Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT"

Transkrypt

1 Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT

2 Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. F = 0 a = 0 (definicja układu inercjalnego) 2. F = ma F x = ma x F y = ma y F z = ma z 3. F AA = F BB

3 Dlaczego spadają tak samo? Dalekozasięgowa siła: F 1 = F 2 = G m 1m 2 r 2 Source: Z drugiej strony masa bezwładna: F = ma F y = mg F y = G Mm r 2

4 Siła oporu Siła jaką płyn (gaz lub ciecz) wywiera na ciało w ruchu Skierowana zawsze przeciwnie do kierunku ruchu ciała Poruszające się ciało wywiera siłę na płyn toruje drogę Z III zasady Newtona płyn działa na ciało małe prędkości: f = kk duże prędkości: f = Dv 2 D = 1 2 CρS S- przekrój poprzeczny C współczynnik aerodynamiczny (eksperyment) ρ gęstość ośrodka (powietrza) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

5 Siła oporu aerodynamicznego f = f v v, v = v v f v = bb + cv 2 związany z lepkością (tarcie płynu), proporcjonalny do: lepkości płynu rozmiaru liniowego obiektu związany z przyśpieszaniem cząstek, z którymi się zderza obiekt proporcjonalny do: gęstości ośrodka przekroju poprzecznego obiektu Przyzwoite funkcje rozwijamy w szereg potęgowy Taylora! f v = a + bb + cv 2 +

6 Siła oporu aerodynamicznego f = f v v, v = v v f v = bb + cv 2 = f lll + f kk Dla obiektów o kształcie kulistym o średnicy D : b = ββ, c = γd 2 W powietrzu warunkach normalnych: β = 1, NN m 2 γ = 0,25 Ns2 m 4

7 Siła oporu aerodynamicznego kiedy można coś zaniedbać? f v = bb + cv 2 = f lll + f kk f kk = cv2 f lll bb = c γd2 v = b ββ v = 1,6 103 s/m 2 DD Ex: Piłka baseballowa o D=7cm leci z prędkością v = 5m s Ex: Kropla deszczu o D=1mm leci z prędkością v = 0,6m Ex: Kropla oleju o D = 1,5 μμ leci z prędkością v = m : f kk 10 7 s f lll s : f kk f lll = 600 : f kk f lll 1

8 Przykład: kulka w oleju (mała prędkość) Siła działają tylko w kierunku Y F y (t) = mm kv y (t) = ma y (t) Na początku v y 0 = 0 oraz a y 0 = g Wraz ze wzrostem prędkości rośnie opór W końcu układ osiąga równowagę: F y = mm kv t = 0 v t = mm/k prędkość graniczna (terminal speed) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

9 Przykład: kulka w oleju równania ruchu v t = mm/k UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

10 Przykład: Spadające koty Badania z 1987r. dane z pogotowia weterynaryjnego w Nowym Yorku 132 koty, 90% kotów przeżyło rekordzista spadł z 32 piętra na beton Prędkość graniczna 97km/h a potem? F g = mm F g = mm F g = mm

11 Przykład: Powietrzny skoczek Dla ciała ludzkiego spadającego w powietrzu w pozycji jak na zdjęciu wartość współczynnika D 0.25 kk. Znajdź graniczną prędkość m skoczka o masie 50kk. A co jeśli masa będzie większa? F y = mm Dv 2 y = 0 v y = mm D = 44 m s 160 kk h! UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

12 Rzut ukośny z oporem liniowym v y > 0 v v x > 0 v x > 0 v y < 0 v F oo = (0, k y v y (t 2 ), 0) F g = (0, mm, 0) F oo = (0, k y v y (t 1 ), 0) F g = (0, mm, 0) v = (v x, v y, 0) v x = (v x, 0,0) v y = (0, v y, 0) v = v x + v y = (v x, v y, 0) Co liczycie z definicji? Współrzędne wektora czy wartości? a = dv dd, a = a x, a y, a z = dv x dd, dv y dd, dv x dd v = dr dd, v = v x, v y, v z = dd dd, dd dd, dd dd

13 Rzut ukośny z oporem liniowym Ruch poziomy (sprawdź czy to dobrze): ma x = bv x dv x dd = b m v x x t = v 0x τ 1 exp ( t/τ), Gdzie τ = m czas charakterystyczny (relaksacji) b Ruch pionowy (sprawdź czy to dobrze): ma y = mm bv y dv y dd = g b m v y y t = (v 0y +v g )τ 1 exp ( t/τ) v g t

