " i, i = ; :::; 0 4
5 . Narz ¾edzia>Analiza Danych>Generowanie Liczb Pseudolosowych (normalny) 2. Zaznacz obszar x2, nacísnij F2 wpisz =REGLINP(Zakres_Y;Zakres_X;;); CTRL+SHIFT+ENTER 3. Na wykresie rozrzutu punktów (x i ; y i ) zaznaczyć punkty>prawy Przycisk Myszy>Dodaj lini ¾e trendu. 4. Je sli warto sć zmiennej obja sniajacej ¾ X zwi ¾ekszy si ¾e o jednostk ¾e, to warto sć zmiennej Y zmieni si ¾e o b (w zale zno sci od znaku). Ćwiczenie 2 Jak powy zej ale dla n = Wykorzystać generowanie liczb pseudolosowych dla X. Zbadaj wp yw wielko sci odchylenia standardowego zmiennej " na wyniki estymacji. Wnioski? Ćwiczenie 3 Dla par (x i ; y i ) = (x i ; x i+ ) ; gdzie x i jest i-ta¾ obserwacja¾ WIG20 przeprowad z estymacj ¾e regresji (wyznacz estymatory, narysuj wykres rozrzutu wraz z linia¾ regresji)..4 Badanie istotności parametrów Twierdzenie 2 Je sli " maja¾ rozk ad normalny, to b 2 = n 2 (y i by i ) 2 = SSE n 2, gdzie SSE = P n e2 i = P n (y i by i ) 2 ; jest nieobcia zonym ¾ estymatorem parametru 2. Twierdzenie 3 Je sli " maja¾ rozk ad normalny, to b 0 0 t n 2 SE b0 b t n 2 SE b r q gdzie 2 SE b0 = b 2 n + x2 S xx, SE b = b 2 S XX. Dzielimy przez liczb ¾e stopni swobody równa¾ n 2. Odejmujemy 2 bo stopnie swobody zosta y zwiazane r przez estymatory wspó czynnków. r 2 SE b0 \ = V ar b0, SE b \ = V ar b 5
6 .4. Przedzia y ufości Lemat 2 Je sli " maja¾ rozk ad normalny, to. ( ) 00% przedzia ufno sci dla parametru 0 jest postaci b 0 t n 2;=2 SE b0 2. ( ) 00% przedzia ufno sci dla parametru : b t n 2;=2 SE b Uwaga 6 Wskazówka praktyczna: je sli warto sć zero nie znajduje si ¾e w przedziale ufno sci parametru to z prawdopodobieństwem zale zno sć liniowa pomi ¾edzy zmienna¾ Y a zmienna¾ X jest istotna ( scíslej: wspó czynnik nachylenia linii regresji jest ró zny od zera)..4.2 Testy istotności Jeśli wartość zmiennej Y jest sta a niezale znie od wartości X, to = 0. Jeśli korelacja pomi¾edzy zmiennymi nie wyst¾epuje to = 0. Lemat 3 Je sli " N (; ) oraz c 2 R to Jest to test dwustronny. Wniosek 2 Je sli " N (; ) to H 0 : = c H 0 : 6= c b c t n 2 SE b H 0 : = 0 H 0 : 6= 0 Jest to test dwustronny. b t n 2 SE b Uwaga 7 Gdy wspó czynnik korelacji jest istotnie ró zny od zera lub gdy istnieje zwiazek ¾ regresyjny pomi ¾edzy zmiennymi to i tak nie mo zemy stwierdzíc zwiazku ¾ przyczynowo-skutowego mi ¾edzy zmiennymi tzn. nie mo zemy stwierdzíc, ze jedna zmienna jest przyczyna¾ drugiej. 6
7 Ćwiczenie 4 Analiza regresji w oparciu o plik: PilkaNozna.xls.. Przeprowadzíc estymacj ¾e parametrów 2. Wyznaczyć b ¾edy standardowe parametrów:se b0 q b SE = b 2 S XX = r b 2 n + x2 S xx, 3. Testuj: H0 : = 0 H : 6= 0 Solution 2 Zaznacz obszar 2x2, nacísnij F2 wpisz =REGLINP(Zakres_Y;Zakres_X;;) oraz CTRL+SHIFT+ENTER. Otrzymasz b SE b b 0 SE b0 b t stat = SE b p value = ROZK AD.T(Modu.Liczby(t stat ); n 2; 2) U = ROZK AD.T.ODW(=2; n 2) Zbiór krytyczny = ( ; U) [ (U; ) to prawdopodobieństwo zbioru krytycznego. ROZK AD.T(x; ; 2) = P (jxj > x),gdziex t () ROZK AD.T.ODW(p; ) = U; gdzie P (X > U) = p Ćwiczenie 5 Dla danych z WIG20 oraz ich logarytmów sprawdzíc normalno sć. QQ-Plot: Chcemy oceníc czy x ; :::; x n sa¾ realizacja¾ rozk adu normalnego. Uporzad- kować próbk ¾e x ; :::; x n od najmniejszej do najwi ¾ekszej otrzymujac ¾ x () ; :::; x (n). ¾ Zaznaczyć na uk adzie wspó rz ¾ednym pary (x (j) ; z j ), dla j = ; :::; n, gdzie z j wyznaczamy z to zsamo sci: j 0:5 zj b = N n n b n gdzie N jest dystrybuanta¾ standardowego rozk adu normalnego N(0; ), b n, b n sa¾ odpowiednio oszacowaniem warto sci oczekiwanej () i odchylenia standardowego () z próby. Nale zy narysować prosta¾ regresji liniowej"dla (x (j) ; z j ). Zaznaczone punkty nie powinny zbytnioódbiegać od równania prostej. 7
8 Ćwiczenie 6 Zastosować regresj ¾e liniowa¾ do estymacji parametrów modelu dwumianowego S (k) = S (k ) ( + k U + ( k ) D) S (0) = S 0 p k = 0 p S (k) Y k = S (k ) = + ku + ( k ) D y k = Y k = + k U + ( k ) D = D + k (U D) 8
Wyk ad II. Stacjonarne szeregi czasowe.
Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych
Bardziej szczegółowo1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki matematycznej Adam Kiersztyn 2 godziny lekcyjne 2011-10-23 8.20-9.50 1 Rozk ad normalny Jednym z najwa
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowo1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów
Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 8.03.014 - godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar
Bardziej szczegółowoWNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Bardziej szczegółowoEkstrema funkcji wielu zmiennych.
Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu
Bardziej szczegółowoFunkcje dwóch zmiennych
Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy
Bardziej szczegółowo1 Wieloczynnikowa analiza wariancji
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Wieloczynnikowa analiza wariancji
Bardziej szczegółowoRegresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Bardziej szczegółowo1 Poj ¾ecie szeregu czasowego
Studia podyplomowe w zakresie przetwarzania, zarz¾adzania i statystycznej analizy danych Analiza szeregów czasowych 24.11.2013-2 godziny konwersatorium autor: Adam Kiersztyn 1 Poj ¾ecie szeregu czasowego
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoPochodne cz ¾astkowe i ich zastosowanie.
Pochodne cz ¾astkowe i ich zastosowanie. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Pochodne cz ¾astkowe i ich zastosowanie. maj 2013 1 / 18 Zanim przejdziemy do omawiania pochodnych funkcji wielu zmiennych
Bardziej szczegółowo1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Analiza wariancji Na wst¾epie zapoznamy
Bardziej szczegółowoRozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos
Spis tre ci PRZEDMOWA :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 CZ I. Wprowadzenie do modelowania ekonometrycznego ::::::::::: 13 Rozdzia 1. Modelowanie ekonometryczne ::::::::::::::::::::::::::::::
Bardziej szczegółowoOcena ryzyka kredytowego
Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr letni 2013/14) 1 Informacje wst epne Celem tego rozdzia u jest powtórzenie pewnych wiadomości
Bardziej szczegółowoRównania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody".
Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody". Przyk ad. Za ó zmy, ze w chwili t = 0 populacja liczy P 0 osób. Roczny wskaźnik urodzeń wynosi b = 00, a roczna
Bardziej szczegółowoWprowadzenie do równań ró znicowych i ró zniczkowych.
Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1
E k o n o m e t r i a S t r o n a Liniowy model ekonometryczny Jednorównaniowy liniowy model ekonometryczny (model regresji wielorakiej) można zapisać w postaci: y = α + α x + α x +... + α x + ε, t =,,...,
Bardziej szczegółowoTestowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Bardziej szczegółowoWyznaczniki, macierz odwrotna, równania macierzowe
Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Bardziej szczegółowoparametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Bardziej szczegółowoStatystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoNarzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoMODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Bardziej szczegółowoEstymacja i prognozowanie
Estymacja i prognozowanie Maciej Kostrzewski AGH Kraków 1 luty 2010 1 Regresja Wieloraka Motywacja: ceny mieszkań, a...? Rozwiazanie: Opis zwiazku miedzy Y a X 1 ; :::; X k. Tablica danych. y 1 x 11 :
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoStosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Bardziej szczegółowo1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL
Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.2014-3 godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowo( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoTestowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Bardziej szczegółowoEstymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoEkonometria, 3 rok. Jerzy Mycielski. Uwniwersytet Warszawski, Wydzia Nauk Ekonomicznych. Jerzy Mycielski (Institute) Ekonometria, 3 rok / 15
Ekonometria, 3 rok Jerzy Mycielski Uwniwersytet Warszawski, Wydzia Nauk Ekonomicznych 2009 Jerzy Mycielski (Institute) Ekonometria, 3 rok 2009 1 / 15 Sprawy organizacyjne Dy zur: wtorek godz. 14-15 w sali
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoRegresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Bardziej szczegółowoX Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
Bardziej szczegółowoPOLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Bardziej szczegółowo1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach
1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach Czasami chcemy rekodować jedynie cz ¾eść danych zawartych w pewnym zbiorze. W takim przypadku stosujemy rekodowanie z zastosowaniem warunku
Bardziej szczegółowoAnaliza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Bardziej szczegółowoALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje
Bardziej szczegółowoO zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym
O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe
Bardziej szczegółowoANALIZA REGRESJI SPSS
NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek
Bardziej szczegółowoAnaliza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Bardziej szczegółowo1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystyczne Podczas sprawdzania hipotez statystycznych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ na odrzuceniu hipotezy zerowej (H 0 ), gdy jest ona prawdziwa,
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoEkonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Bardziej szczegółowoWykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Bardziej szczegółowoWspółczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Bardziej szczegółowoTemat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Bardziej szczegółowoStatystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoPrzykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
Bardziej szczegółowoAnaliza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Bardziej szczegółowoTemat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Bardziej szczegółowoWykład 4 Związki i zależności
Wykład 4 Związki i zależności Rozważmy: Dane z dwiema lub więcej zmiennymi Zagadnienia do omówienia: Zmienne objaśniające i zmienne odpowiedzi Wykres punktowy Korelacja Prosta regresji Słownictwo: Zmienna
Bardziej szczegółowo1 Miary asymetrii i koncentracji
Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki opisowej Adam Kiersztyn 3 godziny lekcyjne 2011-10-22 10.10-12.30 1 Miary asymetrii i koncentracji
Bardziej szczegółowoProste Procesy Stochastyczne i ich zastosowania.
Proste Procesy Stochastyczne i ich zastosowania. Pawe J. Szab owski March 27 Pawe J. Szab owski () Wyk ad 1 March 27 1 / 17 Plan wyk adu: 1-3. Wst ¾ep i preliminaria- przyk ady szeregów czasowych.. Zagadnienie
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Bardziej szczegółowoWstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Bardziej szczegółowoRozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Bardziej szczegółowoREGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.
REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Bardziej szczegółowoEstymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Bardziej szczegółowo7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Bardziej szczegółowoPrzykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Bardziej szczegółowoZmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Bardziej szczegółowoZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Bardziej szczegółowot y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Bardziej szczegółowoPRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
Bardziej szczegółowoProjekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Bardziej szczegółowoWERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Bardziej szczegółowoTemat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
Bardziej szczegółowoPowtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.
Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie
Bardziej szczegółowoEkonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoAdam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
Bardziej szczegółowoKorzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Bardziej szczegółowoAnaliza korelacyjna i regresyjna
Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i
Bardziej szczegółowo