1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami.

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami."

Transkrypt

1 Polecam korzystanie również z poniższych podręczników. 1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami. 2. Izydor Dziubiński, Lucjan Siewierski Matematyka dla wyższych szkół technicznych 3. Wojciech Żakowski, Wacław Leksiński Matematyka Część 4

2 1 Równania różniczkowe. Przypomnienie 1.1 Równania rzędu 1 Równanie rzędu 1 ma postać; ẋ(t) = f(t, x(t)) (1) Twierdzenie 1.1 Jeśli f(t, x) jest klasy C 1 ( tzn. f(t, x) posiada pochodne cząstkowe i są one ciągłe) to równanie różniczkowe posiada rozwiązania zależne od jednego parametru. Ogólnie znalezienie rozwiązania równania różniczkowego jest bardzo trudne. Znacznie tudniejsze niż całkowanie Równanie o zmiennych rozdzielonych Równanie o zmiennych rozdzielonych ma postać ẋ = f(t)g(x) (2) Równanie takie sprowadza się do całkowania. Przepisujemy dx dt = f(t)g(x) rozdzielamy zmienne dx g(x) = f(t)dt całkujemy stronami Jeśli umiemy znaleźć funkcje pierwotną obu stron to równanie różniczkowe zostaje zastąpione przez równanie algebraiczne. Przykład 1.2 Znaleźć rozwiązanie równania ẋ = 2xt spełniające warunek początkowy x() = 3. dx dt = 2xt rozdzielamy zmienne dx = 2t dt całkujemy stronami x ln x = t 2 + C ; x = e t2 +C gdzie C R ; x = e C e t2 gdzie C R Oznaczmy C 1 = e C. Wówczas C 1 >. A więc x = C 1 e t2 gdzie C 1 >. A stąd rozwiązanie ogólne x = C 1 e t2 gdzie C 1 R Równanie liniowe rzędu 1 Równanie liniowe rzędu 1 ma postać ẋ + a(t) x = b(t) (3) Najpierw rozpatrujemy równanie jednorodne ẋ + a(t) x = (4)

3 Jest to równanie o zmiennych rozdzielonych i jego rozwiąznie ogólne ma postać CORJ = C h(t). Aby uzyskać rozwiązanie danego równania (niejednorodnego) uzmienniamy stałą tzn wstawiamy do równania iloczyn x(t) = C(t) h(t) i wyznaczamy funkję C(t). Przykład 1.3 Znaleźć rozwiązanie ogólne równania ẋ + x = t Rozwiązujemy równanie jednorodne ẋ + x =. Wówczas CORJ = C e t rozwiązanie równania niejednorodnego w postaci x = C(t)e t. (C(t)e t ) + C(t)e t = t ; (C (t)e t C(t)e t ) + C(t)e t = t ; (!) A zatem szukamy C (t)e t = t ; C (t) = t e t ; C(t) = t e t e t + C 1 A zatem CORN = C(t)e t = (t e t e t + C 1 )e t = t 1 + C 1 e t. Zauważmy, że podanym przykładzie w pewnym momencie zredukowały się wyrażenia z C(t). Nie jest to przypadek. Na tym polega ta metoda. Gdyby C(t) się nie redukowało to oznaczałby pomyłkę w obliczniach. 1.2 Równanie liniowe rzędu 2 o stałych współczynnikach Jest to równanie postaci ẍ + bẋ + cx = f(t) (5) Równanie to jako równanie rzędu 2 posiada rózwiązania zależne od dwu parametrów Równanie liniowe jednorodne rzędu 2 o stałych współczynnikach Rozpatrujemy równanie jednorodne ẍ + bẋ + cx = (6) Twierdzenie 1.4 Zbiór rozwiązań równania (8) jest przestrzenią liniową wymiaru 2. A zatem rozwiązanie ogólne ma postać CORJ = A x 1 (t) + B x 2 (t) gdzie x 1 (t), x 2 (t) są pewnymi rozwiązaniami bazowymi. Pozostaje wyznaczyć (odgadnąć) te rozwiązania. Rozpatrujemy wielomian charakterystyczny aλ 2 + bλ + c = (7) Niech = b 2 4ac. Rozpatrujemy przypadki. >. Wówczas wielomian charakterystyczny ma dwa różne pierwiastki rzeczywiste λ 1 λ 2. Rozwiązaniami bazowymi są funkcje e λ1t, e λ2t a więc CORJ = C 1 e λ1t + C 2 e λ2t. Przykład 1.5 ẍ+5ẋ+6x =. Wówczas = 1 >, λ 1 = 2, λ 2 = 3 a więc CORJ = C 1 e 2t +C 2 e 3t.