14 Tor ruchu i zasięg (jak policzyć?) x t = v 0x τ 1 exp ( t/τ), y t = (v 0y +v g )τ 1 exp ( t/τ) v g t y x = v 0y v g v 0x x + v g τττ 1 x v 0x τ Zasięg y t R = 0 R = x(t R ) v 0y v g R + v v g τττ 1 R 0x v 0x τ = 0

15 Komputer lub rozwiązanie przybliżone v 0y v g v 0x R + v g τττ 1 R v 0x τ = 0 Jeśli opór nie jest duży to ten czynnik mały ln 1 ε = (ε ε ε3 + ) Fizycy zawsze szukają czegoś małego lub dużego! Rozwijamy w szereg potęgowy i zaniedbujemy wyrazy wyższego rzędu

16 Skoki małych żywych organizmów Steven Vogel, Living in a physical world II. The bio-ballistics of small projectiles J. Biosci. 30: (2005)

17 Siła tarcia Bardzo ważna ( złe i dobre aspekty): Olej w silniku samochodowym minimalizuje tarcie pomiędzy ruchomymi częściami Bez tarcia między oponami a drogą nie mogliśmy jechać ani skręcić (opony nie mogłyby się obracać) Jak odkręcałoby się żarówkę? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

18 Co się dzieje z tarciem? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

19 Wybrane współczynniki tarcia powierzchnie μ s μ k stal-stal aluminium na stali szkło-szkło teflon-teflon teflon na stali guma na betonie (suchym) guma na betonie (mokrym) lód-lód nawoskowane drewno na mokrym śniegu nawoskowane drewno na suchym śniegu

20 Tarcie kinetyczne i statyczne Tarcie statyczne działa kiedy nie ma względnego ruchu powierzchni próbujesz przesunąć pudło po podłodze a ono się nie rusza podłoga wywiera przeciwnie skierowaną siłę na pudło f s μ s n UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

21 Tarcie kinetyczne i statyczne Trudniej poruszyć ciało niż utrzymać je w ruchu! Tarcie kinetyczne działa gdy ciało ślizga się po powierzchni dwie powierzchnie poruszają się względem siebie siła tarcia wzrasta, gdy rośnie siła normalna Empiryczne! f k = μ k n współczynnik tarcia kinetycznego UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

22 Przykład: Jazda na sankach z tarciem Jaki kąt, żeby sanki jechały ze stałą prędkością? Znajdź ten kąt w zależności od wagi w i współczynnika tarcia μ k. F x = wwww α f k = wwww α μ k n = 0 wwww α = μ k n Równowaga! F y = n wwww(α) = 0 n = wwww(α) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

23 Przykład: Jazda na sankach z tarciem F x = wwww α f k = wwww α μ k n = 0 wwww α = μ k n F y = n wwww(α) = 0 n = wwww(α) wwww α = μ k wwww(α) μ k = sin (α) cos (α) = tt(α) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

24 Po co nachylona droga? Z jaką maksymalną szybkością można jechać na takim zakręcie? Znamy promień krzywizny R Znamy współczynnik tarcia μ Przyśpieszenie dośrodkowe auta: a rrr = v2 Równania Newtona: F x = f = ma rrr = mv2 R F y = n + mm = 0 R UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

25 Po co nachylona droga? F x = f = ma rrr = mv2 R F y = n + mm = 0 n = mm Tarcie potrzebne, żeby utrzymać w tym ruchu rośnie z prędkością, ale max: f mmm = μ s f = μ s mm Czyli: μ s mm = m R v mmm 2 v mmm = μ s gg UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

26 Po co nachylona droga? Zał: brak tarcia F x = nnnnn = ma rrr = mv2 R F y = n cos β + mm = 0 n = mm cos β mm mv2 ssss = cos β R ggggg = v 2 A co jeśli jeszcze tarcie? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

27 Przykład: Indianapolis, Speedway, Indiana Droga ma długość: 2.5 mmmi 4000 m: Dwóch prostych odcinków o długości 1000m Czterech zakrętów o długości 400 m Dwóch prostych o długości 200m Nachylenie: Proste: 0 0 Zakręty: 9,2 0 Nawierzchnia: asfalt Indy km

