TEMAT: WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA PROSTEGO
|
|
- Bernard Niewiadomski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Doświadczeie r EMA: WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA PROSEGO Istrukcja da studeta (opracowaa przez dr Dautę Piwowarską ) 1. Ce ćwiczeia Cee ćwiczeia jest eksperyetae wyzaczeie wartości przyspieszeia zieskiego za poocą wahadła prostego.. LIERAURA: 1. Sz. Szczeiowski, Fizyka doświadcza, cz.1, PWN, W-wa, Rewaj, Ćwiczeia aboratoryje z fizyki, PWN, W-wa Dryński, Ćwiczeia aboratoryje z fizyki, PWN Warszawa Aaiza iepewości poiarowych. 5. Istrukcja obsługi suwiarki: 3. Wstęp teoretyczy Ruch drgający Ruch haroiczy Z ruche drgający (drgaie ub oscyacją) ay do czyieia wtedy, gdy ruch ciała zachodzi wokół stałego położeia rówowagi, a siła kierująca jest proporcjoaa do wychyeia i skierowaa stae przeciwie do tego wychyeia, w kieruku środka wahań. Rozróżiay ruchy drgające okresowe i ieokresowe. Ruch, który powtarza się w reguarych odstępach czasu, azyway okresowy (periodyczy). Szczegóy przypadkie ruchu okresowego jest ruch haroiczy, w który zaeżość przeieszczeia od czasu wyrażoa jest przez fukcję sius ub cosius. Przykłade układu echaiczego, który wykouje ruch haroiczy jest oscyator haroiczy. Może i być asa zawieszoa a sprężyie (rys.1) ub wahadło. Eektryczy przykłade oscyatora haroiczego oże być obwód LC. Rys.1. Ruch drgający oscyatora haroiczego (rys. źródło:[]). Ruch haroiczy obserwujey p. wtedy, gdy zawieszoe a sprężyie ciało o asie (rys.1 a) wychyiy o odciek + z położeia rówowagi (rys.1 b) (za dodatie uważay odciki odkładae ku dołowi). Sprężya uegie rozciągięciu i a ciało będzie działać siła sprężystości -F s : Fs k (1) skierowaa ku położeiu rówowagi, o wartości wprost proporcjoaej do wychyeia (k jest stałą sprężystości sprężyy). Ciało A pod wpływe takiej siły, zaczie się poruszać z przyspieszeie ku położeiu rówowagi. Gdy ciało zajdzie się zów w położeiu rówowagi (rys.1 c), siła staie się rówa zeru. Wskutek bezwładości ciało przejdzie przez położeie rówowagi i będzie poruszało się ku górze. Jedocześie sprężya uegie ściśięciu i a
2 ciało zaczie działać siła +F s, skierowaa ku położeiu rówowagi (rys.1 d). W te sposób ustai się ruch drgający ciała A wokół położeia rówowagi. Rozpatrzy biżej ruch pod działaie sił sprężystych i apiszy rówaie ruchu oscyatora haroiczego. Zgodie z II zasadą dyaiki Newtoa: () F s a zate: d k dt (3) dv d gdzie: a ozacza przyspieszeie rozpatrywaego puktu.. dt dt Po przekształceiach rówaia (3) otrzyujey rówaie różiczkowe ruchu haroiczego: d dt k 0 ub d t t 0 (4) dt k k Wiekość (ub ) (5) jest częstością kołową drgań (przy czy f, gdzie f jest częstotiwością drgań). Rozwiązaie rówaia (4) jest:, (6) t Asi t gdzie: A i są wiekościai stałyi, które oża wyzaczyć z waruku początkowego, ówiącego jakie było wychyeie w chwii t=0; A- apituda drgań, czyi aksyae wychyeie z położeia rówowagi; - faza początkowa drgaia; t -faza drgaia w oecie t; -częstość kołowa drgaia. Podstawiając rozwiązaie (6) do rówaia (4), łatwo sprawdzić, że istotie jest to dobre rozwiązaie. Jak wyika z rówaia (6), podstawową własością ruchu haroiczego jest okresowość, gdyż sius jest fukcją okresową arguetu. Czas, w ciągu którego drgający pukt przejdzie przez wszystkie ożiwe położeia i wróci do położeia wyjściowego azyway okrese drgań. Ściśej: okres jest to czas wykoaia jedego pełego drgaia, czas jaki upłyie iędzy dwoa ajbiższyi oetai odpowiadającyi idetyczej fazie drgaia. Oczywiście: 1 (7) f Wykorzystując rówaie (5), okres drgań oscyatora haroiczego wyosi: (8) k Rówaie (6) opisuje przypadek wyideaizoway, w który drgające ciało ie apotyka a żade opory. Drgaie takie charakteryzuje stała apituda, a jego wykrese jest siusoida ( =f(t)). 