4 =. Wówczas wielomian charakterystyczny ma jeden pierwiastek rzeczywisty podwójnyλ. Rozwiązaniami bazowymi są funkcje e λt, t e λt a więc CORJ = (C 1 + t C 2 ) e λt. Przykład 1.6 ẍ 4ẋ + 4x =. Wówczas =, λ 1 = λ 2 = 2 a więc CORJ = (C 1 + t C 2 ) e 2t. < Wówczas brak pierwiastków rzeczywistych, są za to dwa pierwiastki zespolone sprzężone λ 1 = α + βi, λ 2 = α βi. Rozwiązaniami bazowymi są funkcje e αt cos(βt), e αt sin(βt). Przykład 1.7 ẍ + 4ẋ + 13x =. Wówczas = 36, λ 1 = 2 + 3i, λ 2 = 2 3i a więc CORJ = C 1 e 2t cos(3t) + C 2 e 2t sin(3t) Równanie liniowe niejednorodne rzędu 2 o stałych współczynnikach Rozpatrujemy równanie niejednorodne ẍ + bẋ + cx = f(t) (8) Łatwo zauważyć, każde dwa rozwiąnia tego równania różnią się o rozwiązanie równania jednorodnego. Twierdzenie 1.8 CORN=CSRN+CORJ A zatem pozostaje odgadnąć jedno rozwiązanie szczególne. Podamy metodę takiego odgadywania dla funkcji typu f(t) = e αt (P (t) cos(βt) + Q(t) sin(βt) gdzie P (t), Q(t) są wielomianami (stopnia n). Wówczas poszukujemy CSRN w postaci e αt ( P (t) cos(βt) + Q(t) sin(βt)) gdy z = α + βi nie jest pierwiastkiem wiel. charakt. CSRN = t r e αt ( P (t) cos(βt) + Q(t) sin(βt)) gdy z = α + βi jest r-krotnym pierwiastkiem wiel. charakt. gdzie P, Q są wielomianami stopnia n. Przykład 1.9 ẍ 3ẋ + 2x = t Wówczas α = (bo nie ma prawej stronie funkcji e αt ) a także β = (bo brak funkcji trygonometrycznych). Liczba z = α + βi = nie jest pierwiastkiem charakterystycznego. A zatem przewidujemy CSRN jako wielomian stopnia 1 tzn. CSRN = at + b. Wstawiamy do równania: (at+b) 3(at+b) +2(at+b) = t, 3a+2(at+b) = t, 2at+(2b 3a) = t, A stąd a = 1/2, b = 3/4, więc CSRN = t/2 + 3/4. Przykład 1.1 ẍ 2ẋ = 4t Wówczas podobie jak wyżej α =, β =. Ale tutaj Liczba z = α + βi = jest (jednokrotnym) pierwiastkiem wielomianu charakterystycznego. A zatem przewidujemy CSRN jako t P (t) gdzie P (t) wielomian stopnia 1 tzn. CSRN = t(at + b) = at 2 + bt.

5 Wstawiamy do równania: (at 2 +bt) 2(at 2 +bt) = 4t, 2a 2(at+b) = 4t, 4at+(2a 2b) = 4t, A stąd a = b = 1, więc CSRN = t 2 t. Przykład 1.11 Znaleźć rozwiązanie równania różniczkowego ẍ + x = 2 cos(t) spełniające warunek początkowy x() = 1, ẋ =. 1. Równanie jednorodne. ẍ + x =. Wielomian charakterystyczny λ =, = 4 <, λ = ±i. A zatem rozwiązaniam bazowymi są cos(t), sin(t) skąd CORJ = A cos(t) + B sin(t). 2. CSRN Po prawej stronie nie występuje e αt czyli α = a ponadto jest cos(t) czyli β = 1 A więc sprawdzamy czy z = α + βi = + 1i = i jest pierwiastkiem równania charakterystycznego. JEST! I to jednokrotnym czyli szukamy CSRN = t(a cos(t) + B sin(t)). Aby wyznaczy A, B obliczamy pochodne (CSRN) = (t(a cos(t) + B sin(t))) = (A + Bt) cos(t) + (B At) sin(t) i wstawiamy do równania (CSRN) = (2B At) cos(t) (2A Bt) sin(t) (CSRN) + CSRN = 2 cos(t) ; (2B At) cos(t) (2A Bt) sin(t) + t(a cos(t) + B sin(t)) = 2 cos(t) ; Porównując wspólczynniki przy takich samych funkcjach trygonometrycznych (!) uzyskujemy A =, B = 1 skąd CSRN = t sin(t) 3. CORN=CSRN+CORJ =t sin(t) + (A cos(t) + B sin(t)). 4. Rozwiązanie spełniające warunki początkowe. Obliczamy (CORN) = sin(t) + t cos(t) A sin(t) + B cos(t) i wstawiamy zadane warunki początkowe. 1 = CORN() = A ; = (CRN) () = B A stąd szukanym rozwiązaniem jest x(t) = t sin(t) + cos(t)

6 1.3 Równania różniczkowe liniowe.zadania Uwaga. We wszystkich zadaniach należy sprawdzić poprawność uzyskanego rozwiązania wstawiając je do równania. 1. Znaleźć rozwiązanie równania o zmiennych rozdzielonych spełniające warunek początkowy (a) ẋ = 3x, x() = 2 (b) ẋ = 1 2t, x() = 2 x 2 (c) ẋ = 2xt 1 + t, x() = Znaleźć rozwiązanie ogólne równania różniczkowego limiowego (rzędu jeden). (a) ẋ + 2tx = e t2, [x = (C + t)e t2 ] (b) tẋ 2x = t 4, [x = Ct 2 + 1/2 t 4 ] 3. Rozwiązać równanie różniczkowe liniowe jednorodne rzędu dwa; (a) x + 5x + 6x = [C 1 e 3t + C 2 e 2t ] (b) x + 6x + 9x = [(C 1 t + C 2 )e 3t ], (c) 5x 12x + 2x = [(C 1 cos 6t 5 + C 2 cos 6t 5 )e6t/5 ] 4. Znaleźć rozwiązania równania różniczkowego liniowego niejednorodnego : (a) x 3x + 2x = 5t + 2 [(C 1 e 2t + C 2 e t + 5t + 19] 2 4 (b) x + 4x + 2x = 4e t [(C 1 e 2t + C 2 e t e t ] (c) x + 2x = cos 2t [(C 1 + C 2 e 2t + 1 sin 2t 1 cos 2t] 8 8 (d) x 3x + 2x = e t [C 1 e 2t + C 2 e t te t ] Następnym razem będziemy używać: całkowania przez części, całek niewłaściwych (gdy obszarem całkowania jest półprosta [a, )) oraz rozkładu funkcji wymiernej na ułamki proste. Zachęcam do roazwiązania zadań przygotowawczych. 1. Obliczyć całki niewłaściwe: e 2t dt = 1 2 ; t e t dt [ 1 2 ; 1] 2. Rozłożyć funkcje wymierne na ułamki proste: 5 x 2 x 6 ; x 6 x 2 + 3x 4 [ 1 x 3 1 x+2 ; 1 x x+4 ]

7 2 Trasformata Laplace a Definicja 2.1 Funkcję f : R R nazywamy oryginałem gdy f i jej pochodna f są przedziałami ciągłe, f(t) = dla t <, istnieją stałe M, λ takie, że f(t) M e λt. Przykład 2.2. Funkcje ograniczone z ciągłą pochodną, np. sin(at),cos(at), wielomiany, e at, e t2 nie jest oryginałem bo zbyt szybko rośnie. Przyjmujemy, ze wszystkie omawiane tu funkcje są równe zeru dla t <. Dla oryginału f(t) określamy nową funkcję: L[f] = F wzorem: F (s) = f(t)e st dt Piszemy wówczas L[f](s) = F (s). Funkcję F (s) nazywamy obrazem. Nie każda funkcja jest obrazem: Twierdzenie 2.3 Jeśli F (s) jest obrazem to lim F (s) = s Przykład 2.4 Obliczyć L[1]. = lim T F (s) = A zatem L[1] jest równe F (s) = 1 s. [ 1/s e st ] T 1 e st dt = lim T T 1 e st dt = lim [ 1/s e st + 1/s ] = 1/s T Podobnie można uzasadnić wzory (całkowanie przez części). L[e at ](s) = 1 s a s L[cos(bt)](s) = s 2 + b 2 L[sin(bt)](s) = L[t n ](s) = n! s n+1 b s 2 + b 2

8 2.1 Własności transformaty Liniowość transformaty: L[f + g] = L[f] + L[g] L[αf] = αl[f] Przykład 2.5. L[3 e 2t + 2 sin t] = 3L[1] = L[e 2t ] + 2L[sin t] = 3 s 1 s s 2 +1 Różniczkowanie oryginału. L(f ) = s L(f) f() n-krotne różniczkowanie oryginału. L(f ) = s L(f) f() L(f ) = s 2 L(f) sf() f () L(f ) = s 3 L(f) s 2 f() sf () f () L(f (n) ) = s n L(f) s n 1 f() s n 2 f ()... f (n 1) () Trasformata Laplace a jest różnowartościowa tzn. różnym funkcjom odpowiadają różne obrazy, a zatem można mówić o transfromacie odwrotnej: L 1. ẋ + 2x = 1 Przykład 2.6 Rozwiązać równanie różniczkowe z warunkiem początkowym: x() = 2 A zatem x(t) = 3 2 e 2t L[ẋ] + 2L[x] = L[1] ; sx = 2 + 2X = 1 s X(s + 2) = ; X = 2 s s s(s + 2) X = 2 s s s + 2 = s s

9 Oryginał f(t) Transformata L[f(t)](s) 1 1 s 1 t s 2 t 2 2 s 3 t n n! s n+1 e at 1 s a t e at 1 (s a) 2 t n e at n! (s a) n+1 s cos(at) s 2 + a 2 a sin(at) s 2 + a 2 Oryginał f(t) t cos(at) t sin(at) e αt cos(βt) e αt sin(βt) cosh(at) sinh(at) f (t) Transformata L[f(t)](s) s 2 a 2 (s 2 + a 2 ) 2 2as (s 2 + a 2 ) 2 s α (s α) 2 + β 2 β (s α) 2 + β 2 s s 2 a 2 a s 2 a 2 sf (s) f() f (t) s 2 F (s) sf() f ()

10 2.2 Transformata Laplace a. Zadania 1. Znaleźć transformatę Laplace a funkcji (a) f(t) = 5 e 2t (b) f(t) = t (c) f(t) = e 2t e t (d) f(t) = t 2 [F (s) = 4s 1 s 2 2s ] [F (s) = 1/s 2 ] [F (s) = 3 s 2 s+2 ] [F (s) = 2/s 3 ] 2. Dla danego obrazu znaleźć oryginał (a) F (s) = 1 s 2 1 [f(t) = et e t 2 ] (b) F (s) = 1 s(s 2) 2 [f(t) = 1 4 e2t (2t 1) ] (c) F (s) = 1 s 2 +s (d) F (s) = s2 +s+1 s 3 +s (e) F (s) = s 1 s 2 2s 3 [f(t) = 1 e t ] [f(t) = 1 + sin t] [f(t) = 1 2 e3t e t ] 3. Znaleźć rozwiązanie równania różniczkowego, spełniające dany warunek początkowy, stosując transformatę Laplace a (a) ẋ = 5 2t, x() = 1 [x(t) = t 2 + 5t + 1] (b) ẍ + 2ẋ + 1x = 1, x() = ẋ() = [x(t) = cos 3t sin 3t] (c) ẍ ẋ 2x = 1, x() = 1, ẋ() = [x(t) = e2t + e t ] (d) ẍ + 4ẋ + 13x = 2 e t, x() =, ẋ() = 1 [x(t) = 1 5 [e t e 2t cos 3t 2e 2t sin 3t]] (e) ẍ 2ẋ + x = 1, x() =, ẋ() = 1 [x(t) = 1 e t + 2t e t ]

11 3 Szeregi Fouriera. Lemat 3.1 Niech f :< a, a > R. Wówczas: jeśli f jest nieparzysta to +a a f(x)dx =, jeśli f jest parzysta to +a a f(x)dx = 2 +a f(x)dx Lemat 3.2 f, g :< a, a > R. Wówczas: jeśli obie funkcje f, g są jednocześnie parzyste lub jednocześnie nieparzyste to iloczyn f g jest funkcją parzystą, jeśli jedna z funkcji jest parzysta a druga nieparzysla to iloczyn jest funkcją nieparzystą. Problem. Czy można przedstawić dowolną funkcję f :< π, +π > R jako sumę szeregu f(x) = a 2 + (a n cos(nx) + b n sin(nx)) n=1 Przypuśćmy, że zachodzi taka równość. Ile wynoszą wówczas współczynniki a k, b k? Całkujemy obustronnie ( na przedziale < π, +π >) = π π f(x)dx = π a 2 dx + n=1 ( a 2 + (a n cos(nx) + b n sin(nx)))dx ( a n n=1 π cos(nx)dx + b n = a 2 2π = π a π ) sin(nx)dx A zatem a = 1 f(x)dx. π π Aby wyznaczyć a m (m 1) mnożymy obie strony równości przez cos(mx) i całkujemy: a f(x) cos(mx)dx = π π 2 cos(mx)dx+ ) (a n cos(nx) cos(mx)dx + b n sin(nx) cos(mx)dx = ( ) n=1 π π Mają miejsce wzory: cos(mx)dx =, π cos(mx) sin(nx)dx = (bo iloczyn jest funkcją nieparzystą), π

12 gdy m n cos(mx) cos(nx)dx = π π gdy m = n A zatem w podanej sumie mamy π f(x) cos(mx)dx = ( ) = a m cos 2 (mx)dx = a m π π a zatem Podobnie można pokazać, że a m = 1 π π f(x) cos(mx)dx b m = 1 π π f(x) sin(mx)dx Podobne wzory uzyskujemy dla dowolnego przedziału < l, +l >. Wówczas funkcje sin(nx), cos(nx) należy zastąpić przez sin(nxπ/l), cos(nxπ/l). Aby jednak takie rozwinięcie miało miejsce potrzebne są pewne założenia: Twierdzenie 3.3 Jeśli funkcja f :< l, +l > R spełnia warunki Dirichleta tzn. 1. jest ograniczona, 2. jest przedziałami monotoniczna, 3. w każdym punkcie nieciągłości istnieją granice prawo- i lewostronna oraz f(x) = f(x ) + f(x + ) 2 Wówczas funkcja f(x) jest sumą szeregu sinusów i cosinusów tzn. w każdym punkcie zachodzi równość: gdzie f(x) = a 2 + (a n cos(nxπ/l) + b n sin(nxπ/l)) n=1 a n = 1/l b n = 1/l +l l +l l f(x) cos(nxπ/l)dx f(x) sin(nxπ/l)dx Uwaga. jeśli f(x) jest funkcją parzystą to b n = szereg samych cosinusów, jeśli f(x) jest funkcją nieparzystą to a n = szereg samych sinusów.

13 3.1 Rozwinięcie w szereg samych (co-)sinusów Dana jest funkcja f : (, l) R. Przedłużymy ją na odcinek < l, +l > w sposób parzysty a następnie w sposób nieparzysty i do uzyskanych funkcji zastosujemy powyższe wzory. Przedłużamy f(x) w sposób parzysty. Określamy f :< l, +l > R wzorem f (x) = f( x ) (i dodatkowo w punktach, ±l wartość funkcji f (x) jest równa granicy funkcji f). Wówczas f jest funkcją parzystą a zatem rozwija się w szereg samych cosinusów, gdzie a n = 1/l +l l Ponieważ f (x) = f(x) dla < x < l f (x) cos(nxπ/l)dx = 2/l +l f(x) cos(nxπ/l)dx Twierdzenie 3.4 Funkcja f : (, l) R spełniająca warunki Dirichleta rozwija się w szereg samych cosinusów: gdzie f(x) = a 2 + a n = 2/l +l n=1 a n cos(nxπ/l) f(x) cos(nxπ/l)dx Przedłużamy f(x) w sposób nieparzysty. Określamy f :< l, +l > R f(x) gdy < x < l f (x) = f( x) gdy l < x < gdy x =, ±l Wówczas f jest funkcją nieparzystą, a więc rozwija się w szereg samych sinusów, przy czym b n = 1/l +l Ponieważ f (x) = f(x) dla < x < l l f (x) sin(nxπ/l)dx = 2/l +l f(x) sin(nxπ/l)dx Twierdzenie 3.5 Funkcja f : (, l) R spełniająca warunki Dirichleta rozwija się w szereg samych sinusów: f(x) = b n sin(nxπ/l) gdzie b n = 2/l n=1 +l f(x) sin(nxπ/l)dx

14 3.2 Szeregi Fouriera. Zadania. 1. Znaleźć rozwinięcie Fouriera. Do czego jest zbieżny szereg Fouriera na końcach przedziału i w punktach nieciągłości? (a) (b) Odp. f(x) 4 π n= 1 gdy π < x < f(x) = +1 gdy < x < π sin(2n + 1)x. Wszystkie granice =. 2n gdy π < x < f(x) = 3 gdy < x < π Odp. f(x) π n= sin(2n + 1)x. Wszystkie granice = 2. 2n + 1 (c) f(x) = x, π x +π. n+1 sin nx Odp. x 2 ( 1). Wszystkie granice =. n n=1 (d) f(x) = x, 1 x +1. Odp. x 2 π n+1 sin nπx ( 1). Wszystkie granice =. n n=1 (e) f(x) = x 2, π x +π. Odp. x 2 4 π n cos nx ( 1). Wszystkie granice = π 2. n 2 n=1 (f) f(x) = x 2, 1 x +1. Odp. x 2 4 π n cos nπx ( 1). Wszystkie granice = 1. 2 n 2 n=1 (g) f(x) = x, 1 x +1. Odp. x π n cos(2n + 1)πx ( 1). Wszystkie granice = 1. 2 (2n + 1) 2 n= 2. Znaleźć rozwinięcie Fouriera w szereg samych cosinusów. Do czego jest zbieżny szereg Fouriera na końcach przedziału i w punktach nieciągłości? (a) 1 gdy < x < π/2 f(x) = gdy π/2 < x < π Odp. f(x) ( 1) n cos(2n + 1)x. Granice: dla x =, 1 dla x = π. n=1

15 (b) f(x) = x 2, x 2 Odp. x n=1 ( 1) n π 2 n 2 πnx cos 2. Granice: dla x =, 4 dla x = Znaleźć rozwinięcie Fouriera w szereg samych sinusów. Do czego jest zbieżny szereg Fouriera na końcach przedziału i w punktach nieciągłości? (a) f(x) = π 4 x 2. < x < π. n sin 2nx Odp. f(x) ( 1) n= 2n. Granice:. (b) f(x) = x 2, x π Odp. x 2 2 ( π + π ( 1) n+1 2 n=1 n + 2 n 3 (( 1)n 1) ) sin nx. Granice: oraz π 2.

16 4 Rachunek wariacyjny Problem 4.1 Znaleźć funkcję x(t) dla której całka b a F (t, x(t), x (t))dt osiąga wartość ekstremalną! (Tutaj a < b są danymi liczbami a F (t, x, x ) daną funkcją.) Przykład 4.2 Dane są liczby a < b oraz A, B. Dla jakiej funkcji x(t) spełniającej x(a) = A, x(b) = B, obrót wykresu wokół osi OT ma minimalną powierzchnię boczną? Dla jakiej funkcji x(t) wartość jest minimalna? b S(x) = 2π x(t) 1 + (x (t)) 2 dt a 4.1 Ekstremum funkcji 1 zmiennej Rozpatrujemy funkcję x(t) klasy C 1. Warunkiem koniecznym aby funkcja x miała ekstremum lokalne w punkcie t jest zerowanie się pochodnej x (t ) = (punkt stacjonarny). Warunkiem dostatecznym jest zmiana znaku drugiej pochodnej. Jednakże w zagadnieniach praktycznych, gdy wiadomo, że ekstremum istnieje a jest tylko jeden punkt stacjonarny t, możemy stwierdzić, że funkcja x(t) ma w punkcie t ekstremum. Można wówczas nie liczyć drugiej pochodnej. 4.2 Ekstremum funkcjonału Koncentrujemy się na przestrzeni funkcji klasy C 1 : C 1 (a, b) = {x : [a, b] R; istnieje ciągła pochodna x (t)} i jej podprzestrzeni C 1 (a, b; A, B) = {x C 1 (a, b; A, B) ; x(a) = A, x(b) = B} W przestrzeni tej określamy odległość między dwoma funkcjami d(x 1, x 2 ) = max{ x 1 (t) x 2 (t), x 1(t) x 2(t) ; a t b} Funkcjonałem nazywamy kązdą funkcję L : C 1 (a, b; A, B) R. Definicja 4.3 Dany jest funkcjonał L : C 1 (a, b; A, B) R. Mówimy, że L osiąga w punkcie x (czyli w funkcji!) maksimum (minimum) lokalne gdy istnieje liczba r > taka, że dla każdego x C 1 (a, b; A, B) różnego od x i spełniającego d(x, x ) r zachodzi L[x] < L[x ] (L[x] > L[x ]).

17 Uwaga 4.4 W powyższej definicji pytamy o lokalne ekstrema w zbiorze C 1 (a, b; A, B) czyli wśród funkcji różniczkowalnych. Wówczas w literaturze ekstrema te nazywa się słabymi. Tę samą definicję można również stosować do funkcjonałów określonych na (większej) przestrzeni funkcji ciągłych C(a, b). Tutaj ekstremum nazywamy silnym. Jeśli w powyższej definicji nierówność zastąpimy poprzez nierówność nieostrą to określimy ekstrema nieostre. 4.3 Warunek konieczny extremum funkcjonału. Równanie Eulera. Przypomnijmy wzór na pochodną funkcji złożonej. Rozpatrujemy funkcje x(t), y(t) oraz F (x, y). Wówczas pochodna funkcji złożonej F (x(t), y(t)) wyraża się wzorem Twierdzenie 4.5 Euler Eulera Dany jest funkcjonał d F (F (x(t), y(t)) = dt x (x(t), y(t)) x (t) + F y (x(t), y(t)) y (t) L[x] = b a F (t, x(t), x (t))dt Jeśli funkcjonał ten osiąga w punkcie x C 1 (a, b; A, B) ekstremum (słabe) to spełnione jest równanie [ ] d F dt x (t, x(t), x (t)) F x (t, x(t), x (t)) = Uwaga 4.6 Równanie Eulera jest warunkiem koniecznym na ekstremum funkcjonału ale nie jest warunkiem wystarczającym. Funkcje w której jest ono spełnione nazywamy ekstremalą funkcjonału. Jest to odpowiednik punktu stacjonarnego. Oczywiście, podobnie jak w przypadku funkcji jednej zmiennej, funkcjonał może nie mieć esktremum lokalnego. Przykład 4.7 Znaleźć najmniejszą wartość funkcjonału na przestrzeni funkcji C 1 [, 1;, 1]. A zatem F (t, x, x ) = l[x] = (x (t)) 2 dt 1 + (x (t)) 2. Obliczamy pochodne cząstkowe i wstawiamy do wzoru Eulera. F x = x 1 + (x (t)) ; F 2 x =

18 A stąd równanie Eulera przyjmuje postać d x dt 1 + (x (t)) = 2 x A to oznacza, że wyrażenie jest stałe: x 1+(x (t)) 1+(x = C. Po przekształceniu 2 (t)) x = C 2 1 C 2, a więc x (t) jest stałe, a więc x(t) = at+b. Wstawiając warunki brzegowe x() =, x(1) = 1 uzyskujemy x(t) = t. A zatem funkcja x(t) = t jest jedyną ekstremalą funkcjonału. Na razie nie wiemy czy jest tutaj rzeczywiście minimum lokalne. Ale zauważmy że nasz funkcjonał podaje długość wykresu funcji x(t). Teraz jest oczywiste, że długość tę realizuje odcinek, czyli nasza ekstremala. W konkretnych sytuacjach wzór Eulera może przyjąć prostszą postać. Uwaga 4.8 Gdy funkcja F (t, x, x ) nie zależy od t tzn.. Wówczas wzór Eulera przyjmuje postać L[x] = b a F (x(t), x (t))dt d dt [F x F x ] = czyli F x F x = constans Uwaga 4.9 Gdy funkcja F (t, x, x ) nie zależy od x tzn. L[x] = b a F (t, x (t))dt. Wówczas wzór Eulera przyjmuje postać czyli d dt F x = F x = constans Uwaga 4.1 Gdy funkcja F (t, x, x ) nie zależy od x tzn. L[x] = b a F (t, x(t))dt. Wówczas wzór Eulera przyjmuje postać czyli d dt F x = F x = constans

19 4.4 Rachunek wariacyjny. Zadania Znaleźć ekstremale podanych funkcjonałów odpowiadające danym warunkom brzegowym 1. L[x] = 2 1 (t 2 (x ) 2 + x)dt ; x(1) = x(2) = 1. Odp. x(t) = 1/2 ln t + (ln 2)/t ln 2 2. L[x] = π/2 Odp. x(t) = sin t 3. L[x] = 1 ((x ) 2 x 2 )dt, x() =, x(π/2) = 1. (tx + x 2 2x 2 x )dt x() =, x(1) = a Odp x(t) = t/2 dla a = 1/2. Dla a 1/2 brak ekstremali. 4. L[x] = 1 (x x) 2 dt x() =, x(1) = 2 Odp. x(t) = 2 ex e x e 1 e 5. L[x] = π/2 Odp. x(t) = sint + t 6. L[x] = π/2 ((x ) 2 + 2xt x 2 )dt x() =, x(π/2) = 1 + π/2 ((x ) 2 + 2x sint x 2 )dt x() =, x(π/2) = π/2 Odp. x(t) = 3π/4 πsint (1/2) t cos t

20 5 Równania rózniczkowe cząstkowe. Sprowadzanie do postaci kanonicznej. 5.1 Sprowadzanie formy kwadratowej do postaci kanonicznej Niech f(x, y) = Ax 2 + Bxy + Cy 2 oznacza formę kwadratową. Załózmy, że choć jedna z liczb A, B, C nie jest zerem. Niech = B 2 4AC. Lemat 5.1 Istnieje liniowa zamiana zmiennych u = αx + βy v = α x + β y tak, że w nowych współrzędnych forma przyjmuje postać: u 2 v 2 lub u v u 2 ±(u 2 + v 2 ) gdy > (typ hiperboliczny) gdy = (typ paraboliczny) gdy < (typ eliptyczny) Przykład 5.2 Określić typy i sprowadzić do postaci kanonicznej formy: f(x, y) = x 2 4xy 2y 2 g(x, y) = 9x 2 6xy + 4y 2 h(x, y) = x 2 + 4xy 5y 2

21 5.2 Równania rózniczkowe cząstkowe liniowe rzędu 2 Równaniem różniczkowym cząstkowym (rzędu 2, dwu zmiennych x, y) nazywamy zależność między zmiennymi niezależnymi x, y, funkcją szukaną u(x, y) i jej pochodnymi: u x, u y, u xx, u xy, u yy w postaci równości: F (x, y, u, u x, u y, u xx, u xy, u yy) = W dalszym ciągu omawiać będziemy równania różniczkowe cząstkowe liniowe. Równanie takie ma postać: Au xx + Bu xy + Cu yy + au x + bu y + cu + d = gdzie A, B, C, a, b, c, d są danymi funkcjami, zmiennych x, y o ciągłych pochodnych. Definicja 5.3 W zależności od znaku = B 2 4AC okleślamy typ (hiperboliczny, paraboliczny, eliptyczny) równania. Uwaga 5.4 Znak nie zmienia się przy zmianie wspólrzednych: ξ = f(x, y), η = g(x, y) o niezerowym jakobianie: det ξ x η x ξ y η y

22 Twierdzenie 5.5 Każde równanie rózniczkowe cząstkowe liniowe rzędu 2 rzędu daje się sprowadzić do postaci kanonicznej: u ξξ u ηη + F (u ξ, u η, u, ξ, η) = u ξη + F (u ξ, u η, u, ξ, η) = u ηη + F (u ξ, u η, u, ξ, η) = (typ hiperboliczny) (typ hiperboliczny) (typ paraboliczny) u ξξ + u ηη + F (u ξ, u η, u, ξ, η) = (typ eliptyczny) Jak to uzyskać? Stosujac zamianę zmiennych ξ = f(x, y) η = g(x, y) uzyskujemy równanie gdzie wspólczynniki dane są wzorami A 1 u ξξ + B 1 u ξη + C 1 u ηη + a 1 u ξ + b 1 u η + cu + d = A 1 = A(f x) 2 + Bf x f y + C(f y) 2 B 1 = 2Af x g x + B(f x g y + f y g x) + 2Cf y g y C 1 = A(g x) 2 + Bg x g y + C(g y) 2 a 1 = Af xx + Bf xy + Cf yy + af x + bf y b 1 = Ag xx + Bg xy + Cg yy + ag x + bg y Jak dobrać funkcje ξ = f(x, y), η = g(x, y) aby uzyskać postać kanoniczną (tzn. aby odpowiednie A 1, B 1, C 1 się zerowały)? Definicja 5.6 Charakterystykami równania cząstkowego liniowego nazywamy krzywe całkowe równań różniczkowych zwyczajnych: Ady 2 Bdxdy + Cdx 2 = tzn. równań dy dx = B 2A dy dx = B + 2A Niech f(x, y) = C 1, g(x, y) = C 2 będą całkami pierwszymi tych równań.

23 Typ hiperboliczny: Przyjmujemy ξ = f(x, y), η = g(x, y) lub Typ paraboliczny: ξ = f(x, y) + g(x, y), η = f(x, y) g(x, y) ξ = f(x, y), η = ϕ(x, y) gdzie ϕ jest jakąkolwiek funkcją niezależna od f(x, y) (najczęściej ϕ = x lub ϕ = y). Typ eliptyczny ξ = α(x, y), η = β(x, y) gdzie f(x, y) = α(x, y) + iβ(x, y)

24 5.3 Sprowadzanie równania różniczkowego cząstkowego do postaci kanonicznej. Zadania 1. Wyznaczyć obszary, w których podane równanie rózniczkowe jest typu eliptycznego: u xx 2y u xy (x 2 25) u yy + u x + 5u y + u = 2. Wyznaczyć obszary, w których podane równanie rózniczkowe jest typu hiperbolicznego: u xx + 4x u xy + (3x 2 x y)u yy = 3. Określić typ równania i sprowadzić do postaci kanonicznej (a) u xx + 2u xy 3u yy + 2u x + 6u y = (b) u xx + 4u xy + 5u yy + u x + 2u y = (c) y u xx + u yy = (d) x 2 u xx y 2 u yy = (e) xu xx + yu yy = Odpowiedzi: 1. Wnętrze okręgu x 2 + y 2 < Wnętrze paraboli y > x 2 x 3. a) u ξη + 1/2 u ξ =, ξ = x + y, η = 3x y. b) u ξη + u ηη + u η =, ξ = y 2x, η = x. c) dla y > : u ξξ + u ηη + 1/(3η) u η = dla y < : u ξη 1/(6(ξ η)) (u ξ u η ) = d) u ξη 1/(2ξ) u η, ξ = xy, η = y/x. e) I i III ćwiartka : u ξξ + u ηη (1/ξ) u ξ (1/η) u η = ξ = x 1/2, η = y 1/2, I ćwiartka ξ = ( x) 1/2, η = ( y) 1/2, III ćwiartka II i IV ćwiartka : u ξξ u ηη (1/ξ) u ξ (1/η) u η = ξ = ( x) 1/2, η = y 1/2, ξ = x 1/2, η = ( y) 1/2, II ćwiartka IV ćwiartka

25 5.4 Przykłady równań różniczkowych cząstkowych Równanie drgań struny Równanie drgań membrany u xx 1 a 2 u tt = f(x, t) u xx + u yy 1 a 2 u tt = f(x, t) Równanie przewodnictwa cieplnego na prostej (równanie dyfuzji) u xx 1 a 2 u t = f(x, t) tutaj f(x, t) oznacza zewnętrzne źródła ciepła. u xx + u yy 1 a 2 u t = f(x, t) Oznaczając u = u xx + u yy (laplasjan) można to też zapisać u 1 a 2 u t = Równanie Laplace a u = u xx + u yy = (laplasjan =). 6 Równanie struny 6.1 Struna nieograniczona Uwaga 6.1 Zbiór rozwiązań równania różniczkowego liniowego jednorodnego a(x, t)u xx(u, t) + + z(x, t)u(x, t) = jest przestrzenią liniową. Tzn jeśli u(x, t), v(x, t) są rozwiązaniami to każda ich kombinacja liniowa α u(x, t) + β v(x, t) (gdzie α, β R) są rozwiązaniami tego równania. Rozpatrujemy strunę obustronnie nieskończoną. Rozpatrujemy równanie u xx 1 a 2 u tt = f(x, t) i szukamy rozwiązań u(x, t) określonych dla (x, t) R [, ). Jeśli f(x) to równanie nazywamy jednorodnym. Równanie charakterystyk (dt) 2 1 a 2 (dx)2 =

26 daje (dt 1 a dx)(dt + 1 a dx) = dx = +a dt ; dx = a dt x = at + C 1 ; x = at + C 2 a stąd nowe zmienne W nowych zmiennych uzyskujemy ξ = x at ; η = x + at u ξη = skąd u(ξ, η) = g(ξ) + h(η) gdzie g, h są dowolnymi funkcjami. Wracając do statych zmiennych u(x, t) = g(x at) + h(x + at) Są to dwie fale poruszające w przeciwnych kierunkach z prędkością a. Przypuśćmy, że rozwiązanie u(x, t) spełnia warunki początkowe u(x, ) = f(x), u t (x, ) = ϕ(x) (dla dowolnie zadanych funkcji f(x) oraz ϕ(x)). Wówczas a więc g(x) + h(x) = f(x) a g (x) + a h (x) = ϕ(x) g(x) + h(x) = f(x) g(x) + h(x) = 1 a x g(x) = 1 [ f(x) 1 x 2 a h(x) = 1 [ f(x) + 1 x 2 a ϕ(z)dz ] ϕ(z)dz ] ϕ(z)dz u(x, t) = g(x at) + h(x + at) = 1 [ f(x at) 1 x ] ϕ(z)dz + 1 [ f(x + at) a 2 a = 1 [ x+at ] f(x at) + f(x + at) ϕ(z)dz 2 x at Przykład 6.2 Gdy f(x) = 1 1+x 2, ϕ(x) =. Wówczas x u(x, t) = 1 [ ] (x at) (x + at) 2 ] ϕ(z)dz

27 7 Struna ograniczona 7.1 Przypadek specjalny u t(x, ) =. Rozpatrujemy strunę na odcinku [, l] z zamocowanymi końcami, tzn. równanie różniczkowe u xx 1 a 2 u tt = z warunkami brzegowymi u(, t) = u(l, t) =. Przypuśćmy, że struna w chwili t = spełnia warunki początkowe u(x, ) = f(x), u x(x, ) =. Latwo jest sprawdzić (!), że jeśli warunek początkowy f(x) = sin(πx/l) to rozwiązaniem równania jest u(x, t) = sin(πx/l) cos(aπt/l) Podobnie dla f k (x) = sin(kπx/l) rozwiązaniem równania jest u k (x, t) = sin(kπx/l) cos(kaπt/l). Jeśli f(x) jest dowolnym warunkiem początkowym to 1. Rozkładamy funkcję f(x) w szereg Fouriera sinusów f(x) = a k sin(kπx/l). 2. A wówczas suma a k u k (x, t) = a k sin(kπx/l) cos(kaπt/l) k= k= jest rozwiązaniem spełnijącym warunek początkowy u(x, ) = f(x). k= 7.2 Rozdzielanie zmiennych Dane jest równanie różniczkowe cząstkowe o niewiadomej funkcji u(x, t). Szukamy rozwiązania w postaci iloczynu u(x, t) = X(x) T (t). Metoda ta pozwala na zamianę równania cząstkowego na równania rózniczkowe zwyczajne. Przykład 7.1 Równanie struny ograniczonej u tt = 1 a 2 u xx na odcinku x L. Warunki brzegowe jednorodne u(, t) =, u(l, t) = (końce struny są nieruchome).. d 2 dt (X(x) T (t)) = 1 2 a d 2 (X(x) T (t)) 2 dx2 X T = 1 a 2 X T T T = 1 a X 2 X Zauważmy, że lewa strona zależy tylko od zmiennej t a prawa tylko od x. A zatem wyrażenie to jest stałe T T = 1 a 2 X X = λ

