W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)
|
|
- Lech Laskowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo 3. Zmienne losowe, rozkłady 1
2 Matematyczny model eksperymentu losowego Eksperyment losowy opisujemy za pomocą układu zwanego przestrzenia probabilistyczną: [, B, P] zbiór zdarzeń elementarnych (przestrzeń próbek) B zbiór zdarzeń losowych P prawdopodobieństwo zdarzeń ze zbioru B Model zaproponowany przez Kołmogorowa (1933) Zdarzenia elementarne jest to zbiór wszystkich możliwych wyników eksperymentu losowego, zbiór zdarzeń elementarnych - element zbioru, zdarzenie elementarne (pojęcie pierwotne) Przykład 1: eksperyment pojedynczy rzut kostką = { 1, 2, 3, 4, 5, 6 }, i wyrzucenie i oczek Przykład 2: eksperyment obserwujemy czas życia elementu chwila uszkodzenia 0 = [0, ) czas 2
3 Zdarzenia losowe Zdarzenia losowe będą określane jako podzbiory zbioru. Jeśli jest - skończony (lub przeliczalny) wówczas zbiór zdarzeń losowych B jest to zbiór wszystkich podzbiorów Przykład 1: eksperyment pojedynczy rzut kostką, zdarzenia: A 1 = { 1, 3, 5 } A 2 = { 6 } Zdarzenia losowe Jeśli jest jest nieprzeliczalny - wówczas trzeba nałożyć pewne ograniczenia na rodzinę podzbiorów B zbiór zdarzeń losowych rodzina podzbiorów spełniająca warunki: 1. jest elementem B 2. Jeśli A jest elementem B, to dopełnienie A jest elementem B 3. Jeśli A 1,A 2, (przeliczalny ciąg) należą do B, wówczas A i należy do B i=1 Taka rodzinę zbiorów nazywamy ciałem borelowskim podzbiorów zbioru B (lub -algebrą) 3
4 Zdarzenia losowe - własności Zbiór pusty należy do B Jeśli A 1,A 2, (przeliczalny ciąg) należą do B, wówczas A i należy do B i=1 Jeśli A 1,A 2 należą do B, wówczas różnica zdarzeń A 1 \ A 2 należy do B - zdarzenie niemożliwe - zdarzenie pewne Przykład 2: eksperyment obserwujemy czas życia elementu, = [0, ) Przykłady zdarzeń losowych: Uszkodzenie nastąpi pomiędzy 1000 a 2000 godziną pracy: A 1 = : Uszkodzenie nastąpi po przepracowaniu co najmniej 2000 godzin: A 2 = : >
5 Prawdopodobieństwo Zdarzaniom losowym przypisujemy liczby z przedziału [0, 1] P(A) prawdopodobieństwo zdarzenia A Prawdopodobieństwo P funkcja określona na ciele B spełniająca warunki: 1. Dla każdego A B zachodzi P(A) 0 2. P( ) = 1 3. Jeśli zdarzania losowe A 1,A 2, (przeliczalny ciąg) są wzajemnie rozłączne (tzn. A j A k = dla j k), wówczas P i=1 A i = i=1 P(A i ) Własności P( ) = 0 P( ) = 1 P( A) = P( \ A) = 1 P(A) - pr. zdarzenia dopełniającego P(A B) = P(A) + P(B) P(A B) - pr. sumy zdarzeń A B A B 5
6 Prawdopodobieństwo warunkowe Prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B P A B = P(A B) P(B) A A B B Zdarzenia niezależne Zdarzenia A i B są niezależne jeśli: P(A B) = P(A) P(B) alternatywna definicja: P A B = P(A) (informacja o tym, że zaszło zdarzenie B nie zmienia prawdopodobieństwa zdarzenia A) A A B B 6
7 Zmienne losowe Jeśli zdarzeniom elementarnym przypiszemy liczby, wówczas otrzymaną wielkość nazywamy zmienną losową. Oznaczamy zwykle dużą literą np. X, T. Przykład: rzut kostką: X liczba wyrzuconych oczek Przykład: uszkodzenie elementu: T czas który upłynął od chwili 0 do chwili uszkodzenia (zmienna losowa ciągła) t wartość, jaką przyjęła zmienna losowa (liczba) 0 t chwila uszkodzenia czas Rozkład zmiennej losowej Jak powiązać wartości przyjmowane przez zmienną losową z prawdopodobieństwem? X zmienna losowa przyjmująca wartości z przedziału od - do + Dystrybuanta zmiennej losowej X (cumulative distribution function, cdf) F(x) definiujemy jako prawdopodobieństwo zajścia zdarzenia X < x (x liczba rzeczywista z przedziału od - do + ) F x = P(X < x) 7
8 Przykład dystrybuanta dla rzutu kostką F(x) 1 5/6 4/6 3/6 2/6 1/6 x P X x F x Przykładowa dystrybuanta dla czasu życia elementu F(t) F t P T t t [h] Na podstawie dystrybuanty możemy ocenić prawdopodobieństwo uszkodzenia elementu przed upływem miliona godzin wynosi ono około
9 Własności dystrybuanty F 1. Jest funkcją niemalejącą, dla a<b: F a F b 2. Jest lewostronnie ciągła: lim F(x ) = F a x a 3. Spełnia warunki dotyczące granic lim x F(x ) = 0 lim x + F(x ) = 1 Gęstość prawdopodobieństwa Jeśli dystrybuantę zmiennej losowej X można przestawić w postaci całki x F x = to zmienną X nazywamy ciągłą. f u du Funkcję f() nazywamy gęstością prawdopodobieństwa rozkładu X (probability density function, pdf). Jeśli dla dystrybuanty F(x) suma prawdopodobieństw wartości, w których F jest nieciągła równa się jeden, to zmienną losową X nazywamy dyskretną. 9
10 Gęstość prawdopodobieństwa - własności 1. f x f u du = 1 Jeśli dystrybuanta jest funkcję różniczkowalną, to f x = df(x) dx Prawdopodobieństwo zdarzeń wyznaczamy z dystrybuanty lub funkcji gęstości F(t) F b F a = P(a T < b) a b f(t) a b f t dt = P a T < b a b 10
Podstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
Bardziej szczegółowozdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Bardziej szczegółowoRozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Bardziej szczegółowoLiteratura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Bardziej szczegółowoIII. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Bardziej szczegółowoPrzykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Bardziej szczegółowoDefinicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie
Bardziej szczegółowoWykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
Bardziej szczegółowoJeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoRachunek prawdopodobieństwa- wykład 6
Rachunek prawdopodobieństwa- wykład 6 Zmienne losowe dyskretne. Charakterystyki liczbowe zmiennych losowych dyskretnych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet Humanistyczno-Przyrodniczy
Bardziej szczegółowoJednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Bardziej szczegółowoPojęcie przestrzeni probabilistycznej
Pojęcie przestrzeni probabilistycznej Definicja (przestrzeni probabilistycznej) Uporządkowany układ < Ω, S, P> nazywamy przestrzenią probabilistyczną jeśli (Ω) Ω jest niepustym zbiorem zwanym przestrzenia
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Bardziej szczegółowoPrzestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Bardziej szczegółowoWYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Bardziej szczegółowoZmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola
Bardziej szczegółowoσ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Bardziej szczegółowo(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008
STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
Bardziej szczegółowoRachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie
Bardziej szczegółowoWstęp do rachunku prawdopodobieństwa
Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili
Bardziej szczegółowoZmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Bardziej szczegółowoRachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)
Bardziej szczegółowoPrawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Bardziej szczegółowoElementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Bardziej szczegółowoPODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Bardziej szczegółowoBiostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoRozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Bardziej szczegółowoStatystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Bardziej szczegółowoW3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
Bardziej szczegółowoZmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Bardziej szczegółowoPrzykłady do zadania 6.1 :
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 28/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 6: Zmienna losowa. Rozkład zmiennej losowej. Dystrybuanta. Przykłady
Bardziej szczegółowoWykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Bardziej szczegółowoStatystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Bardziej szczegółowoPEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Bardziej szczegółowoZmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura
Bardziej szczegółowoPRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
Bardziej szczegółowoPrawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Bardziej szczegółowoMatematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoWykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
Bardziej szczegółowoZmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
Bardziej szczegółowoTemat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Bardziej szczegółowoPrzykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 8: Zmienne losowe typu ciągłego. Gęstość prawdopodobieństwa. Rozkład
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoStatystyka Astronomiczna
Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 5. Zmienne losowe: wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8..208 / 42 Motywacja Często bardziej niż same zdarzenia losowe
Bardziej szczegółowoWykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Bardziej szczegółowoRachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Bardziej szczegółowoWYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Bardziej szczegółowoZmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
Bardziej szczegółowoII WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Bardziej szczegółowoPodstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Bardziej szczegółowoZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Bardziej szczegółowoWykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Bardziej szczegółowoAkademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Bardziej szczegółowoModelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Bardziej szczegółowo1 Elementy kombinatoryki i teorii prawdopodobieństwa
1 Elementy kombinatoryki i teorii prawdopodobieństwa 1.1 Elementy kombinatoryki W rozwiązywaniu pewnych problemów związanych z obliczaniem prawdopodobieństwa o skończonej liczbie zdażeń elementarnych bardzo
Bardziej szczegółowoZmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Bardziej szczegółowoMetody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Bardziej szczegółowoRachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Bardziej szczegółowoSTATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt
STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X
Bardziej szczegółowoRozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Bardziej szczegółowoFizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
Bardziej szczegółowoZmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Bardziej szczegółowoZmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Bardziej szczegółowoElementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
Bardziej szczegółowoWykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:
Bardziej szczegółowoWYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski
WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.
Bardziej szczegółowoDiagramy Venna. Uwagi:
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Bardziej szczegółowoWynik pomiaru jako zmienna losowa
Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
Bardziej szczegółowoW4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Bardziej szczegółowoZadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Bardziej szczegółowoRachunek prawdopodobieństwa dla informatyków
Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Bardziej szczegółowo4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Bardziej szczegółowoRodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Bardziej szczegółowoZmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Bardziej szczegółowoPodstawowe modele probabilistyczne
Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje
Bardziej szczegółowo