28 Przykład: Indianapolis, Speedway, Indiana Z jaką maksymalną prędkością można jechać na zakrętach? Obwód koła: 1600 = 2ππ r 255 Nachylenie: Proste: 0 0 Zakręty: 9, m 200m

29 Jak szybko kręcić kieliszkami?

30 Oscylator harmoniczny x = 0: położenie równowagi 0 x x < 0 F x = kk > 0 0 F x = kk < 0 x 0 x > 0 x x < 0: wychylenie z położenia równowagi x > 0: wychylenie z położenia równowagi

31 Wahadło matematyczne F x = mmmmmm Druga zasada dynamiki: ma x = mmmmmm a x = ggggg = d2 x dt 2 Długość łuku: x = LL Równanie ruchu: θ + g L ssss = 0 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

32 Jak to rozwiązać? θ + g L ssss = 0 ssss = θ θ3 3! + θ5 5! Jeśli założysz, że θ 0, wtedy ssss = θ θ + g L θ = 0 łatwo rozwiązać (jak?) Ale co to znaczy θ 0? (doświadczenie)

33 Małe kąty Dla małych kątów (oscylator harmoniczny) θ + g L θ = 0 Otrzymujemy: θ t = θ 0 cos Wtedy prędkość kątowa: θ ṫ = θ 0 g L sin g L t g L t

34 Wahadło matematyczne i pomiar przyśpieszenia ziemskiego Wahadło matematyczne i oscylator harmoniczny: θ + g L θ = 0 x + k m x = 0 Częstość kątowa: k = ω 2 m ω = k m = g L Okres nie zależy od masy ani wychylenia?! ω = 2π T = 2ππ T = 2π ω = 2π L g

35 Dlaczego ω to jakaś częstość (kołowa)? x t = Acos (ωω) x t = x t + T, T to okres cos ωω = cos ω t + T z własności cosinusa: cos ωω = cos (ωω + 2π) cos ωω + 2π = cos( ωω + ωω) 2π = ωω ω = 2π T = 2ππ Częstość (liczba okresów w 1s) oznaczana: f lub ν

36 Wahadło matematyczne i sprężyna: okres, położenie, prędkość i energia Restnik Halliday Walker

37 Oscylator tłumiony i wymuszany mx = F x = kk równanie Newtona mx + kk = 0 oscylator harmoniczny mx + bx + kk = 0 tłumienie mx + bx + kk = F(t) wymuszanie x + b m x + k m x = F t m = f t = f 0sin (ωω)

38 Wymuszane wahadło

39 Ruch harmoniczny i ruch po okręgu W 1610, skonstruowanym przez siebie teleskopem odkrył 4 główne księżyce Jowisza Sonda Juno (NASA ) film poklatkowy, rozpoczyna się w dniu 12 czerwca (Juno 10 milionów mil od Jowisza), a kończy się w dniu 29 czerwca (3 miliony mil). Galileo Galilei ( ) Portrait by Giusto Sustermans Źródło: Wikipedia

40 Ruch harmoniczny i ruch po okręgu Ruch ze stałą prędkością kątową ω Jakim wzorem zadane położenie Q na OO? x = AAAAA = AAAA(ωω + φ) Restnik Halliday Walker

41 Do czytania ten wykład D. Halliday, R. Resnick, J. Walker Podstawy fizyki (2007), Tom 1, Rozdziały 1-4

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)

Bardziej szczegółowo

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale

Bardziej szczegółowo

Dynamika punktu materialnego Katarzyna Weron. Wykład dla Matematyki Stosowanej

Dynamika punktu materialnego Katarzyna Weron. Wykład dla Matematyki Stosowanej Dynamika punktu materialnego Katarzyna Weron Wykład dla Matematyki Stosowanej Powtórka Kinematyczne równania ruchu r = r t = x t, y t, z(t) Otrzymujemy z definicji d v a = dt, a = a x, a y, a z = dv x

Bardziej szczegółowo

Drgania, dynamika nieliniowa i chaos deterministyczny. Katarzyna Weron

Drgania, dynamika nieliniowa i chaos deterministyczny. Katarzyna Weron Drgania, dynamika nieliniowa i chaos deterministyczny Katarzyna Weron Polecana literatura Polecam też skrypt: David Morin, Waves http://www.people.fas.harvard.edu/~djmorin/waves Liniowość: Oscylator harmoniczny

