Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego
|
|
- Bogumił Grabowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 0 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 0. Pomiary współczyika załamaia światła z pomiarów kąta załamaia oraz kąta graiczego Wprowadzeie Światło widziale jest promieiowaiem elektromagetyczym o długości fali w zakresie od 450 m do 670 m i rozchodzi się w próżi z tą samą prędkością c. Zjawiska fizycze związae z promieiowaiem świetlym moża wyjaśić a grucie falowej i korpuskularej (kwatowej) teorii światła. W kwatowej teorii światło jest traktowae jako strumień fotoów. Każdy foto iesie porcję (kwat) eergii o wartości E = h ν () gdzie ν jest częstotliwością światła, atomiast h jest stałą Placka. Przykładami zjawisk potwierdzających kwatową aturę światła SA efekt Comptoa, czy też zjawisko fotoelektrycze. Z kolei zjawiskiem potwierdzającym falową aturę światła jest zjawisko odbicia i załamaia światła a graicy dwóch ośrodków. W celu opisu tych zjawisk przypomimy ajważiejsze zagadieia dotyczące fal. Ogólie, falą azyway zaburzeie mechaicze lub elektromagetycze rozchodzące się w czasie i przestrzei z określoą prędkością, charakterystyczą dla daego rodzaju fali i ośrodka, w którym fale te się rozchodzą. Dla przykładu rozpatrzmy falę rozprzestrzeiającą się w jedowymiarowym ośrodku materialym. Pewe pojęcia i zjawiska zdefiiowae a tym przykładzie, moża z powodzeiem stosować dla ośrodków trójwymiarowych jak rówież dla fal elektromagetyczych. Jeżeli wybraą cząstkę jedowymiarowego ciągłego ośrodka materialego pobudzimy w dowoly sposób do drgań harmoiczych, to jej drgaia moża opisać rówaiem: y = A si(ω t) gdzie y jest wielkością wychyleia cząstki z położeia rówowagi, A - amplitudą drgań (ajwiększym wychyleiem), ω - częstością kołową, t - czasem, atomiast ω t - fazą drgań. Drgaia te, z pewym opóźieiem w fazie będą się przeosić a cząstki sąsiedie. Wielkość opóźieia będzie wyosić t = x/v gdzie x to odległości tych cząstek od cząstki pierwotej (źródła fali), a v to prędkość fali. Wychyleie z położeia rówowagi dla tych cząstek przyjmuje więc astępującą postać: x y = A si( ω t ). () v Prędkość v to prędkość rozchodzeia się zaburzeń, albo iaczej prędkość, z jaką musiałby się poruszać obserwator, aby widzieć zawsze tą samą fazę drgań ośrodka. Nazywamy ją prędkością fazową fali. Związek prędkości fali v z jej długością opisuje zależość v = (3) T co ozacza, że fala przemieszcza się o odległość w czasie T będącym okresem drgań puktu ośrodka, w którym rozchodzi się fala. Przypomijmy okres jest odwrotością częstotliwości, czyli T = /ν. Jeśli zdefiiujemy liczbę falową π k =, (4)
2 to rówaie () przyjmie postać y = A si( ω t k x) lub y = A si( ω t k x + φ0 ) (5) gdzie φ 0 jest fazą początkową. Jest to rówaie fali dla przypadku jedowymiarowego. Dla ośrodków dwu- i trójwymiarowych, rówaie fali staje się bardziej skomplikowae, lecz defiicje podstawowych pojęć pozostają takie same, jak dla przypadku ośrodka jedowymiarowego. Jeżeli drgaia cząstek ośrodka są zgode z kierukiem rozchodzeia się fali to falę taką azywamy podłużą; jeżeli zaś kieruki te są wzajemie prostopadłe, to fala taka osi azwę poprzeczej. W przypadku, gdy źródłem fali będzie pulsująca kula umieszczoa w ośrodku gazowym lub ciekłym, to wytworzoe periodycze zmiay gęstości tego ośrodka, będą się rozchodziły we wszystkich kierukach w postaci fali kulistej. Nazwa ta pochodzi stąd, że miejsca geometrycze cząstek posiadających tę samą fazę drgań są powierzchiami kul kocetryczych, w środku których zajduje się źródło drgań. Moża rówież wytworzyć takie fale, których powierzchie falowe redukują się do okręgów (fale wywołae przez puktowe źródło a powierzchi wody) są to tzw. fale koliste. Istieją także fale płaskie, których powierzchie falowe są płaszczyzami. Poszczególe