3.. Wahadło proste Iy przykłade ruchu drgającego jest ruch wahadła prostego (rys.). Wahadło proste jest ajepszy odwzorowaie wahadła ateatyczego, którego w praktyce igdy ie da się zreaizować. (Chodzi o to, aby wahadło to oża było przedstawić jako asę puktową zawieszoą a ieważkiej ici). Wahadło proste jest to ały
3 ciężarek, ajczęściej staowa kuka zawieszoa a ekkiej i ożiwie ierozciągiwej długiej ici. Ciężar ici jest tak ały, że w przybiżeiu oża go poiąć. Jeżei wahadło jest w spoczyku, to siła ciężkości F g zostaje zrówoważoa przez siłę aprężeia ici N. Jeżei jedak wahadło zostaje wychyoe z położeia rówowagi o pewie kąt, to siła ciężkości F g (rys.): F g = g (9) rozkłada się a dwie składowe : i F1 g si (10) F g cos (11). Rys.. Siły działające a wahadło proste. Składowa F rówoegła do ici, będzie rówoważoa przez siłę aprężeia ici N. Natoiast, składowa F prostopadła do ici, rówa iczbowo (10) i skierowaa ku położeiu rówowagi, ie będzie zrówoważoa. Aby 0 wyzaczyć okres tego ruchu zakłada, że wychyeie jest o ały kąt 4, a da ałych kątów: si (1) AB r Poieważ długość łuku (AB) iewiee różi się od wychyeia to z rys. : si (13) Po podstawieiu zaeżości (13) do wzoru (10) i po uwzgędieiu zaku siły, siła F 1 jest przeciwie skierowaa do wychyeia, stąd : F1 g (14) Łatwo zauważyć, że składowa siły ciężkości F 1 odgrywa aaogiczą roę do siły sprężystej ( proporcjoaość do wychyeia, kieruek ku położeiu rówowagi). Drgaia wahadła, wywołae przez tę siłę ają przy ałych kątach te sa charakter co drgaia wywołae przez siłę sprężystą. ego rodzaju siły azyway siłai quasi- sprężystyi. Wykorzystując podobieństwo siły F 1 do siły sprężystości F s (1), rówaie (14) oża zapisać w postaci: g k (15) Po wyzaczeiu ze wzoru (5) współczyika k: k (16), gdzie ( ze wzoru 7) i podstawieiu tych wyrażeń do rówaia (15) otrzyujey wzór a okres drgań wahadła prostego: (s) (17). g
4 Okres drgań wahadła prostego ie zaeży od asy wahadła, a jedyie od jego długości i przyspieszeia zieskiego g w day iejscu a kui zieskiej. Wystarczy przekształcić rówaie (17) i otrzyay wzór a wyzaczeie przyspieszeia grawitacyjego g: 4. OPIS DOŚWIADCZENIA 4 g ( ) (18). s Ce ćwiczeia: Poiary ają a ceu wyzaczeie przyspieszeia zieskiego w day iejscu a kui zieskiej i porówaie otrzyaego wyiku z wartością tabicową. 4.1.Zestaw poiarowy Na zestaw poiarowy składają się: dwie ub trzy kuki z różych ateriałów (kuki powiy ieć taką saą średicę), itka (ierozciągiwa, o długości co ajiej 0,6 ), statyw, przyiar iiowy, suwiarka, kątoierz oraz stoper. 4.. Wykoaie ćwiczeia i opracowaie wyików poiarowych 1. Zierzyć długość ici ( 1 ), icząc od puktu zawieszeia do górego puktu styczości powierzchi kuki z płaszczyzą pozioą. Następie suwiarką zierzyć średicę kuki i do długości ici dodać proień kuki (r). Długość wahadła (): = 1 +r (19).. Odchyić kukę od położeia rówowagi (o kąt ieprzekraczający 4 0 ) i obserwować wahaia. Aby dokładie wyzaczyć okres, aeży zierzyć za poocą stopera czas trwaia kikudziesięciu okresów (, co ajiej 5). Poiar powtórzyć pięciokrotie. Jeżei za każdy raze otrzyay wartości różiące się iej iż 1 s, będzie to dowode, że ie poyiiśy się wyzaczając okresy. Następie obiczay średią wartość okresu ( śr ). 3. Przystępujey do sprawdzeia wpływu długości wahadła a jego okres. W ty ceu czyości wyieioe w puktach 1 i powtórzyć da kiku różych długości ici stopiowo skracając początkową długość ici. 4. Wyiki poiarów zapisywać w tabei. 5. Zrobić zdjęcie układu poiarowego. abea 1 Lp. 1. Długość wahadła = 1 +r [] Proień d [] r Liczba drgań Czas trwaia okresów t [s] t śr [s] u A (t) t [s] 1 t t 3 t 4 t 5 t) [s] Okres drgań [s] ) [s] [s ] ) [s ].
5 3.... Przyspieszeie grawitacyje : g g( g)) ( ) s Poadto podać: Liczbę okresów = średicę kuek d = []; Δd= [] (iepewość aksyaa poiaru średicy kuek); Δ=...[] (iepewość aksyaa poiaru długości) Δt= [s] (iepewość aksyaa poiaru czasu). 6. Niepewość poiaru usi wyikać z iepewości poiaru długości wahadła, czasu i okresu. Zai przystąpiy do obiczeń iepewości poiarowych, aeży zapozać się z etodai szacowaia iepewości poiarowych oraz obiczaie iepewości poiarowych poiarów bezpośredich i pośredich z iteratury [4],: Aaiza iepewości poiarowych. Wskazówki: a) Niepewość stadardową całkowitą poiaru czasu t) otrzyay ze wzoru: t) u ( t) u ( t) (0) A gdzie: - u A (t)- ozacza iepewość stadardową poiaru bezpośrediego (etoda typu A) i aby ją wyzaczyć da serii powtórzeń, obicza odchyeie stadardowe wiekości średiej: ( t ti) i 1 ua ( t) (1) ( 1) -u B (t)-iepewość stadardowa (bezpośrediego) poiaru czasu (etoda typu B), zdefiiowaa jako: t u B ( t) (). 3 b) Całkowitą iepewość poiaru długości wahadła ) (etoda typu B), obiczoą a podstawie okreśeia dokładości poiaru otrzyay ze wzoru: ) u ( ) u ( r) (3) 1 gdzie: u B ( 1 ): u B ( 1) (4); 3 r u B (r): u B ( r ) (5). 3 c) Okres () drgań wahadła oraz jego iepewość całkowitą ) obiczay ze wzorów: B 1 B B tsr, t) ) (6)
6 d) Niepewość kwadratu okresu ) obiczay ze wzoru: ) ) d ) (7) d 7. eoretyczy wzór opisujący zaeżość okresu drgań wahadła ateatyczego od jego długości a postać (17): g Jeśi wzór (17) podiesiey obustroie do kwadratu, to otrzyay astępującą zaeżość: 4 g (8) Zate, zgodie ze wzore (8), pukty a wykresie = () powiy układać się a prostej iii tredu o współczyiku kierukowy (a): 4 a g (9). Na podstawie wyików poiarów, sporządzić wykres zaeżości = () i etodą regresji iiowej [4] wyzaczyć odpowiedio współczyik kierukowy a prostej oraz iepewość stadardową a). (Da każdego wahadła oddzieie.) 8. Wyiczyć wartość przyspieszeia zieskiego g ze wzoru: 4 g a 9. Ze wzoru a iepewość stadardową,wyzaczyć iepewość poiaru przyspieszeia zieskiego : g)=a) (31), W ceu porówaia otrzyaej wartości z wartością tabicową aeży obiczyć iepewość rozszerzoą : gdzie: k jest współczyikie rozszerzeia. 10. Wyik przedstawić w postaci: 11. Porówać uzyskay wyik z wartością tabicową. (30) U c ( g) k g) (3) g g( g)) ( ) ub g U ( ) ( ) c g s s UWAGA ypowe opracowaie doświadczeia doowego powio zawierać: 1) ytuł ćwiczeia, datę i iejsce jego wykoaia oraz azwiska osób prowadzących eksperyet. ) Ce i zakres doświadczeia.
7 3) eoretyczy opis aaizowaego zjawiska, wraz z opise jego poszczegóych eeetów. 4) Scheat i zdjęcie staowiska poiarowego, wraz z opise jego poszczegóych eeetów. 5) Opis działaia stosowaych przyrządów i zasad poiaru za ich poocą. 6) Opis przebiegu doświadczeia. 7) Zestawieie wyików poiarów (tabea poiarów). 8) Opracowaie i zestawieie wyików obiczeń wraz z przykłade obiczeiowy z uwzgędieie działań a jedostkach oraz aaizą iepewości poiarowych. 9) Wykres = f() wraz z dopasowaie prostej etodą regresji iiowej. 10) Wioski. Powodzeia
gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
BADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Istrukcja do ćwiczeia r 3 BADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA. Cel ćwiczeia Celem ćwiczeia jest pozaie szeregu zjawisk związaych z drgaiami
I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO
I PRACOWNIA FIZYCZNA, UMK TORUŃ Istrukcja do ćwiczeia r WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO Istrukcję wykoał Mariusz Piwiński I. Cel ćwiczeia. pozaie ruchu harmoiczeo oraz
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Galwanometr lusterkowy, stabilizowany zasilacz prądu, płytka z oporami, stoper (wypożyczyć pod zastaw legitymacji w pok. 619).
Ćwiczeie Nr 5 emat: Badaie drgań tłmioych cewki galwaometr lsterkowego I. LIERUR. R.Resick, D.Halliday Fizyka, t. I i II, PWN, W-wa.. Ćwiczeia laboratoryje z fizyki w politechice, praca zbiorowa pod red..rewaja,
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej
Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.
BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW
ĆWICZEIA LABORATORYJE Z WIBROIZOLACJI: BADAIA CHARAKTERYSTYK STATYCZYCH WIBROIZOLATORÓW 1. WSTĘP Stanowisko laboratoryjne znajduje się w poieszczeniu hali technologicznej w budynku C-6 Politechniki Wrocławskiej.
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWE WYDZAŁ LABORAORUM FZYCZNE Ćwiczenie Nr 1 emat: WYZNACZNE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Warszawa 9 WYZNACZANE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
2. Schemat ideowy układu pomiarowego
1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką
1. Błąd średni pomiaru. Leica DISTO
Aaliza dokładości poiarów Charakterystyką dokładości istruetów poiarowych jest błąd średi poiaru. Wykoywae poiary bezpośredie w tereie pośrediczą zwykle w wyzaczaiu pewych wielkości ie poddających się
Ćwiczenie 4 WYZNACZANIE PRĘDKOŚCI KRYTYCZNYCH WAŁÓW. 1. Cel ćwiczenia
Ćwiczeie WZNACZANIE RĘDKOŚCI KRTCZNC WAŁÓW. Ce ćwiczeia oiar trzech koejych prędkości krytyczych i obserwacja odpowiadających i iii ugięcia wału oraz porówaie wartości prędkości krytyczych obiczoych aaityczie
Niepewności pomiarowe
Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki
gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.
RUCH DRGJĄCY Ruche drgający (drganiai) nazywa się każdy ruch, który charakteryzuje powtarzalność w czasie wielkości fizycznych (np wychylenia) określających ten ruch Występujące w przyrodzie drgania ożna
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
I OLIMPIADA FIZYCZNA (1951/1952). Stopień I, zadanie doświadczalne D.
Źródło: I OLIMPIADA FIZYCZNA (1951/195). Stopień I, zadaie doświadczale D. Nazwa zadaia: Działy: Słowa luczowe: Koitet Główy Olipiady Fizyczej; Stefa Czareci; Olipiady Fizycze I IV. PZWS, Warszawa 1956.
Chemiczne metody analizy ilościowej (laboratorium)
Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE
4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ
Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.
Dynamika punktu materialnego nieswobodnego
Dynaika punktu aterianego nieswobodnego dr inż. Sebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ai: spakua@agh.edu.p www: hoe.agh.edu.p/~spakua/ dr inż. Sebastian
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
Pomiary drgań rezonansowych wywołanych niewyważeniem wirnika
Pomiary drgań rezoasowych wywołaych iewyważeiem wirika Zakres ćwiczeia 1) Idetyfikacja drgań wywołaych: a iewyważeiem statyczym wirika maszyy elektryczej, b - iewyważeiem dyamiczym wirika maszyy elektryczej,
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa. Nr ćwicz.
Laboratoriu Metrologii II. 013/14. olitechika Rzeszowska Katedra Metrologii i Systeów Diagostyczych Laboratoriu Metrologii II OMIARY STRATNOŚCI BLACHY TRANSFORMATOROWE Grupa Nr ćwicz. 1 1... kierowik...
NIEPEWNOŚĆ POMIAROWA - WPROWADZENIE
NIEPENOŚĆ POMIAROA - PROADZENIE - bezwzęda iepewość poiarowa (dokładość poiaru). Jej źródłe oże bć: przpadkow rozrzu wików poiarów dokładość przrządu. Niepewości poiarowe ierzoe bezpośredio związae z dokładością
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa
Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Ćwiczenie 0 WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO 0.1. Wiadomości oóne Wahadłem fizycznym nazywamy ciało sztywne, zawieszone na poziomej osi nie przechodzącej przez jeo środek
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Przejście światła przez pryzmat i z
I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.
SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74
Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h i k a P o z ańska ul. Jaa Pawła II 4 60-96 POZNAŃ (budyek Cetrum Mechatroiki, Biomechaiki i Naoiżerii) www.zmisp.mt.put.poza.pl tel. +48 6 66 3
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego
0 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 0. Pomiary współczyika załamaia światła z pomiarów kąta załamaia oraz kąta graiczego Wprowadzeie Światło widziale jest promieiowaiem elektromagetyczym o
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
c 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
CHARAKTERYSTYKA ROBOCZA LICZNIKA SCYNTYLACYJNEGO. CZAS MARTWY LICZNIKA SCYNTYLACYJNEGO i G-M
Zakład Radiocheii i Cheii Koloidów ĆWICZEIE 2 CHARAKTERYSTYKA ROBOCZA LICZIKA SCYTYLACYJEGO. CZAS MARTWY LICZIKA SCYTYLACYJEGO i G-M Instrukcje do ćwiczeń laboratoryjnych Zakład Radiocheii i Cheii Koloidów
Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego
2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
DRGANIA HARMONICZNE UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY
Część 2 1. DRGANIA UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY 1 1. 1. DRGANIA HARMONICZNE UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY 1.1. Drgania własne nietłuione W anaizie drgań rozpatrywać będziey
Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu
Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1
INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ
LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratoriu Mechaiki Techiczej Ćwiczeie 5 Badaie drgań liiowych o jedy stopiu swobody Cel ćwiczeia Cele ćwiczeia jest pozaie podstawowych pojęć związaych
KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000)
KĄCIK ZADAŃ Drugi stopień oipiady fizycznej na Ukrainie (rok 000) Jadwiga Saach Redakcja prezentuje trzy przykładowe zadania z drugiego stopnia oipiady fizycznej na Ukrainie (rok 000) Zadania z tej oipiady
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym
LABORATORIUM METROLOGII
AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.
W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały
Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości
O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności
Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli
u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe
Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie
Metody numeryczne Laboratorium 5 Info
Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU
METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE