Rozkłady prawdopodobieństwa zmiennych losowych
|
|
- Włodzimierz Witek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska
2 Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny. Jeżeli x 1 i x są kolejnymi wartościami zmiennej losowej dyskretnej, to nie przyjmuje ona żadnych wartości między x 1 i x. Przykłady: wynik rzutu kostką, liczba bakterii, ilość studentów. Zmienna losowa ciągła jest to zmienna przyjmująca wszystkie wartości z pewnego przedziału (najczęściej zbioru liczb rzeczywistych). Jeżeli x 1 i x są dwiema wartościami zmiennej losowej ciągłej, to może ona przyjąć dowolną wartość między x 1 i x. Przykłady: wzrost, ciężar, temperatura
3 Przykład 1. Dwa rzuty monetą. Oznaczamy liczbę orłów przez S. Wartości zmiennej losowej S i rozkład prawdopodobieństwa na przestrzeni próbkowej przedstawia tabelka: ω P({ω}) S (ω ) OO RO OR RR 1/4 1/4 1/4 1/ Wynikowi doświadczenia odpowiada liczba.
4 Definicja. Załóżmy, że zmienna losowa X przyjmuje wartości ze zbioru {x 1, x,,x n } R Rozkład prawdopodobieństwa zmiennej losowej X możemy przedstawić przy pomocy tabelki: wartość x 1 x x n prawdopodobieństwo f 1 f f n gdzie f i = P (X = x i )
5 Dystrybuanta jest graficznym przedstawieniem tabelki skumulowanych prawdopodobieństw. gdzie f i = P (X = x i ) wartość x 1 x x n prawdopodobieństwo f 1 f f n pr-stwo skumulowane f 1 f 1 +f. f 1 +f + +f n Ustawiamy ciąg x 1 < x <
6 Przykład. Zmienna losowa dyskretna x p(x) skumul. Funkcja rozkładu prawdopodobieństwa 1 0,5 0,5 0,4 1,6 0,3 0,55 0,3 0,3 0,85 p(x) 0, 3,5 0,1 0,95 0,1 5 0, x Funkcję rozkładu prawdopodobieństwa przedstawiamy graficznie jako pionowe słupki dystrybuantę jako poziome linie p(x) 1 0,8 0,6 0,4 0, 0 Dystrybuanta x
7
8 Dystrybuanta rozkładu zmiennej losowej X jest to funkcja : F( x) = P( X x) Własności dystrybuanty: F 0 F ( x) 1 ( ) = 0, F ( ) = Funkcją niemalejącą, prawostronnie ciągłą P ( a < X b ) = F ( b ) F ( a ) P(X>x) = 1 - F(x) F(-x) = 1 - F(x) 1
9 Wróćmy do przykładu 1. Rozkład prawdopodobieństwa zmiennej losowej S przedstawia tabelka: a 0 1 P(S=a) 1/4 1/ 1/4 P(S<=a) 1/4 1/4+1/ 1/4+1/+1/4 Dystrybuanta dana jest wzorem P( S a) = 0 1/ 4 3/ 4 1 dla dla dla dla a < 1 Wykres dystrybuanty ma postać schodków a 1 < a < 0 0 a a a < 1 <
10
11 Graficzne przedstawienie tabelki skumulowanych prawdopodobieństw Wysokość schodka w 1 to P(X=1) P ( a < X b ) = F ( b ) F ( a ) P( 0 < X 1) = F(1) F(0) = = 0.5
12 Charakterystyki liczbowe zmiennych losowych Wartość przeciętna (oczekiwana, średnia) EX zmiennej losowej X jest liczbą charakteryzująca położenie zbioru jej wartości EX = i = 1 n x x f Wariancją D X zmiennej losowej jest liczbą charakteryzującą rozrzut zbioru jej wartości wokół średniej EX (drugi moment centralny) D X D X = Var( X ) = ( x ( x i i EX) ( p x EX) f i ) p dx i ( x) dx
13 Charakterystyki liczbowe zmiennych losowych Definicja. Załóżmy, że X jest dyskretną zmienną losową o wartościach {x 1, x,,x n }. Wartością przeciętną (oczekiwaną, średnią) zmiennej losowej X nazywamy liczbę gdzie f i = P(X = x i ) EX = n i = 1 x i f Przykład. Jeśli rozkład zmiennej losowej X jest dany tabelką x i f i to EX= (-5) * 0. + * * *0.1 = i
14 Jeśli X jest dyskretną zmienna losową, która przyjmuje wartości {x 1, x,,x n }, to D X = Var( X x i f i ) = n i= 1 ( x = i n EX ) i= 1 x i f i f i EX Przykład. Dla zmiennej losowej X z poprzedniego przykładu, EX =. Mamy więc Var(X) = lub (-5 -) * 0. + (-) * (5-) * 0. + (10-) * 0.1 = 18 (-5 ) * 0. + * (5) * 0. + (10) * = 4 = 18 Oczywiście, odchylenie standardowe DX DX = 18 = 4. 43
15 Własności wartości przeciętnej i wariancji. Niech a będzie liczbą, zaś X i Y zmiennymi losowymi E(X+a) = EX+a E(X+Y) = EX+EY E(aX) = aex D (X+a)=Var(X+a) = Var(X-a)=Var(X) D (ax)=var(ax) = a Var(X) D(aX) = a DX jeśli zmienne są niezależne to Var(X+Y)= Var(X) + Var(Y)
16 Prawo wielkich liczb: Jeśli X 1, X, X 3 są niezależnymi zmiennymi losowymi o rozkładzie takim samym jak X to X 1 + X + + X n n EX gdy n dąży do nieskończoności
17 Jeśli X jest zmienną losową o rozkładzie normalnym N ( µ, σ ) To zmienna losowa X ma rozkład: X ~ N ( µ, σ n )
18 Uśredniony wynik n pomiarów ma odchylenie standardowe DX = σ n Jeśli uśrednimy, powiedzmy 100 niezależnych pomiarów, to dokładność wyniku zwiększy się 100 =10 dziesięć razy w porównaniu z dokładnością pojedynczego pomiaru.
19 Schemat Bernoulliego Powtarzamy wielokrotnie (n razy) niezależnie (wynik następnego doświadczenia nie zależy od wyników poprzednich) doświadczenie losowe, w którym możliwe są dwa wyniki umownie nazwane sukces i porażka. Prawdopodobieństwo sukcesu w pojedynczym doświadczeniu oznaczymy przez p, porażki q = 1-p 19
20 Przykłady Losowanie z urny ze zwracaniem ( w urnie b-kul białych i c kul czarnych) kula biała =sukces, kula czarna =porażka ; p=b/(b+c), q=c/(b+c) Rzuty monetą orzeł =sukces, reszka =porażka p=q=1/ Rzuty kostką szóstka = sukces, inny wynik =porażka p=1/6, q=5/6 Płeć noworodków dziewczynka =sukces, chłopiec =porażka, statystyki pokazują p=0.483, q=0.517 Losowanie bez zwracania nie jest schematem Bernoulliego bo wynik następnego losowania zależy do wyniku poprzedniego 0
21 Twierdzenie. W schemacie Bernoulliego, prawdopodobieństwo otrzymania dokładnie k sukcesów (i n-k porażek) jest równe P ( k ) = n p k (1 p ) k n k P( k) = n! p k (1 p k!( n k)! ) n k Rozkład prawdopodobieństwa opisany tym wzorem nazywa się dwumianowy 1
22 Przykład. (Wielokrotne rzuty kostką) n=30 razy rzucamy kostką. Prawdopodobieństwo wyrzucenia szóstki w jednym rzucie jest równe p=1/6. Chcemy obliczyć prawdopodobieństwo zdarzenia polegającego na tym, że wśród 30 rzutów pojawi się dokładnie k =5 razy szóstka (n=30, k=5, p=1/6 )
23 Najbardziej prawdopodobną liczbą szóstek jest 5 P(X=5)=
24
25 Przykład. Jakie jest prawdopodobieństwo ( P ) wylosowania z populacji (w której proporcja kobiet wynosi p=1/) dokładnie k=0,1,,3, n kobiet? n n ( = = = k k k n k n P X k) (1/ ) (1 1/ ) 1/ Szansa, że wsród n=10 noworodków będzie dokładnie k=5 dziewczynek jest w przybliżeniu 5% bo: P( X = 5) = 10 1/ 5 10 = 5 /104 =
26 P(X=5)=
27 Dystrybuanta rozkładu dwumianowego
28 Ustalone p i różne n Rozkłady dwumianowe Ustalone n i różne p Związek n*p = const. Prawie rozkład Po(3)
29 Rozkład Poissona Mówimy, że zmienna losowa X ma rozkład Poissona Po(λ) (P(λ)) z parametrem λ (lambda), λ>0 jeśli jej funkcja prawdopodobieństwa jest postaci P( k, λ) = e λ k λ k! dla k N0 = N {0} k =0,1,,. Przykłady: ilość wad na m produkowanego materiału, ilość wypadków w jednostce czasu, (dla zdarzeń rzadkich)
30 B( n, p) Po( λ) P ( k ) n k = p (1 p ) k n k e λ k λ k! Jeśli n p 0 np λ
31
32 Gęstość rozkładu prawdopodobieństwa Definicja. Funkcja f(x) jest gęstością prawdopodobieństwa zmiennej losowej X jeśli P (a < X < b) = b P(( a, b)) = F( b) F( a) f ( x) dx = a Własności: f(x) > = 0 + f ( x) dx =1
33
34 Gęstość rozkładu prawdopodobieństwa f(x) = P (( a, b)) = F( b) F( a) f ( x) dx b a Pole zacienionego obszaru przedstawia prawdopodobieństwo pojawienia się wyniku w przedziale (a,b), a=1, b=
35 Gęstość rozkładu normalnego X ~ N( µ, σ ) f ( x ) = 1 π σ e 1 σ ( x µ )
36 Gęstości rozkładów normalnych zmiennych losowych X, Y, Z N( µ, σ ) + f ( x) dx =1 S1
37 Slajd 36 S1 czarny (4,1) czerwiny(4,0.5) niebieski (0,0.75) SPCSK;
38 z = x σ µ Jeśli F(x) jest dystrybuantą dowolnego rozkładu normalnego N ( µ, σ ) to zachodzi F ( x) x µ = Φ σ
39 Zmienna losowa o rozkładzie normalnym N (0,1 ) Funkcja gęstości Dystrybuanta
40 Gęstość rozkładu normalnego standaryzowanego X ~ N (0,1 )
41 Dystrybuanta rozkładu standaryzowanego N (0,1 ) Φ(b) Φ(a) Φ( z) = 1 Φ( z) P a b ( a < z < b ) = Φ ( b ) Φ ( a ) F(-x) = 1 - F(x) Standaryzowany rozkład normalny - tablice
42
43 0,00 0,01 0,0 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,0000 0,0040 0,0080 0,010 0,0160 0,0199 0,039 0,079 0,0319 0,0359 0,1 0,0398 0,0438 0,0478 0,0517 0,0557 0,0596 0,0636 0,0675 0,0714 0,0753 0, 0,0793 0,083 0,0871 0,0910 0,0948 0,0987 0,106 0,1064 0,1103 0,1141 0,3 0,1179 0,117 0,155 0,193 0,1331 0,1368 0,1406 0,1443 0,1480 0,1517 0,4 0,1554 0,1591 0,168 0,1664 0,1700 0,1736 0,177 0,1808 0,1844 0,1879 0,5 0,1915 0,1950 0,1985 0,019 0,054 0,088 0,13 0,157 0,190 0,4 0,6 0,57 0,91 0,34 0,357 0,389 0,4 0,454 0,486 0,517 0,549 0,7 0,580 0,611 0,64 0,673 0,704 0,734 0,764 0,794 0,83 0,85 0,8 0,881 0,910 0,939 0,967 0,995 0,303 0,3051 0,3078 0,3106 0,3133 Trzeba dodać 0,5 0,9 0,3159 0,3186 0,31 0,338 0,364 0,389 0,3315 0,3340 0,3365 0,3389 1,0 0,3413 0,3438 0,3461 0,3485 0,3508 0,3531 0,3554 0,3577 0,3599 0,361 1,1 0,3643 0,3665 0,3686 0,3708 0,379 0,3749 0,3770 0,3790 0,3810 0,3830 1, 0,3849 0,3869 0,3888 0,3907 0,395 0,3944 0,396 0,3980 0,3997 0,4015 1,3 0,403 0,4049 0,4066 0,408 0,4099 0,4115 0,4131 0,4147 0,416 0,4177 1,4 0,419 0,407 0,4 0,436 0,451 0,465 0,479 0,49 0,4306 0,4319 1,5 0,433 0,4345 0,4357 0,4370 0,438 0,4394 0,4406 0,4418 0,449 0,4441 1,6 0,445 0,4463 0,4474 0,4484 0,4495 0,4505 0,4515 0,455 0,4535 0,4545 1,7 0,4554 0,4564 0,4573 0,458 0,4591 0,4599 0,4608 0,4616 0,465 0,4633 1,8 0,4641 0,4649 0,4656 0,4664 0,4671 0,4678 0,4686 0,4693 0,4699 0,4706 1,9 0,4713 0,4719 0,476 0,473 0,4738 0,4744 0,4750 0,4756 0,4761 0,4767,0 0,477 0,4778 0,4783 0,4788 0,4793 0,4798 0,4803 0,4808 0,481 0,4817,1 0,481 0,486 0,4830 0,4834 0,4838 0,484 0,4846 0,4850 0,4854 0,4857, 0,4861 0,4864 0,4868 0,4871 0,4875 0,4878 0,4881 0,4884 0,4887 0,4890,3 0,4893 0,4896 0,4898 0,4901 0,4904 0,4906 0,4909 0,4911 0,4913 0,4916,4 0,4918 0,490 0,49 0,495 0,497 0,499 0,4931 0,493 0,4934 0,4936,5 0,4938 0,4940 0,4941 0,4943 0,4945 0,4946 0,4948 0,4949 0,4951 0,495,6 0,4953 0,4955 0,4956 0,4957 0,4959 0,4960 0,4961 0,496 0,4963 0,4964,7 0,4965 0,4966 0,4967 0,4968 0,4969 0,4970 0,4971 0,497 0,4973 0,4974,8 0,4974 0,4975 0,4976 0,4977 0,4977 0,4978 0,4979 0,4979 0,4980 0,4981,9 0,4981 0,498 0,498 0,4983 0,4984 0,4984 0,4985 0,4985 0,4986 0,4986 3,0 0,4987 0,4987 0,4987 0,4988 0,4988 0,4989 0,4989 0,4989 0,4990 0,4990
44 Zastosowanie rozkładu normalnego np. IQ~N(100,10 ) 0 1,5 z = x µ σ P(100<x<115) Gdy x 1 =100 to z = ( )/10 = 0.0 a x =115 to z = ( )/10 = 1,5 Dlatego P(100<X<115) = P(0,0<Z<1,5) = 0,933-0,500 = 0,433 Wartość znajdujemy z tablic Dystrybuanty Φ(z) N(0,1)
45 Ważne przybliżenie B( n, p) N( np, np(1 p)) np = µ n duże, p około 0,5 np(1 p) = σ np(1 p) = σ
46 Przykład (ważne przybliżenie rozkładu dwumianowego rozkładem normalnym) Obliczyć prawdopodobieństwo, że na 400 rzutów uczciwą monetą orzeł wypadł więcej niż 0 razy np=400*0.5=00 np(1-p)=00*0.5=100 z X µ = σ σ = = x µ σ = N (00,10 ) x=0 z=(0-00)/10= P(Z>)=1-P(Z<=) =0.03
47 Wartości przeciętne i wariancje typowych rozkładów prawdopodobieństwa Rozkład dwumianowy. Jeśli S ~ B(n,p), to EX=np i Var(X)=np(1-p). Rozkład normalny. Jeśli X ~ µ σ to EX= Var(X)= N( µ, σ )
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Statystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
Laboratorium nr 7. Zmienne losowe typu skokowego.
Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład
II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X
Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Dyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach
Statystyka matematyczna w zastosowaniach Elementy rachunku prawdopodobieństwa Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania(analizowania) zjawisk masowych; polega na systematyzowaniu
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
07DRAP - Zmienne losowe: dyskretne i ciągłe
07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej
Statystyka i opracowanie danych Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne losowe Zmienna
Statystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
Wykład 3: Prawdopodobieństwopodstawowe
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Diagramy Venna. Uwagi:
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
1 Rozklady dyskretne. Rachunek p-stwa Przeksztalcenia zmiennych losowych. 2. Rozklad dwumianowy. 3. Rozklad Poissona
Rachunek p-stwa 2010-2011 1 Rozklady dyskretne 1. Przeksztalcenia zmiennych losowych 2. Rozklad dwumianowy 3. Rozklad Poissona 4. Inne rozklady dyskretne 1 Przeksztalcenia zmiennych losowych Zmienna losowa
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008
STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
1 Elementy kombinatoryki i teorii prawdopodobieństwa
1 Elementy kombinatoryki i teorii prawdopodobieństwa 1.1 Elementy kombinatoryki W rozwiązywaniu pewnych problemów związanych z obliczaniem prawdopodobieństwa o skończonej liczbie zdażeń elementarnych bardzo
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Rozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
W ykład 4: Z m ienna losow a. Ciągła zmienna losowa. Zmienna losowa dyskretna. Dystrybuanta zmiennej X:
W ykład 4: Z m ienna losow a Wartość zależna od wyniku eksperymentu. Przykład: Liczba orłów uzyskanych w jednym rzucie monetą. Zmienna losowa dyskretna Zbiór wartości, które może przyjąć zmienna losowa
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Wykład Rachunek prawdopodobieństwa Kombinatoryka Zmienne losowe Rozkłady zmiennych losowych Twierdzenia
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Zadania zestaw 1: Zadania zestaw 2
Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Diagramy Venna. Uwagi:
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Wybrane rozkłady zmiennych losowych i ich charakterystyki
Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych
Zmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny