Podstawowe modele probabilistyczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe modele probabilistyczne"

Transkrypt

1 Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba Rozpoznawanie Obrazów, Lato 2018/2019

2 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje częstość występowania pewnego zjawiska. Wyrażone jest pewną wartością rzeczywistą z przedziału [0, 1]. Suma prawdopodobieństw wszystkich możliwych zdarzeń jest równa 1. Możliwe zdarzenia reprezentowane są za pomocą zmiennej losowej X. 2/33

3 Zmienna losowa Zmienna losowa to funkcja X(ω) : Ω X, która danemu stanowi świata (zdarzeniu elementarnemu) ω przyporządkowuje pewną wartość x. Możemy poznać / zmierzyć jedynie wartości tej funkcji, nigdy argumenty. Najwięcej, co możemy odkryć, to rozkład zmiennej losowej p(x), czyli jak często pojawia się konkretna wartość zmiennej. Przykład: rzut kostką sześcienną X = {1, 2, 3, 4, 5, 6} p(x) = 1/6 3/33

4 Zmienne niezależne Mówimy, że dwie zmienne losowe X, Y są niezależne, gdy rozkład spełnia warunek p(x, y) = p(x)p(y) Możemy próbować przewidywać wartość y, obserwując x, jedynie wtedy, gdy istnieje zależność pomiędzy nimi. 4/33

5 Dyskretne zmienne losowe Zbiór możliwych wartości X jest co najwyżej przeliczalny. Suma prawdopodobieństw równa się 1: p(x = x) = p(x) = 1. x X x X Dla podzbioru A X : p(x) = 1 p(x), x A x A gdzie A stanowi dopełnienie zbioru A. 5/33

6 Ciągłe zmienne losowe Rozkład opisuje funkcją gęstości p(x). Prawdopodobieństwo X [a, b]: p(a X b) = Dystrybuanta: b a p(x)dx p(x b) = F (b) = b p(x)dx Funkcja gęstości spełnia reguły: brzegową: p(x) = p(x, y)dy łańcuchową: p(x, y) = p(x y)p(y) 6/33

7 Wartość oczekiwana Wartość oczekiwana jest średnią wartością zmiennej losowej. Dla rozkładu dyskretnego definiuje się następująco: E[X] = x X x p(x), dla rozkładu ciągłego definiuje się następująco: E[X] = x p(x)dx, x X Wartość oczekiwana dla rzutu niesymetryczną monetą: E[X] = 1 θ + 0 (1 θ) = θ. 7/33

8 Wariancja i odchylenie standardowe Wariancja opisuje rozpiętość rozkładu (jak bardzo odchylają się wartości x od średniej) i wyraża się następująco: V ar[x] = E[(X E[X]) 2 ] = E[X 2 ] (E[X]) 2 Odchylenie standardowe definiowane jest jako pierwiastek z wariancji: std[x] = Wariancja dla rzutu monetą: V ar[x] V ar[x] = θ (1 θ). 8/33

9 Korelacja i kowariancja Miarą liniowej zależności pomiędzy zmienną losową X i Y jest kowariancja zadana wzorem: cov[x, Y ] = E[(X E[X])(Y E[Y ])] = E[XY ] E[X]E[Y ]. Kowariancja przyjmuje wartości z przedziału (, ), w praktyce wygodniej jest operować na znormalizowanej postaci kowariancji nazywanej korelacją: corr[x, Y ] = cov[x, Y ] V ar[x]v ar[y ], która przyjmuje wartości z przedziału [ 1, 1]. 9/33

10 Korelacja i kowariancja Jeśli dwie zmienne są nieskorelowane, to nie oznacza, że są niezależne. 10/33

11 Rozkład dwupunktowy Zmienna losowa przyjmuje wartości ze zbioru x {0, 1}. Funkcja rozkładu prawdopodobieństwa: Bern(x θ) = θ I(x=1) (1 θ) I(x=0) = θ x (1 θ) 1 x Rozkład ma interpretację pojedynczego rzutu monetą. Parametr θ reprezentuje prawdopodobieństwo reszki w rzucie monetą. Podstawowe własności rozkładu: E[X] = θ, V ar[x] = θ (1 θ). 11/33

12 Rozkład wielopunktowy Wektory binarnych zmiennych losowych o wartościach x i {0, 1} spełniających warunek K i=1 x i = 1. Rozkład prawdopodobieństwa: Cat(x θ) = K i=1 θ I(x i=1) i Rozkład ma interpretację rzutu K-ścienną kostką. Parametr θ i reprezentuje prawdopodobieństwo wypadnięcia i oczek. Podstawowe własności rozkładu: E[X j ] = θ j, V ar[x j ] = θ j (1 θ j ), cov[x j, X i ] = θ j θ i 12/33

13 Rozkład jednostajny Funkcja gęstości, x R: 1 U(x a, b) =, x [a, b], b a 0, w.p.p. funkcja gęstości Podstawowe własności rozkładu: dystrybuanta E[X] = a + b 2 (b a)2, V ar[x] = /33

14 Rozkład Gaussa / normalny Funkcja gęstości, x R: N (x µ, σ 2 ) = 1 (x µ)2 e 2σ 2 2πσ 2 Podstawowe własności rozkładu: E[X] = µ, V ar[x] = σ 2. 14/33

15 Wielowymiarowy rozkład Gaussa / normalny Funkcja gęstości, x R K : N (x µ, Σ) = 1 (2π) K 2 Σ 1 2 e 1 2 (x µ)t Σ 1 (x µ) Podstawowe własności rozkładu: E[x] = µ, cov[x] = Σ. Inną parametryzacją jest macierz precyzji Λ = Σ 1. 15/33

16 Rozkład Gamma Funkcja gęstości, x > 0: Ga(x a, b) = ba Γ(b) xa 1 e bx, Γ(b) = 0 u b 1 e u du. Podstawowe własności rozkładu: E[X] = a b, V ar[x] = a b. 2 16/33

17 Rozkład Beta Funkcja gęstości, x [0, 1]: Beta(x a, b) = xa 1 (1 x) b 1, B(a, b) B(a, b) = Γ(a)Γ(b) Γ(a + b) Podstawowe własności rozkładu: E[X] = V ar[x] = a a + b ab (a + b) 2 (a + b + 1). 17/33

18 Funkcja wiarygodności Dysponujemy niezależnymi obserwacjami D = {x n } N n=1. Rozpatrujemy model p(x θ) dla rozkładu, z którego pochodzą dane. Funkcję wiarygodności (ang. likelihood function) definiuje się następująco: N p(d θ) = p(x n θ). n=1 18/33

19 Funkcja wiarygodności - Przykład 1 Dysponujemy ciągiem obserwacji dotyczących rzutu monetą D = {0, 0, 0, 1, 1, 0, 1, 0, 1} Chcemy ocenić, czy bardziej wiarygodne jest, że dane zostały wygenerowane: z rozkładu Bern(x 0.5), czy też z rozkładu Bern(x 0.75). Wartości funkcji wiarygodności p(d θ) dla rozkładów wynoszą: p(d 0.5) = = , p(d 0.75) = = /33

20 Funkcja wiarygodności - Przykład 1 Dysponujemy ciągiem obserwacji dotyczących rzutu monetą D = {0, 0, 0, 1, 1, 0, 1, 0, 1} Chcemy ocenić, czy bardziej wiarygodne jest, że dane zostały wygenerowane: z rozkładu Bern(x 0.5), czy też z rozkładu Bern(x 0.75). Wartości funkcji wiarygodności p(d θ) dla rozkładów wynoszą: p(d 0.5) = = , p(d 0.75) = = /33

21 Funkcja wiarygodności- Przykład 2 Dysponujemy ciągiem obserwacji D = {0.24, 0.32, 0.21, 0.2, 0.87, 0.23, 0.12, 0.01} Chcemy ocenić, czy bardziej wiarygodne jest, że dane zostały wygenerowane: z rozkładu N (x 0, 1), czy też z rozkładu N (x 1, 0.1). Wartości funkcji wiarygodności p(d 0, 1) = , p(d 1, 0.1) = /33

22 Funkcja wiarygodności- Przykład 2 Dysponujemy ciągiem obserwacji D = {0.24, 0.32, 0.21, 0.2, 0.87, 0.23, 0.12, 0.01} Chcemy ocenić, czy bardziej wiarygodne jest, że dane zostały wygenerowane: z rozkładu N (x 0, 1), czy też z rozkładu N (x 1, 0.1). Wartości funkcji wiarygodności p(d 0, 1) = , p(d 1, 0.1) = /33

23 Estymator maksymalnej wiarygodności Interesuje nas znalezienie modelu o najwyższej wiarygodności. Formalnie, zadanie to formułujemy jako zadanie optymalizacji: θ ML = arg max p(d θ) θ N = arg max p(x n θ), θ n=1 gdzie θ ML nazywany jest estymatorem maksymalnej wiarygodności (ang. maximal likelihood estimate). 21/33

24 Estymator maksymalnej wiarygodności W praktyce definiuje się alternatywne zadanie optymalizacji: θ ML = arg min log p(d θ) θ N = arg min log p(x n θ). θ n=1 Okazuje się, że operacja logarytmu nie zmienia położenia punktu optymalnego! 22/33

25 Estymator ML - Przykład 1 Negatywny logarytm z funkcji wiarygodności dla rozkładu dwupunktowego: N log Bern(D θ) = {x n log θ + (1 x n ) log(1 θ)} n=1 = m log θ (N m) log(1 θ) gdzie m oznacza liczbę reszek. Estymator ML: θ ML = m N 23/33

26 Estymator ML - Przykład 2 Negatywny logarytm z funkcji wiarygodności dla rozkładu normalnego: log N (D µ, σ 2 ) = 1 2σ 2 N (x n µ) 2 N n=1 2 log σ2 N 2 log 2π Estymator ML parametru µ jest równy: N µ ML = 1 N x n n=1 Estymator ML parametru σ 2 : σ 2 ML = 1 N N (x n µ ML ) 2 n=1 24/33

27 Estymator maksymalnego a posteriori Załóżmy, że dysponujemy ciągiem obserwacji dotyczących rzutu monetą D = {1, 1, 1, 1, 1}. Jeżeli wykonamy estymację parametrów ML parametru θ wówczas: θ ML = m N = 5 5 = 1. W rezultacie otrzymujemy rozkład dwupunktowy dla którego prawdopodobieństwo reszki wynosi 1. W celu rozwiązania tego problemu załóżmy, że parametr θ charakteryzuje się niepewnością. 25/33

28 Estymator maksymalnego a posteriori Estymację formułujemy jako zadanie optymalizacji: θ MAP = arg max p(θ D), θ gdzie θ MAP nazywany jest estymatorem maksymalnego a posteriori (ang. maximal a posteriori estimate). Korzystając z reguły Bayesa mamy: θ MAP = arg max p(θ)p(d θ). θ 26/33

29 Estymator MAP - Przykład Wprowadźmy rozkład na parametr θ w rozkładzie Bern(x θ): Beta(θ a, b) = Γ(a + b) Γ(a)Γ(b) θa 1 (1 θ) b 1. Wówczas mamy dla rozkładu a posteriori: p(θ D) gdzie l = N m. Estymator MAP: Γ(a + b + N) Γ(a + m)γ(b + l) θm+a 1 (1 θ) l+b 1, θ MAP = m + a 1 N + a + b 2 27/33

30 Modele generujące Modele generujące (ang. generative models) zakładają, że modelujemy łączne prawdopodobieństwo korzystając z reguły łańcuchowej: p(x, y) = p(x y)p(y) Do modelowania komponentów p(y) i p(x y) wykorzystujemy elementarne modele i całość składamy jak z klocków. 28/33

31 Model GDA Model GDA (ang. Gaussian Discriminant Analysis) zakłada: Mamy K klas. Klasa reprezentowana jest w schemacie one-hot przez wektor y o rozkładzie: K p(y) = Cat(y θ) = k=1 Obserwacje x z każdej klasy modelowane przy pomocy wielowymiarowych rozkładów normalnych: K p(x y) = N (x µ k, Σ k ) y k k=1 θ y k k 29/33

32 Model GDA Estymatory parametrów {θ, µ 1,..., µ K, Σ 1,..., Σ K } wyznaczamy metodą największej wiarygodności. Wnioskowanie, czyli wyznaczenie rozkładu a posteriori na klasę robimy ze wzoru Bayesa: p(y k = 1 x) = N (x µ k, Σ k )θ k Kj=1 N (x µ j, Σ j )θ j Predykujemy poprzez wybór najbardziej prawdopodobnej klasy: k = arg max p(y k = 1 x) k 30/33

33 Model Naive Bayes Model Naiwnego Bayesa (ang. Naive Bayes) zakłada uproszczenie, że poszczególne obserwacje z wektora x są niezależne: D p(x y) = p(x d y) d=1 W przypadku ciągłym x R D, w modelu GDA używamy wtedy diagonalnych macierzy kowariancji postaci Σ k = diag(σ k ): K p(x y) = N (x µ k, diag(σ k )) y k k=1 K D = N (x d µ k,d, σ k,d ) y k k=1 d=1 31/33

34 Model Naive Bayes Uproszczenie prowadzi do istotnej redukcji liczby parametrów: Σ k D(D + 1) 2 VS. diag(σ k ) D Jest to szczególnie istotne w przypadku danych wysokowymiarowych. 32/33

35 Model Naive Bayes Dla danych dyskretnych x {0, 1} D zakładamy, że cechy modelujemy niezależnymi rozkładami dwupunktowymi: K D p(x y) = Bern(x d θ d,k ) y k k=1 d=1 Założenie o niezależności jej tutaj jeszcze bardziej istotne ze względu na liczbę parametrów: rozkład pełny 2 D 1 VS. niezależne cechy D Wnioskowanie i predykcja są analogiczne jak w modelu GDA. 33/33

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 2 i 3 Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne autor: Maciej Zięba Politechnika Wrocławska Pojęcie prawdopodobieństwa Prawdopodobieństwo

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Wrocław University of Technology SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Szymon Zaręba Studenckie Koło Naukowe Estymator 179226@student.pwr.wroc.pl 23.11.2012 Rozkład dwupunktowy i dwumianowy Rozkład

Bardziej szczegółowo

SPOTKANIE 3: Regresja: Regresja liniowa

SPOTKANIE 3: Regresja: Regresja liniowa Wrocław University of Technology SPOTKANIE 3: Regresja: Regresja liniowa Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 22.11.2013 Rozkład normalny Rozkład normalny (ang. normal

Bardziej szczegółowo

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo

Bardziej szczegółowo

WYKŁAD 2. Problem regresji - modele liniowe

WYKŁAD 2. Problem regresji - modele liniowe Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami

Bardziej szczegółowo

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego. Jakub Tomczak

Wprowadzenie do uczenia maszynowego. Jakub Tomczak Wprowadzenie do uczenia maszynowego Jakub Tomczak 2014 ii Rozdział 1 Pojęcia podstawowe 1.1 Wprowadzenie. Zmienne losowe ˆ Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz. Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 7.04.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Metoda największej wiarygodności ierównosć informacyjna Metoda

Bardziej szczegółowo

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014 Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.

Bardziej szczegółowo

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2, Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 6

Rachunek prawdopodobieństwa- wykład 6 Rachunek prawdopodobieństwa- wykład 6 Zmienne losowe dyskretne. Charakterystyki liczbowe zmiennych losowych dyskretnych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet Humanistyczno-Przyrodniczy

Bardziej szczegółowo