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Siła sprężystości - przypomnienie

Siła sprężystości - przypomnienie Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 1 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Użyteczne informacje Moja strona domowa: www.if.pwr.wroc.pl/~piosit informacje do wykładu: Dydaktyka/Mechaniczny Miejsce

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Użyteczne informacje Moja strona domowa: if.pwr.edu.pl/~piosit informacje do wykładu: Dydaktyka/Elektronika 1 Miejsce konsultacji:

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład XII: Siły sprężyste Opory ruchu Tarcie Lepkość Ruch w ośrodku Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ

Bardziej szczegółowo

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku Opory ruchu Fizyka I (B+C) Wykład XII: Tarcie Lepkość Ruch w ośrodku Tarcie Tarcie kinetyczne Siła pojawiajaca się między dwoma powierzchniami poruszajacymi się względem siebie, dociskanymi siła N. Ścisły

Bardziej szczegółowo

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż. Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT

Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT Dynamika punktu materialnego Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

τ = wyp τ i ! F = wyp Równowaga statyczna

τ = wyp τ i ! F = wyp Równowaga statyczna Równowaga statyczna Ciało sztywne znajduje się w równowadze statycznej tj. w bezruchu względem inercjalnego układu odniesienia - gdy wypadkowa siła oraz wypadkowy moment siły (liczony względem dowolnego

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy, Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Podstawy fizyki wykład 9

Podstawy fizyki wykład 9 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014 Program Wykładu Fizyka Wydział Zarządzania i Ekonomii Rok akademicki 2013/2014 Mechanika Kinematyka i dynamika punktu materialnego Zasady zachowania energii, pędu i momentu pędu Podstawowe własności pola

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana Wykład 3: Jak wygląda dźwięk? Katarzyna Weron Matematyka Stosowana Fala dźwiękowa Podłużna fala rozchodząca się w ośrodku Powietrzu Wodzie Ciele stałym (słyszycie czasem sąsiadów?) Prędkość dźwięku: stal

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu https://www.slideserve.com/lala/ch5-uniform-circular-motion Ruch jednostajny po okręgu Przyspieszenie dośrodkowe Δx Z podobieństwa trójkątów: r = ΔV V ΔV a d = lim Δt 0 Δt Δθ Δx Δθ a d = V r lim Δt 0 Δx

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną! Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

Fizyka 4. Janusz Andrzejewski

Fizyka 4. Janusz Andrzejewski Fizyka 4 Ruch jednostajny po okręgu 2 Ruch jednostajny po okręgu Ruch cząstki jest ruchem jednostajnym po okręgu jeśli porusza się ona po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej.

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

Wykład 3 Ruch drgający Ruch falowy

Wykład 3 Ruch drgający Ruch falowy Wykład 3 Ruch drgający Ruch falowy Dr Henryk Jankowski 2010/2011 WIMIR_studia niestacjonarne Mechanika Analityczna Czasoprzestrzeń zasada składania ruchów Galileo Galilei (1564-1642) - "Dialogi" (Florencja,

Bardziej szczegółowo

Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S

Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S Jaki musi być kąt b, aby siła potrzebna do wywołania poślizgu była minimalna G N b T PRAWA COULOMBA I MORENA: 1. iła tarcia jest niezależna od wielkości stykających się powierzchni i zależy tylko (jedynie)

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości

Bardziej szczegółowo

8. OPORY RUCHU (6 stron)

8. OPORY RUCHU (6 stron) 8. OPORY RUCHU (6 stron) Wszystkie ciała poruszające się w naszym otoczeniu napotykają na mniejsze lub większe opory ruchu. Siły oporu są zawsze skierowane przeciwnie do kierunku wektora prędkości ciała

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron Wykład dla Matematyki Stosowanej Kim jestem? Prof. dr hab. Katarzyna Weron (Sznajd- Weron w nauce/pub) Fizyk teoretyk, układy złożone (bio,

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

5. Ruch harmoniczny i równanie falowe

5. Ruch harmoniczny i równanie falowe 5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Plan Model wzrostu populacji 1 Część 1: Równania pierwszego rzędu, jedna zmienna Model wzrostu populacji 2 Model skoku

Bardziej szczegółowo

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna

Bardziej szczegółowo

Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?

Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe? Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,

Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona, Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.

Bardziej szczegółowo