parametry opisujące falę świetlą odpowiadają: częstotliwość ν za barwę światła atomiast amplituda A za jego jasość. Niektóre zjawiska związae z ruchem falowym moża wyjaśić w oparciu o zasadę Huygesa, chociaż ależy tu podkreślić, że zasada ta ma ses bardziej matematyczy aiżeli fizyczy. Zgodie z tą zasadą każdy pukt ośrodka, do którego dociera fala (czoło fali), moża traktować jako źródło fali kulistej, tzw. elemetarej fali cząstkowej. Powierzchię falową fali biegącej kostruujemy jako obwiedię poszczególych fal elemetarych, zaś kieruek rozchodzeia się fali jest prostopadły do tak określoej powierzchi fazowej. Rys.. Przejście fali płaskiej przez graicę dwu ośrodków o różych prędkościach rozchodzeia się fali. Rozpatrzmy teraz przypadek, gdy fala płaska przechodzi z jedego ośrodka do drugiego, przy założeiu, że prędkości fali w obu ośrodkach są róże (rys. ). Niech prędkość fali w ośrodku I wyosi v zaś w ośrodku II v, przy czym v > v. Odpowiadające im długości fal wyoszą odpowiedio oraz. Trzeba też wiedzieć, że Przy przejściu z jedego środka do drugiego częstotliwość fali ie zmieia się. Przyjmijmy, że kieruki promiei S (prostopadłe do czoła fali AB) rozchodzeia się fali padającej tworzą kąt α, z ormalymi (liie przerywae) do powierzchi
3 rozgraiczającej ośrodki. Na graicy ośrodków fala zostaie częściowo odbita w postaci promiei S pod tym samym kątem α, częściowo zaś przejdzie do drugiego ośrodka. Niech t będzie czasem, w którym fala w ośrodku I rozejdzie się a odległość BC = v t. W tym czasie w ośrodku II z puktu A rozejdzie się fala cząstkowa a odległość AD = v t miejszą iż BC gdyż v > v. Z puktów pośredich, leżących pomiędzy A i C, też rozejdą się fale cząstkowe, oczywiście a odległości odpowiedio miejsze. Czoło fali rozchodzącej się w ośrodku II, staowiące obwiedię fal elemetarych, będzie płaszczyzą. To ozacza, iż po przejściu graicy dwu ośrodków fala płaska pozostaje falą płaską. W związku z tym, że v > v promień fali rozchodzącej się w ośrodku II, będzie tworzył z ormalą do powierzchi rozgraiczającej kąt β < α. Katy α i β azywamy odpowiedio kątem padaia i kątem załamaia fali. Z kostrukcji geometryczej przedstawioej a Rys. wyika, że AC si α = BC = v AC siβ = AD = v t = t = Dzieląc stroami rówaie pierwsze przez drugie otrzymamy: si α v = siβ v = =, (6) zatem stosuek siusa kąta padaia do siusa kąta załamaia fali, dla daych dwu ośrodków, jest wielkością stałą i rówą stosukowi prędkości fali w tych ośrodkach. Wielkość tę ozaczamy przez i osi oa azwę względego współczyika załamaia ośrodka drugiego względem pierwszego. Postępując jak wyżej, moża w oparciu o zasadę Huygesa wykazać, że kąt padaia rówy jest katowi odbicia, oraz że promień padający, promień odbity i ormala w pukcie padaie leżą w jedej płaszczyźie. Formuła ta staowi prawo odbicia fali. Należy podkreślić, że podstawowe prawa auki o świetle, w tym prawo odbicia i załamaia światła, zostały doświadczalie ustaowioe a podstawie poglądów o prostoliiowości rozchodzeia się promiei świetlych, a długo przed stworzeiem teorii ruchu falowego oraz teorii zjawisk elektromagetyczych. W ośrodku jedorodym, promieiem fali będzie ormala do powierzchi fazowej. Posługując się pojęciem promieia świetlego, jeszcze raz rozpatrzmy prawo odbicia i załamaia światła (tzw. Prawo Selliusa). Rys. ilustruje zjawisko odbicia i załamaia promieia świetlego a graicy ośrodków I i II. Rys.. Odbicie i załamaie promieia świetlego a graicy dwu ośrodków. S jest promieiem padającym, S promieiem odbitym zaś S - promieiem załamaym. Prostą N prostopadłą do powierzchi rozgraiczającej, azywamy ormalą padaia. Kąt α azywamy kątem padaia, który jest rówy kątowi odbicia a kąt β - kątem załamaia. Prawo odbicia i załamaia brzmi astępująco: () Promień padający, odbity i załamay oraz ormala padaia lezą 3
4 w jedej płaszczyźie. () Kąt odbicia jest rówy kątowi padaia. (3) Stosuek siusów kąta padaia i kąta załamaia promieia świetlego dla daych dwu ośrodków i określoej długości fali jest wielkością stałą i azywamy go współczyikiem załamaia ośrodka II względem I ( patrz rówaie (6)). Z rówaia (6) wyika, że = (7) gdzie jest współczyikiem załamaia ośrodka I względem II. Ozacza to, że jeżeli promień biegie w przeciwym kieruku tz. z ośrodka II do ośrodka I, to po załamaiu będzie skieroway wzdłuż promieia S. Jest to tzw. zjawisko odwracalości biegu promieia. Jeśli jedym z ośrodków będzie próżia to współczyik załamaia ozaczamy jako. Jest to współczyik załamaia daego ośrodka mierzoy względem próżi, azyway bezwzględym współczyikiem załamaia. Praktyczie jest wyzaczoy względem powietrza, albowiem różica prędkości światła w próżi i w powietrzu jest zikoma. Z rówaia (6) wyika, że dla fal świetlych bezwzględy współczyik załamaia jest zawsze większy od jedości, poieważ prędkość światła w próżi c jest ajwiększą ze wszystkich możliwych. Ośrodek, który posiada większy współczyik załamaia (miejsza prędkość światła) azywa się iekiedy optyczie gęstszym. Na Rys.. i ozaczają bezwzględe współczyiki załamaia środków I i II. Jeżeli promień świetly biegie z ośrodka optyczie gęstszego do ośrodka optyczie rzadszego, to oprócz odbicia a graicy tych ośrodków ulega o załamaiu, odchylając się od ormalej padaia (patrz Rys. 3). Promieie S -S 3 częściowo ulegają odbiciu pod tym samym kątem co kąt padaia, a częściowo załamaiu pod większym kątem. Dla promieia S kat padaia wyosi α a załamaia β.w miarę wzrostu kąta padaia promień załamay coraz bardziej odchyla się od ormalej N. Przy pewym kącie γ promień załamay biegie wzdłuż powierzchi graiczej, czyli β = 90 (promień S 3 Rys. 3). Gdy promień świetly przechodzi z ośrodka optyczie gęstszego do rzadszego przy kącie padaia większym od γ (Promień S 4 ), to promień padający ie przejdzie do ośrodka I, lecz ulegie całkowitemu odbiciu a graicy ośrodków. Kąt γ azywamy kątem graiczym i możemy go wyrazić w astępujący sposób: si γ = = (8) o si 90 4
5 Rys. 3. Przejście światła z ośrodka II do ośrodka I, dla których >. Metoda pomiaru Z powyższych rozważań wyika, iż współczyik załamaia moża w prosty sposób wyzaczyć a podstawie pomiarów kątowych promiei padających, odbitych i załamaych. Pierwszy sposób to pomiar kąta padaia α i załamaia β (patrz Rys. ). Z zależości (6) wyliczamy łatwo współczyik załamaia si α =. (9) si β Drugi sposób to pomiar kąta graiczego γ (patrz Rys. 3), a astępie z zależości (8) wyliczamy współczyik załamaia =. (0) si γ Wykoaie zadaia I. Pomiary współczyika załamaia światła z pomiarów kąta załamaia. Otrzymaą próbkę w kształcie półwalca umieścić a tarczy z podziałką kątową (Rys. 4) tak, aby płaska ściaa bocza próbki pokrywała się ze średicą tarczy. Promień światła musi padać a środek płaskiej części próbki, gdyż wtedy bez względu a kąt załamaia, będzie rozchodził się wzdłuż promieia krzywizy próbki. Dzięki temu taki opromień ie ulegie załamaiu przy wyjściu z próbki.. Włączyć lampkę mikroskopową i skierować wąski strumień światła a pukt padaia tak, aby ślizgał się o po powierzchi tarczy. 3. Przeprowadzić pomiary kąta padaia (α) i załamaia światła (β). Pomiary wykoać w zakresie od α = 0 do α = 70, zmieiać kąt padaia co Dla każdego pomiaru obliczyć współczyik załamaia próbki ze wzoru (9) 5. Otrzymae wyiki zestawić w tabeli. 5
6 II. Pomiary współczyika załamaia światła z pomiarów kąta graiczego. Otrzymaą próbkę w kształcie półwalca umieścić a tarczy z podziałką kątową (Rys. 4) tak, aby płaska ściaa bocza próbki pokrywała się ze średicą tarczy.. Włączyć lampkę mikroskopową i skierować wąski strumień światła a pukt padaia tak, aby ślizgał się o po powierzchi tarczy. 3. Oświetlając próbkę od stroy wypukłej wyzaczyć kąt graiczy γ. Uwaga: podobie jak w części pierwszej zadaia światło ależy skierować wzdłuż promieia próbki, tak by podało a płaską jej ściaę w jej środku. 4. Pomiar kąta graiczego powtórzyć, co ajmiej, 5-krotie. 5. Dla każdego pomiaru obliczyć współczyik załamaia próbki ze wzoru (0) 6. Otrzymae wyiki zestawić w tabeli. Rys. 4. Staowisko pomiarowe. Dla kazdej próbki wyliczyć wartość średią współczyika załamaia otrzymaego metodą I i II, a astępie porówać wyiki obliczeń. Do oszacowaia iepewości wyzaczeia współczyika załamaia dla daej próbki zastosować metodę różiczkowaia wzorów (9) i (0) wiedząc, że = f(α, β) w pierwszym przypadku oraz = f(γ) w drugim przypadku. Niepewość wyzaczeia kątów padaia, załamaia i kąta graiczego (Δα, Δβ, Δγ) wyrazić w mierze łukowej (π rad = 80 ). Tabela pomiarowa Nr próbki Lp. α β γ stopie stopie Stopie
7 Bibliografia:. D. Halliday, R. Resick, J. Walker, Podstawy fizyki, Wydawictwo Naukowe PWN, Warszawa 003, t. 3.. Cz. Bobrowski, Fizyka krótki kurs, Wydawictwo Naukowo Techicze, Warszawa 998. Zagadieia do kolokwium:. Natura światła. Charakterystyka fali świetlej (budowa, długość fali, prędkość) 3. Zasady Huygesa i Fermata 4. Defiicja współczyika złamaia 5. Prawo odbicia i załamaia światła (Selliusa) 6. Zjawisko całkowitego wewętrzego odbicia Opieku ćwiczeia: Jarosław Borc 7
Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego
0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest
Bardziej szczegółowoProjekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji
Bardziej szczegółowoTemat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.
W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,
Bardziej szczegółowoPrawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
Bardziej szczegółowoWYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα
Bardziej szczegółowoELEMENTY OPTYKI GEOMETRYCZNEJ
ELEMENTY OPTYKI GEOMETRYCZNEJ Optyka to dział fizyki, zajmujący się badaiem atury światła, początkowo tylko widzialego, a obecie rówież promieiowaia z zakresów podczerwiei i adfioletu. Optyka - geometrycza
Bardziej szczegółowoVII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
Bardziej szczegółowoO2. POMIARY KĄTA BREWSTERA
O. POMIARY KĄTA BREWSTERA tekst opracowała: Bożea Jaowska-Dmoch Polaryzacja światła jest zjawiskiem, które potwierdza falową aturę światła. Światło jest falą elektromagetyczą, w której cyklicze zmiay pól
Bardziej szczegółowoWYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ
Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.
Bardziej szczegółowoPodstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku
Optyka geometrycza Podstawowe pojęcia optyki geometryczej Bezwzględy współczyik załamaia c prędkość światła w próżi v < c prędkość światła w daym ośrodku c v > 1 Aksjomaty Światło w ośrodku jedorodym propaguje
Bardziej szczegółowou t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe
Bardziej szczegółowoFale elektromagnetyczne cd
Fale elektromagetycze cd Falami elektromagetyczymi azywamy rozchodzące się zaburzeia pola elektromagetyczego (tz. zmiee pole elektromagetycze). Twierdzeie o istieiu fal elektromagetyczych wyika bezpośredio
Bardziej szczegółowoOptyka 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Optyka Projekt współfiasoway przez Uię Europejską w ramach Europejskiego Fuuszu Społeczego Optyka I Światło to fala elektromagetycza (rozchozące się w przestrzei zaburzeie pola elektryczego i magetyczego),
Bardziej szczegółowo= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC
4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc
Bardziej szczegółowoOdbicie fali od granicy ośrodków
FOTON 8, Jesień 0 33 Odbicie fali od graicy ośrodków Jerzy Giter Uiwersytet Warszawski Kiedy światło się odbija? Zamy doskoale zjawisko załamaia światła a graicy dwóch ośrodków o różych współczyikach załamaia.
Bardziej szczegółowoĆ W I C Z E N I E N R O-2
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA DLA CIAŁ STAŁYCH I
Bardziej szczegółowoBADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Istrukcja do ćwiczeia r 3 BADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA. Cel ćwiczeia Celem ćwiczeia jest pozaie szeregu zjawisk związaych z drgaiami
Bardziej szczegółowosin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,
Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku
Bardziej szczegółowoRysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
Bardziej szczegółowoO2. POMIARY KĄTA BREWSTERA
O. POMIARY KĄTA BREWSTERA tekst opracowały: Bożea Jaowska-Dmoch i Jadwiga Szydłowska Polaryzacja światła jest zjawiskiem, które potwierdza falową aturę światła. Światło jest falą elektromagetyczą, w której
Bardziej szczegółowoZasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.
Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:
Bardziej szczegółowoLABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Bardziej szczegółowoElementy optyki. Odbicie i załamanie fal. Siatka dyfrakcyjna. Zasada Huygensa Zasada Fermata. Interferencja Dyfrakcja
Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala
Bardziej szczegółowoINSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
Bardziej szczegółowoPRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Bardziej szczegółowoDamian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Bardziej szczegółowoMetrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Bardziej szczegółowoĆwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Bardziej szczegółowo1. WSPÓŁCZNNIK ZAŁAMANIA ŚWIATŁA ORAZ WSPÓŁCZYNNIK DYSPERSJI SZKŁA. a) Bezwzględny współczynnik załamania światła
. WSPÓŁCZNNIK ZAŁAMANIA ŚWIATŁA ORAZ WSPÓŁCZYNNIK DYSPERSJI SZKŁA a) Bezwzględy współczyik załamaia światła Bezwzględy współczyik załamaia światła b dla daego ośrodka to stosuek prędkości rozchodzeia się
Bardziej szczegółowoElementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna
Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala
Bardziej szczegółowoFalowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Bardziej szczegółowoPodstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Bardziej szczegółowoRuch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,
Bardziej szczegółowoLABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Bardziej szczegółowoRelacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Bardziej szczegółowoZnajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Bardziej szczegółowoFala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Bardziej szczegółowoO1. POMIARY KĄTA GRANICZNEGO
O1 POMIARY KĄTA GRANICZNEGO tekst opraowała: Bożea Jaowska-Dmoh Gdy wiązka światła pada a aię dwóh ośrodków przezrozystyh od stroy ośrodka optyzie gęstszego pod kątem aizym, to promień załamay ślizga się
Bardziej szczegółowoEgzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Bardziej szczegółowoO pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Bardziej szczegółowoRekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Bardziej szczegółowoInformatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 3 Optyka geometryczna
Metody Optycze w Techice Wykład 3 Optyka geometrycza Promień świetly Potraktujmy światło jako trumień czątek eergii podróżujących w przetrzei Trajektorie takich czątek to promieie świetle W przypadku wiązki
Bardziej szczegółowoZasada działania, właściwości i parametry światłowodów. Sergiusz Patela Podstawowe właściwości światłowodów 1
Zasada działaia, właściwości i parametry światłowodów Sergiusz Patela 1999-003 Podstawowe właściwości światłowodów 1 Parametry światłowodów - klasyfikacja Parametry włókie światłowodowych: 1. Optycze tłumieie,
Bardziej szczegółowo2.6.3 Interferencja fal.
RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać
Bardziej szczegółowoPrawo odbicia światła. dr inż. Romuald Kędzierski
Prawo odbicia światła dr inż. Romuald Kędzierski Odbicie fal - przypomnienie Kąt padania: Jest to kąt pomiędzy tzw. promieniem fali padającej (wskazującym kierunek i zwrot jej propagacji), a prostą prostopadłą
Bardziej szczegółowoOPTYKA GEOMETRYCZNA I INSTRUMENTALNA
00-BO5, rok akademicki 08/9 OPTYKA GOMTRYCZNA I INSTRUMNTALNA dr hab. Raał Kasztelaic Wykład 5 Bieg promiei przez powierzchię Przedmiot w ieskończoości 3 Odległość przedmiot-obraz D = a + b d = D a = b
Bardziej szczegółowoν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM Z MBS. ROZWIĄZYWANIE WIDM kolokwium NMR 23 kwietia 208 IR maja 208 złożoe czerwca 208 poiedziałek czwartek piątek 9.3 22.3 23.3 26.3 5. 6. 9. 2. 3. H NMR 23.
Bardziej szczegółowoStruktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Bardziej szczegółowoO liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Bardziej szczegółowoZmiany Q wynikające z przyrostu zlewni
uch wody w korytach rzeczych Klasyfikacja ruchu. uch ieustaloy zmiey przepływ Q a długości rzeki i w czasie: ruch fal wezbraiowych ruch wody a długim odciku rzeki Q fala wezbraiowa obserwowaa w przekroju
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoMATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)
MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. ****************************************************************
Bardziej szczegółowoI PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO
I PRACOWNIA FIZYCZNA, UMK TORUŃ Istrukcja do ćwiczeia r WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO Istrukcję wykoał Mariusz Piwiński I. Cel ćwiczeia. pozaie ruchu harmoiczeo oraz
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Bardziej szczegółowoPierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Bardziej szczegółowoBadanie efektu Halla w półprzewodniku typu n
Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.
Bardziej szczegółowoPolitechnika Poznańska
Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)
Bardziej szczegółowoFundamentalna tabelka atomu. eureka! to odkryli. p R = nh -
TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary
Bardziej szczegółowoEstymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoMetody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Bardziej szczegółowoZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Bardziej szczegółowoRozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Bardziej szczegółowo- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
Bardziej szczegółowoBADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Bardziej szczegółowoFale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski
Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się
Bardziej szczegółowoI. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Bardziej szczegółowoLista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Bardziej szczegółowoFale elektromagnetyczne i optyka
Fale elekromageycze i opyka Pole elekrycze i mageycze Powsaie siły elekromooryczej musi być związae z powsaiem wirowego pola elekryczego Zmiee pole mageycze wywołuje w kaŝdym pukcie pola powsawaie wirowego
Bardziej szczegółowoPodstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku
Optyka geometrycza Podstawowe pojęcia optyki geometryczej Bezwzględy współczyik załamaia c prędkość światła w próżi v < c prędkość światła w daym ośrodku = c v > 1 Aksjomaty Światło w ośrodku jedorodym
Bardziej szczegółowo6.4. Dyfrakcja fal mechanicznych.
6.4. Dyfrakcja fal mechanicznych. W danym ośrodku fale rozchodzą soę po liniach prostych. Gdy jednak fala trafi na jakąś przeszkodę, kierunek jej rozchodzenia się ulega na ogół zmianie. Zmienia się też
Bardziej szczegółowoProwadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy
Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.
Bardziej szczegółowoNumeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowoPOMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Bardziej szczegółowoTwierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Bardziej szczegółowoWykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Bardziej szczegółowoWokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Bardziej szczegółowoINSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ
LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu
Bardziej szczegółowoMec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił.
echaika ogóla Wkład r 2 Wpadkowa dowolego układu sił. ówowaga. odzaje sił i obciążeń. odzaje ustrojów prętowch. Wzaczaie reakcji. Wpadkowa układu sił rówoległch rzłożeie układu zerowego (układ sił rówoważącch
Bardziej szczegółowoc 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
Bardziej szczegółowoOptyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
Bardziej szczegółowod wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Bardziej szczegółowoWŁASNOŚCI FAL (c.d.)
RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie
Bardziej szczegółowoFale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
Bardziej szczegółowoFala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Bardziej szczegółowoPOLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Bardziej szczegółowoWyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Bardziej szczegółowoPrzejście światła przez pryzmat i z
I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.
Bardziej szczegółowoĆwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Bardziej szczegółowo4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Bardziej szczegółowoXXV OLIMPIADA FIZYCZNA (1975/1976). Stopień III, zadanie teoretyczne T3.
5OF_ III_T KO OF Szczeci: www.of.szc.pl XXV OLIMPIADA FIZYCZNA (1975/1976). Stopień III zadaie teoretycze T. Źródło: Komitet Główy Olimpiady Fizyczej; Adrzej Szymacha: Olimpiady Fizycze XXV-XXVI WSiP Warszawa
Bardziej szczegółowo5.1. Powstawanie i rozchodzenie się fal mechanicznych.
5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami
Bardziej szczegółowo