28 gdzie λ R. A stąd dwa równania różniczkowe zwyczajne T + λ T = ; X + a 2 λ X = Ponadto z waruków brzegowych mamy: u(, t) co daje X() T (t). Ponieważ szukamy rozwiązania niezerowego więc X() =. Podobnie u(l, t) daje X(L) =. A zatem uzyskaliśmy układ równań zwyczajnych T (t) + λ T (t) = ; X (x) + a 2 λ X(x) = z warukami brzegowymi X() =, X(L) =.

29 7.3 Równanie struny.zadania 1. Znaleźć rozwiązania równania struny nieograniczonej spełniające warunek początkowy 1 x gdy x 1 (a) u(x, ) = poza tym u xx y tt = ; u t(x, ) = Podać wykres rozwiązania w chwilach t = ; 1/2; 1; 2 [Odp. u(x, t) = 1/2 [F (x t) + f(x + t)] gdzie F (x) oznacza warunek początkowy] (b) u(x, ) =, u t(x, ) = cos 2 x [ Odp. u(x, t) = 1/4 (2t sin 2x sin 2t)] 2. Znaleźć rozwiązania równania struny ograniczonej x 1 u xx (1/4) y tt = spełniające warunek brzegowy u(, t) = u(1, t) = oraz warunek początkowy u(x, ) = sin 2πx, u t (x, ) =. 3. Znaleźć rozwiązania równania struny ograniczonej x π [ Odp. u(x, t) = sin 2πx cos πt] u xx (1/4) y tt = spełniające warunek brzegowy u(, t) = u(π, t) = oraz warunek początkowy x/π gdy x π/2 u(x, ) = ; u t(x, ) = 1 x/π gdy π/2 x 1 4. Znaleźć rozwiązania równania struny ograniczonej x 1 [ Odp. u(x, t) = 1/π 2 [ sin x cos t sin 3x cos 3t sin 5x cos 5t +... ] u xx (1/a 2 ) y tt = spełniające warunek brzegowy u(, t) = u(π, t) = oraz warunek początkowy u(x, ) = x(1 x) ; u t(x, ) = [ Odp. u(x, t) = 4/π 3 [ sin πx cos aπt sin 3πx cos 3aπt sin 5πx cos 5aπt ]

30 7.4 Zagadnienie Sturma-Liouville a Rozpatrujemy równanie różniczkowe (zwyczajne) ẍ = λx. Twierdzenie 7.2 Jeśli równanie ẍ = λx posiada niezerowe rozwiązanie spełniające warunek brzegowy x() = x(l) = to λ jest liczbą postaci λ k = (kπ/l) 2 dla k Z. Wówczas rozwiązaniem spełniającymi podany warunek brzegowy jest funkcja x k (t) = sin(kπt/l) a także każda jej krotność C x k (t) dla C R. Dowód. Najpierw pokażemy, że jesłi takie rozwiązanie istnieje to λ <. Rozpatrzmy równanie charakterystyczne r 2 λ =. Jeśli λ > to = 4λ > a więc mamy dwa pierwiastki rzeczywiste r = ± λ a stąd rozwiązanie ogólne x(t) = C 1 e λt + C 2 e λt Pierwszy warunek początkowy daje = x() = C 1 + C 2 skąd C 2 = C 1 a więc x(t) = C 1 (e λt e λt ). Jednakże teraz nie jest spełniony drugi warunek początkowy bo x(l) = C 1 (e λl e λl ). Jeśli λ = to ẍ = ma rozwiązanie ogólne x(t) = at + b. Jednakże tylko dla a = b = mamy x() = x(l) =. Niech zatem λ = ω 2 <. Wówczas pierwiatkami równania charaterystycznego są t = ±ωi, a stąd rozwiązanie ogólne x(t) = a cos(ωt) + b sin(ωt) Z warunku brzegowego x() = uzyskujemy a cos(ω) + b sin(ω) = czyli a =. Tak więc x(t) = b sin(ωt). Teraz warunek brzegowy x(l) = daje b sin(ωl) =. A zatem jeśli b to sin(ωl) = czyli ωl = kπ dla k Z. A zatem dla ω k = kπ/l mamy λ k = ωk 2 = (kπ/l) 2 oraz x k (t) = sin(kπt/l). Przykład 7.3 Równanie ciepła u t = k u xx na odcinku x L. Warunki brzegowe jednorodne u(, t) =, u(l, t) = (końce utrzymywane są w stałej temperaturze T =. d dt (X(x) T (t)) = k d 2 (X(x) T (t)) dx2 X T = k X T 1 k T T = X X Zauważmy, że lewa strona zależy tylko od zmiennej t a prawa tylko od x. A zatem wyrażenie to jest stałe 1 k T T = X X = λ

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

TRANSFORMATA FOURIERA

TRANSFORMATA FOURIERA TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda

czastkowych Państwo przyk ladowe zadania z rozwiazaniami:   karpinw adres strony www, na której znajda Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Równania różniczkowe zwyczajne analityczne metody rozwiazywania

Równania różniczkowe zwyczajne analityczne metody rozwiazywania Równania różniczkowe zwyczajne analityczne meto rozwiazywania Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Plan Określenia podstawowe 1 Wstęp Określenia podstawowe

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z 1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

Całka nieoznaczona, podstawowe wiadomości

Całka nieoznaczona, podstawowe wiadomości Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo