Oddziaływanie cząstek β z polem magnetycznym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Oddziaływanie cząstek β z polem magnetycznym"

Transkrypt

1 Naodowe Centum Badań Jądowych Dział Edukacji i Szkoleń ul. Andzeja Sołtana 7, 5-4 Otwock-Świek ĆWICZENIE 15 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Oddziaływanie cząstek β z polem magnetycznym Imię i nazwisko: Imię i nazwisko: Data pomiau: CEL ĆWICZENIA Celem ćwiczenia jest zbadanie zachowania cząstek beta emitowanych ze źódła 9 S/ 9 Y w polu magnetycznym (z uwzględnieniem efektów elatywistycznych).. UKŁAD DOŚWIADCZALNY Wygląd stolika ze źódłem pomieniowania, uchomym detektoem i magnesem, użytego w doświadczeniu pzedstawiono na ysunku 1, a schemat całej apaatuy na ysunku 3. Dane apaatuy zasilającej znajdują się w dalszej części opisu ćwiczenia. Dane o źódle pomieniowania β umieszczono w amce. Rys. 1. Stolik z uchomym amieniem do badania odchylania cząstek β w polu magnetycznym 3. WSTĘP TEORETYCZNY 1. Powstawanie pomieniowania β Cząstki β to elektony, któe powstają wskutek eakcji jądowych zwanych ozpadami β. W jądach atomowych następują wtedy pzemiany stuktuy. Rozpad β to taki, w któym neuton ozpada się na poton, elekton i antyneutino elektonowe. Rozpad β + odpowiada sytuacji, gdy poton ozpada się na neuton, pozyton i neutino elektonowe. n p + + ν + p n + β + ν Ponieważ ozpad β jest ozpadem tójciałowym, enegia wydzielona w jego wyniku zostaje nieówno ozdzielona na wszystkie tzy ciała. Ene- β N (liczba cząstek) enegia śednia <E β > E (enegia cząstek) enegia maksymalna E βmax Rys.. Typowe widmo pomieniowania β

2 pzedwzmacniacz ładunkowy zasilacz pzedwzmacniacza detekto półpzewodnikowy amię obotowe steowane komputeowo usuwalne pole magnetyczne kolimato źódło pomieniowania β wzmacniacz impulsów analizato wielokanałowy kompute Rys. 3. Schemat apaatuy użytej w doświadczeniu gia cząstek β może zatem wynosić od zea aż do maksymalnej enegii dostępnej w ozpadzie. Rysunek pokazuje typowy kształt widma enegetycznego ozpadu β. Chcąc schaakteyzować enegię widma podaje się enegię maksymalną albo enegię śednią (ówną około 1/3 watości enegii maksymalnej). W wypadku elektonów pzyspieszanych w akceleatoze możemy uzyskiwać elektony o jednej, zadanej watości enegii, zwanych monoenegetycznymi. Ich widmo ma kształt pojedynczego wąskiego piku (wiezchołka).. Zachowanie pomieniowania β w polu magnetycznym Mówiąc o pomieniowaniu β myślimy o stumieniach elektonów lub pozytonów. Są to cząstki obdazone ładunkiem elektycznym, zatem w polu magnetycznym działa na nie siła Loentza postopadła do wektoa ich pędkości i wektoa indukcji tego pola. Wzó na siłę działającą na cząstkę można zapisać w postaci wektoowej: (1) F L = q ( v B) gdzie q to ładunek cząstki, v to jej pędkość, B to indukcja zewnętznego pola magnetycznego, zaś symbol oznacza iloczyn wektoowy. Watość siły Loentza można zatem wyazić wzoem skalanym: () F L = gdzie α to kąt pomiędzy wektoami pędkości i indukcji pola magnetycznego. Gdy cząstki β pouszają się dokładnie postopadle do wektoa indukcji magnetycznej, siła Loentza osiąga watość maksymalną. W takim pzypadku to cząstek ma kształt łuku okęgu, a siła Loentza ma chaakte siły dośodkowej, któą można wyazić wzoem: F d = mv qvb sin α (3) Rys. 4. Działanie siły Loentza na cząstkę naładowaną elektycznie gdzie m to masa cząstki, v to jej pędkość, zaś to pomień okęgu, po któym pousza się cząstka. Ze względu na to, że cząstki β emitowane pzez źódła pomieniotwócze mogą osiągać enegię zędu MeV (milionów elektonowoltów) i pędkości zbliżone do pędkości światła w póżni, należy wziąć pod uwagę występujące efekty elatywistyczne. Można to zobić pzyjmując, że masa cząstki m w powyższym wzoze jest masą elatywistyczną: F L B α q v B - -

3 DANE O ŹRÓDLE PROMIENIOTWÓRCZYM 9 S/ 9 Y Rozpad pomieniotwóczy β polega na emisji z jąda atomowego danego izotopu elektonu β oaz antyneutina ν. Źódłem pomieniowania β jest w naszym ćwiczeniu sukcesywny ozpad izotopów stontu i itu: S Y Z Dla ozpadu: 9 38 S 9 39 Y + β + ν T ½ = 8,64 lat. Wynikiem spełnienia pawa zachowania enegii i pawa zachowania pędu dla tzech ciał w tym pzypadku są to: jądo atomowe 9 Y, elekton β i antyneutino ν jest ciągłe widmo enegetyczne elektonów, kończące się na enegii E βmax =,546 MeV, wynikającej z óżnicy mas jąda wyjściowego 9 S i jąda końcowego 9 Y. Dla ozpadu 9 S E β,546 MeV, a enegia śednia <E β > =,196 MeV. Jądo 9 Y jest ównież pomieniotwócze: 9 39 Y 9 4 Dla tego ozpadu T ½ = 64,1 godz., E β,8 MeV, a enegia śednia <E β > =,934 MeV. Z + β +ν Widmo ciągłe pomieniowania β z ozpadu 9 S Enegia elektonów % beta [kev] 1,88 1,84 4 5, , , , Widmo ciągłe pomieniowania β z ozpadu 9 Y Enegia elektonów % beta [kev] 1,337 1,344 4,71 4 1, , , , ,9 gdzie m to masa spoczynkowa cząstki, a c to pędkość światła w póżni. Poównując wzoy na maksymalną siłę Loentza i siłę dośodkową uzyskujemy: qvb = skąd po pzekształceniach możemy znaleźć wzó na pędkość cząstki pouszającej się po okęgu o pomieniu w znanym polu magnetycznym B: Znając pędkość cząstki można obliczyć jej enegię kinetyczną, któa w ujęciu elatywistycznym jest óżnicą pomiędzy enegią całkowitą (mc ) a spoczynkową (m c ) cząstki i wyaża się wzoem: E k m Pzekształcając to ównanie można znaleźć także elację odwotną, czyli wyznaczyć pędkość cząstki pouszającej się z enegią kinetyczną E k : m = (4) 1 v m v 1 v v = qb m + c ( qb ) c 1 = mc mc = mc 1 1 v c c (5) (6) (7) v = c m 1 c Ek + mc (8) - 3 -

4 Można też wyznaczyć zależność pomienia od enegii kinetycznej E k uwzględniając pęd cząstki p = mv. Poównując wzoy () i (3) otzymujemy zależność: F L = qvb = mv / = F d qb = mv/ = p/ = p/qb = pc/qbc Znając zależność elatywistyczną pędu p od enegii całkowitej E i spoczynkowej m c : i wiedząc ównocześnie, że: możemy wyznaczyć wzó na wielkość pc: E = (m c ) + (pc) E = E k + m c (m c ) + (pc) = (E k + m c ) (m c ) + (pc) = E k + E k m c + (m c ) pc = E + k E m c k (9) któy podstawimy do wzou na pomień otzymując: = E k + E qbc k m c (1) 3. Odchylenie cząstek β w układzie pomiaowym. Skolimowana wiązka pomieniowania β natafiając na pole magnetyczne ulega odchyleniu o pewien kąt, któego zależność od pomienia łuku skętu można wyznaczyć znając geometię układu użytego w ćwiczeniu. Ilustuje to ysunek 5. Cząstki wpadające w pole magnetyczne z pawej stony na ysunku lecą najpiew po linii postej, po czym skęcają po łuku okęgu w obszaze działania pola magnetycznego o indukcji B =,38 T. Obsza ten ma gubość d = 5 mm. (Niepewność pomiau obu tych wielkości można oszacować na 1% ze względu na ozmiay i możliwą niejednoodność pola.) Wylatując z obszau działania pola magnetycznego cząstka znowu zaczyna pouszać się po linii postej, ale leci w innym kieunku. Kąt α pomiędzy kieunkiem piewotnym a odchylonym zależny jest od długości i pomienia łuku, jaki zakeśla cząstka w obszaze działania pola. Jak widać z ysunku, ze względu na podobieństwo tójkątów, zależność tą można opisać postym tygonometycznym wzoem: d =. sin α obsza działania pola magnetycznego Ponieważ w ćwiczeniu można zmiezyć kąt odchylenia tou cząstek, a odległość d jest dana, możemy zatem wyznaczyć pomień. kąt α kąt α W zeczywistości zachowanie się cząstek β jest dużo badziej skomplikowane, co może wpływać d d kąt α Rys. 5. Odchylanie tou cząstek β w układzie pomiaowym (widok z góy). (11) - 4 -

5 na uzyskane wyniki. Na kształt tou cząstek mogą mieć wpływ takie waunki jak: niejednoodność pola magnetycznego, oganiczona skuteczność kolimatoa, ozpaszanie cząstek na elementach układu i w powietzu, ziemskie pole magnetyczne itp. W paktyce wpływ ten jest często pomijalnie mały, np. watość indukcji ziemskiego pola magnetycznego wynosi ok. µt, co stanowi mniej niż,1% watości pola używanego w doświadczeniu. Należy jednak zachować świadomość występowania tych czynników i spawdzać, czy faktycznie można je pominąć. Pomia kąta może być obaczony dodatkowym błędem ze względu na niedoskonałość apaatuy. Ramię, na któym obaca się detekto, umieszczone jest na osi pokywającej się ze śodkiem pola magnetycznego wytwozonego pzez magnes stały. Jak można łatwo zauważyć, nie zawsze pzedłużenie tou odchylonych cząstek pzechodzi pzez tę oś, jednak w paktyce óżnice występujące dla zakesu kątów pzyjętego w ćwiczeniu są minimalne i nie wpływają znacząco na wynik. 4. Detekcja pomieniowania β Do detekcji pomieniowania β w ćwiczeniu służy detekto półpzewodnikowy, w któym w wyniku depozycji enegii padającej cząstki powstaje ładunek elektyczny popocjonalny do tej enegii. Powstały impuls elektyczny wzmacniany jest pzez pzedwzmacniacz ładunkowy, a następnie pzez liniowy wzmacniacz impulsowy. Wzmocniony impuls podany na wejście analizatoa wielokanałowego jest ejestowany w jego pamięci, skąd dane o impulsach zebanych w óżnych kanałach można odczytać pzy użyciu komputea. Nume kanału odpowiada wielkości impulsu. Rejestowana jest zatem zaówno liczba cząstek padających na powiezchnię detektoa, jak i ich enegia. Widmo enegetyczne pomieniowania β docieającego do detektoa można obejzeć na ekanie komputea i poddać analizie numeycznej

6 1 3 do analizatoa 4 do detektoa Rys. 6. Zestaw elektoniczny (1- wzmacniacz spektometyczny, - zasilacz napięcia polayzacji detektoa, 3 - zasilacz pzedwzmacniacza, 4 - pzedwzmacniacz) 4. PRZEBIEG DOŚWIADCZENIA A) Pzed włączeniem zasilania spawdzić i ewentualnie skoygować połączenia kablowe oaz ustawienie elementów egulacyjnych w apaatuze elektonicznej (ys. 6): w zasilaczu polayzacji detektoa: okienko, pecyze, co zeuje napięcie polayzacji; we wzmacniaczu spektometycznym impulsów: wzmocnienie FINE GAIN : 1, wzmocnienie COARSE GAIN :, kształtowanie impulsów ( SHAPING ): µs. B) Pzed pzystąpieniem do pomiaów należy: włączyć zasilanie zestawu elektonicznego pzełącznikiem POWER po pawej stonie, włączyć zasilanie stolika pzełącznikiem w pobliżu pzewodu zasilającego (powinny zaświecić się diody sygnalizujące obecność napięcia), włączyć kompute i po zalogowaniu się uuchomić pogam Tukan8k z pulpitu. C) Po włączeniu zasilania pzestawić pzełącznik na zasilaczu napięcia polayzacji z pozycji OFF na pozycję ON, po czym powoli zwiększać napięcie polayzacji aż do osiągnięcia na wyświetlaczu watości, co odpowiada napięciu polayzacji ok. V. Obacając potencjomet nie należy obacać nim szybciej niż 1 obót na sekundy. D) Pzygotować stolik do pacy ustawiając detekto w pozycji zeowej, tj. na wpost od źódła pomieniowania (kąt odchylenia amienia ówny stopni), a magnes w pozycji kańcowej z dala od kolimatoa. E) W pogamie Tukan8k, będącym pogamem obsługi analizatoa impulsów na złączu USB, w menu Pomia Kyteia stopu... nastawić czas zeczywisty pomiau na s i zaznaczyć to kyteium jako aktywne. Zatwiedzić ustawienia i w oknie głównym pogamu uuchomić pomia. F) Poównać otzymany wykes widma pomieniowania z teoetycznym widmem pomieniowania β. Pzedyskutować óżnice pod kątem możliwego pochodzenia. W pogamie Tukan8k oganiczyć cały wykes od dołu i od góy dwoma pzesuwanymi znacznikami ( makeami ). Z dolnej części okna odczytać jego całkowite pole. Jest to liczba impulsów zaejestowanych pzez analizato, któą należy zanotować w tabeli 1. Zapisać widmo pomiau do pliku we wskazanym pzez powadzącego katalogu. G) Ustawić magnes na wpost od źódła pomieniowania, na osi wiązki z kolimatoa. W tym celu na panelu steowania stolika pzestawić pzełącznik pozycji magnesu na pozycja obocza, kieunek uchu magnesu na w lewo, po czym wcisnąć i pzytzymać pzycisk stat pzez ok. 1 s. Po puszczeniu pzycisku poczekać, aż magnes zatzyma się w pozycji oboczej. 1 szczegółowe ustawienia apaatuy podane zostaną w takcie wykonywania ćwiczenia - 6 -

7 H) Nastawić czas zeczywisty pomiau w pogamie Tukan8k na s i uuchomić pomia. Po jego zakończeniu pzedyskutować zaobsewowane zmiany w otzymanym widmie oaz w całkowitej liczbie impulsów. I) Kozystając z pzycisków na pawej części panelu steującego stolika ustawić detekto pod pewnym kątem względem osi kolimatoa. UWAGA: dozwolone są zaówno dodatnie watości kąta (detekto po pawej stonie od osi), jak i ujemne (detekto po lewej stonie od osi). J) Po ustawieniu detektoa pzepowadzić pomia dla danego kąta i zapisać całkowitą liczbę impulsów w tabeli. Takie pomiau pzepowadzić dla co najmniej kilkunastu óżnych kątów ze szczególnym uwzględnieniem okolic maksymalnej liczby impulsów. K) Znając kieunek, w któym odchylają się cząstki emitowane ze źódła użytego w ćwiczeniu oaz kieunek i zwot linii sił pola magnetycznego (magnes stały ma oznaczone bieguny N i S) ustalić znak ładunku cząstek. Można do tego celu wykozystać eguły stosowane z fizyce (np. eguła pawej dłoni, eguła lewej dłoni itp.) L) Wykonać wykes częstości zliczeń w zależności od kąta odchylenia. Znaleźć maksimum i okeślić kąt, dla któego występuje. Pzedyskutować podobieństwa i óżnice pomiędzy otzymanym wykesem a widmem pomieniowania odczytanym wcześniej na komputeze bez obecności pola magnetycznego. M) Kozystając z ównania (11) znaleźć pomień kzywizny tou cząstek dla wyznaczonego kąta. N) Na wykesie widma pomieniowania bez pola magnetycznego ównież znaleźć maksimum i okeślić enegię kinetyczną cząstek E k, a następnie obliczyć ich pędkość v z ównania (8). Jak óżniłaby się watość pędkości obliczona pzy pomocy wzou z mechaniki klasycznej? O) Znając watości i v oaz B obliczyć ładunek cząstek q z ównania (5). Za m pzyjąć masę spoczynkową elektonu m = 9, kg, a c = m/s. Poównać watość q z watością ładunku elementanego e = 1, C. P) Podstawiając do wzou (1) watość ładunku elementanego q = e wyznaczyć ponownie pomień kzywizny tou i poównać go z watością zmiezoną wcześniej. R) Pzepowadzić achunek błędów dla wyznaczonych watości, v i q. Można wykozystać do tego celu metodę óżniczki zupełnej. S) Po wykonaniu ćwiczenia wyłączyć apaatuę w następujący sposób: ustawić magnes tak, by zasłaniał sobą oś kolimatoa, tj. w lewej pozycji kańcowej. Dokonuje się tego pzestawiając pzełącznik pozycji magnesu na kańcowa, pzełącznik kieunku uchu magnesu na w lewo, pzytzymując pzez kilkanaście sekund pzycisk stat po lewej stonie panelu i czekając, aż magnes zasłoni kolimato; w zasilaczu polayzacji ustawić: okienko, pecyze, co wyzeuje napięcie polayzacji; pzestawić pzełącznik na zasilaczu polayzacji z pozycji ON na pozycję OFF wyłączyć zasilanie zestawu elektonicznego pzełącznikiem z napisem POWER po pawej; wyłączyć pogam Tukan8k, a następnie wylogować się i wyłączyć kompute. podana jest pełna wesja ćwiczenia; w konketnych pzypadkach zakes zadań może być mniejszy - 7 -

8 ĆWICZENIE 15 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Oddziaływanie cząstek β z polem magnetycznym Data pomiau:... Imię i nazwisko studenta/ucznia:... Imię i nazwisko studenta/ucznia:... Szkoła, klasa:... Opacowanie wyników: Maksimum intensywności pomieniowania β w widmie enegetycznym dla enegii Maksimum intensywności pomieniowania β dla kąta ugięcia wiązki Pomień kzywizny tou cząstki β dla powyższego kąta Wyznaczony znak ładunku cząstek β Obliczona watość ładunku cząstek β E k [MeV] α [ ] [mm] [+/ ] q [C] Dodatkowe dane: B =,38±,4 T d = 5±3 mm m = 9, kg c = m. s -1 e = 1, C m c = 8, J =,511 MeV 1 ev = 1, J 1 MeV = 1, J 1 J = 1 kg. m. s - = 1 V. A = 1 V. C. s -1 1 T = 1 V. s. m -

9 TABELA 1 Bez pola magnetycznego Kąt α [ ] Czas pomiau t [s] Liczba zliczeń n [impulsy] Częstość zliczeń n/t [impulsy/s] TABELA Z polem magnetycznym Kąt α [ ] Czas pomiau t [s] Liczba zliczeń n [impulsy] Częstość zliczeń n/t [impulsy/s] - 9 -

Szkoła z przyszłością. Oddziaływanie cząstek β z polem magnetycznym

Szkoła z przyszłością. Oddziaływanie cząstek β z polem magnetycznym Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 5-4 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE

Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Wykład 10. Reinhard Kulessa 1

Wykład 10. Reinhard Kulessa 1 Wykład 1 14.1 Podstawowe infomacje doświadczalne cd. 14. Pąd elektyczny jako źódło pola magnetycznego 14..1 Pole indukcji magnetycznej pochodzące od nieskończenie długiego pzewodnika z pądem. 14.. Pawo

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowej Wykład 6 Zenon Janas 11 kwietnia 018. Współzędne sfeyczne położenie punktu: (, θ, ϕ) Z sin θ ( 0, ) θ ( 0, π ) ϕ ( 0, π ) cosθθ X ϕ θ Y (, θ, ϕ) ( x, y, z) x sinθcosϕ y sinθsinϕ

Bardziej szczegółowo

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO 10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym. 1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.

Bardziej szczegółowo

Arkusze maturalne poziom podstawowy

Arkusze maturalne poziom podstawowy Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

Zjawisko indukcji. Magnetyzm materii.

Zjawisko indukcji. Magnetyzm materii. Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

Badanie właściwości magnetyczne ciał stałych

Badanie właściwości magnetyczne ciał stałych CLF I Ćw. N 20 Badanie właściwości magnetycznych ciał stałych. Wydział Fizyki P.W. Badanie właściwości magnetyczne ciał stałych I. Wpowadzenie teoetyczne 1. Źódła pola magnetycznego W ogólnym pzypadku

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

Część I Pole elektryczne

Część I Pole elektryczne Mateiały pomocnicze dla studentów Studiów Zaocznych Wydz Mechatoniki semest II Część I Pole elektyczne Ładunek elektyczny Q wytwaza pole elektyczne, do opisu któego możemy wykozystać dwie wielkości: natężenie

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

Pomiar maksymalnej energii promieniowania β

Pomiar maksymalnej energii promieniowania β Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 7 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar maksymalnej

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy: Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,

Bardziej szczegółowo

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności

Bardziej szczegółowo

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN Wydział Budowy Maszyn i Zaządzania Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n 4 WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH Cel ćwiczenia:

Bardziej szczegółowo

POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ

POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ POMAR PĘTL STEREZ MAGNETZNEJ 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DDAKTKA FZKA ĆZENA LABORATORJNE.. Opis układu pomiaowego Mateiały feomagnetyczne (feyt,

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

KOOF Szczecin:   Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu

Bardziej szczegółowo

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej

Atom wodoru w mechanice kwantowej Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Pola elektryczne i magnetyczne

Pola elektryczne i magnetyczne Pola elektyczne i magnetyczne Zadania z ozwiązaniami Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego Zadanie 1 Cząstka alfa (jądo atomu helu) ma masę m = 6.64*1 7

Bardziej szczegółowo

WPROWADZENIE. Czym jest fizyka?

WPROWADZENIE. Czym jest fizyka? WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1. Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej

Bardziej szczegółowo

Energia w geometrii Schwarzshilda

Energia w geometrii Schwarzshilda Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą

Bardziej szczegółowo

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

Opis ćwiczeń na laboratorium obiektów ruchomych

Opis ćwiczeń na laboratorium obiektów ruchomych Gdańsk 3.0.007 Opis ćwiczeń na laboatoium obiektów uchomych Implementacja algoytmu steowania obotem w śodowisku symulacyjnym gy obotów w piłkę nożną stwozonym w Katedze Systemów Automatyki Politechniki

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

Lista zadań nr 1 - Wektory

Lista zadań nr 1 - Wektory Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)

Bardziej szczegółowo

LITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A.

LITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A. LITERATURA. Resnick R., Holliday O., Fizyka, Tom i, lub nowe wydanie 5-tomowe. Acosta V., Cowan C. L., Gaham B. J., Podstawy Fizyki Współczesnej, 98,PWN. 3. Wóblewski A. K., Zakzewski J. A., Wstęp Do Fizyki,

Bardziej szczegółowo

Zasady dynamiki ruchu obrotowego

Zasady dynamiki ruchu obrotowego DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

Zastosowanie zasad dynamiki Newtona.

Zastosowanie zasad dynamiki Newtona. Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.

Bardziej szczegółowo

ε = dw dq. (25.1) Rys Obwód o jednym oczku

ε = dw dq. (25.1) Rys Obwód o jednym oczku XXV. OBWODY ELEKTRYCZNE 25.1. Obwody elektyczne o jednym oczku Aby wytwozyć stały pzepływ ładunku, jest potzebne uządzenie, któe wykonując pacę nad nośnikami ładunku, utzymuje óżnicę potencjałów między

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu

Bardziej szczegółowo

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda . akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru

Równanie Schrödingera dla elektronu w atomie wodoru Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE. POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo