Rachunek różniczkowy i całkowy 2016/17

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rachunek różniczkowy i całkowy 2016/17"

Transkrypt

1 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) = (A\B) (A C), A\(B C) = (A\B)\C. Zadanie O.2 Sprawdzić, czy następujące zdania są tautologiami: [(p q) p] q, (p q) [p (q r)], (p q) [(p r) q]. Zadanie O.3 Dowieść indukcyjnie, że n i= n 3 = n2 (n + ) 2, 4 i(i + )(i + 2) = [ 2 2 ]. (n + )(n + 2) n i= (2i )(2i + ) = n 2n +. Zadanie D. Czy dla wszelkich zbiorów A, B i C zachodzi następująca równość: A (B\C) = [(A B)\C] (A C).

2 Zadanie D.2 Sprawdzić, czy następujące zdanie jest tautologią: p ( p q). Zadanie D.3 Jakie musi być k, żeby dla wszystkich n spełniony był wzór n(n ) 2 + (n + )n 2 = n(n + )(n + 2)(3n + k). 2 2

3 Tydzień Zadanie O2. Rozwiązać równanie (najlepiej, nie rozwiązując go) arctg x(x + ) + arcsin x 2 + x + = π 2. Wbrew pozorom jest to prosty problem, jeśli zaczniemy od wyznaczenia dziedziny. Zadanie O2.2 Funkcja tangens hiperboliczny zdefiniowana jest wzorem tghx = ex e x e x + e x. Znaleźć funkcję odwrotną tgh x i określić jej dziedzinę. Zadanie O2.3 Korzystając z równości x = x 2 oraz ze związków trygonometrycznych: a) Wyrazić sin x przez ctgx. b) Rozwiązać równanie sin x = sin(2x). c) Wykazać, że cos(2 arcsin x) = 2x 2, i określić zbiór wartości x, dla których powyższa równość zachodzi. Zadanie D2. Pokazać, że funkcje f(x) = x 2 x + i ϕ(x) = 2 + x 3 4 są funkcjami wzajemnie do siebie odwrotnymi, tj. że zachodzą równości f ( ϕ(x) ) ( = x i ϕ f(x) ) = x. Sprawdzić dziedziny! Wykorzystując ten fakt znaleźć rozwiązania równania x 2 x + = 2 + x 3 4, najlepiej nie rozwiązując go, ale zastępując go prostszym! 3

4 Zadanie D2.2 Niech x 2 2, dla x <, f(x) =, dla x =, ctgh(x), dla x >. Znaleźć f (x) i określić dziedzinę i zbiór wartości dla f(x) oraz f (x). Naszkicować wykresy tych funkcji. Zadanie D2.3 Rozwiązać równania x+ = 5 x, 9 x x 3 =. Posłużyć się logarytmem o podstawie e. 4

5 Tydzień Zadanie O3. Wyznaczyć granice ciągów: a n = (2 n + π n + 3 n+ ) /n, b n = 2 n sin(n 2 π). Zadanie O3.2 Wykazać, że jest granicą ciągów: a n = n5n 2 n 3 n+, b n = n exp ( n ln n 3 ) Zadanie O3.3 Wyznaczyć granice ciągów: a n = ( + n) 2n, bn = ( + ) n 2 +cos(n) n 2 Zadanie O3.4 Wyznaczyć granicę ciągu (podobnie jak na wykładzie): n + 7 n + a n =. n + 5 n + 9 Zadanie D3. Wyznaczyć granice ciągów: a n = (e n + 2 n+ ) /n, b n = ( n ) 2n+. n + 3 Zadanie D3.2 Wyznaczyć granice ciągów: b n = ( n + 4 n + ) n, c n = n[ln(n) ln(n + 2)] 5

6 Tydzień Zadanie O4. Funkcje f(x) = ( + x)n, f(x) = cos3 (πx) x x 2 są nieokreślone dla x =. Określić f() tak, aby funkcje te były ciągłe dla x =. Zadanie O4.2 Funkcję f(x) określono równaniami cos x 4x 2 π 2 dla x R { π/2, π/2} f(x) = a dla x = π/2 b dla x = π/2 Dla jakich liczb a i b jest to funkcja ciągła na całej osi rzeczywistej. Zadanie O4.3 Określić asymptoty następujących funkcji: y = 5x x 3, y = 3x x + 3x. Zadanie O4.4 Wyznaczyć granice funkcji: a) lim 9+5x+4x 2 3, b) lim x x x 3 x 2 x+ x x 3 3x+2, c) lim x ( x 3 3x 2 4 ) x2. 3x+3 Zadanie D4. Funkcje f(x) = xctgx, f(x) = x 2 sin x są nieokreślone dla x =. Określić f() tak, aby funkcje te były ciągłe dla x =. Zadanie D4.2 Funkcję g(x) określono równaniami { cos(πx) dla x R {} x g(x) = 2 c dla x = Dla jakiej liczby c jest to funkcja ciągła na całej osi rzeczywistej. 6

7 Zadanie D4.3 Określić asymptoty następujących funkcji: y = x x 2 +, y = + x 2 + 2x. Zadanie D4.4 Wyznaczyć granice funkcji: 4x a) lim 5 +9x+7, x 3x 6 +x 3 + x b) lim n x x m dla n, m N. 7

8 Tydzień 5 i Zadanie O5. Korzystając z reguł de L Hospital a, wyznaczyć granicę tgx sin x lim. x x 3 Aby ograniczyć ilość liczonych pochodnych, warto jest to wyrażenie trochę przekształcić. Zadanie O5.2 Przez zbadanie funkcji rozumie się na ogół wykonanie następujących czynności: Określenie dziedziny. Sprawdzenie, czy funkcja jest parzysta, nieparzysta lub okresowa. Sprawdzenie ciągłości funkcji i ewentualnie wyznaczenie punktów nieciągłości. Wyznaczenie asymptot wykresu tej funkcji. Wyznaczenie punktów ekstremalnych. Wyznaczenie punktów przegięcia. Naszkicowanie wykresu. Zbadać funkcję f(x) = x 4 ( + x) 3. Zadanie O5.3 Wyznaczyć punkty, w których styczne do sinusoidy y = sin x są równoległe do prostej y = 3 2 x. Zadanie O5.4 Krzywa, po której porusza się punkt materialny zadana jest parametrycznie równaniami x = a cos t i y = b sin t. Wykazać, że krzywa jest elipsą o równaniu x 2 a 2 + y2 b 2 =. Wyznaczyć pochodną dy/ jako funkcję parametru t. 8

9 Zadanie D5. Korzystając z reguł de L Hospital a, wyznaczyć granicę ( lim 2 x tg(πx/(2a)). x a a) Przyjąć, że jest to granica lewostronna, tj. x < a. Zauważmy, że pojawia się tu nieoznaczoność typu. Zadanie D5.2 Zbadać funkcję f(x) = x3 x 2. Zadanie D5.3 Wyznaczyć punkty, w których proste prostopadłe do kosinusoidy y = cos x są równoległe do prostej y = 2 3 x. Zadanie D5.4 Krzywa, po której porusza się punkt materialny zadana jest parametrycznie równaniami x = a cosh t i y = b sinh t. Wykazać, że krzywa jest hiperbolą o równaniu x 2 a 2 y2 b 2 =. Wyznaczyć pochodną dy/ jako funkcję parametru t. 9

10 Tydzień Zadanie O7. Bez zbytniego wysiłku wyznaczyć (n )-są i n-tą pochodną (tj. f (n ) (x) i f (n) (x)) funkcji określonej dla x. f(x) = xn+ x, Zadanie O7.2 Wyznaczyć pochodną funkcji uwikłanej x + y x + y =. 2 Zadanie O7.3 Wyznaczyć rozwinięcie Taylora z dokładnością do x 8 funkcji f(x) = sin 2 x. Zadanie O7.4 Korzystając z rozwinięcia Taylora przedstawić wielomian P (x) = x 5 2x 4 + x 3 x 2 + 2x jako wielomian w potęgach x. Zadanie D7. Zadane są dwie parabole y = x i y 2 = x Znaleźć równanie stycznej do paraboli y = x w punkcie (, ). 2. Istnieją dwie proste, które będą styczne do obu parabol równocześnie. Podać ich równania. Zadanie D7.2 Wyznaczyć pochodną funkcji uwikłanej x 3 + xy + y 3 =. Zadanie D7.3 Wyznaczyć rozwinięcie Taylora z dokładnością do x 6 funkcji f(x) = tgx. Zadanie D7.4 Korzystając z rozwinięcia Taylora funkcji ( + x) α, wyznaczyć granicę 3 + 3x + 2x lim. x x 2

11 Tydzień Zadanie O8. Wyznaczyć całki nieoznaczone e x (x 3 2x 2 + x 2), cos x + sin x. Zadanie O8.2 Obliczyć całki nieoznaczone e x sin x, e x cos x. Wykonać dwa razy całkowanie przez części. Zadanie O8.3 Rozłożyć funkcje podcałkowe na ułamki proste i wyznaczyć całki x (x + )(x + 2)(x + 3), x 2 + x 3 2x 2 + 5x. Zadanie D8. Obliczyć całki nieoznaczone e 2x coshx, e 2x sinhx. Zadanie D8.2 Obliczyć całki nieoznaczone e x cos(5x), Wykonać dwa razy całkowanie przez części. e 2x sin(3x + 2). Zadanie D8.3 Rozłożyć funkcje podcałkowe na ułamki proste i wyznaczyć całki x(x 2 + 2), x 4 a. 4

12 Tydzień Zadanie O9. Wiadomo z tabelki, że = ln(x + + x 2 ) + C = ln( x + + x 2 ) + C. + x 2 Wyprowadzić ten wynik stosując podstawienie Eulera + x 2 = u + x. Zadanie O9.2 Rozbić na ułamki proste funkcję x x 2 2x 3, a następnie wyznaczyć jej funkcję pierwotną. Zadanie O9.3 Obliczyć całkę x 2 e x sin(5x). Zadanie O9.4 Korzystając z podstawienia Eulera obliczyć całkę x + x 2 + x + Zadanie D9. Wiadomo z tabelki, że = ln(x + + x 2 ) + C = ln( x + + x 2 ) + C. + x 2 Wyprowadzić ten wynik stosując podstawienie Eulera + x 2 = + vx. Zadanie D9.2 Rozbić na ułamki proste funkcję x 2 (x )(x 2 + ), a następnie wyznaczyć jej funkcję pierwotną. Zadanie D9.3 Obliczyć całki xe 2x cos(2x), sin 2 x cos x, sin3 x cos x. 2

13 Tydzień Zadanie O. Obliczyć całki: a) c) 4 x2 4, b) x 4 2 x 2 arctgx, d) 5π/4 π/2 sin 2x sin 4 x + cos 4 x, + cos x. Zadanie O.2 Wyznaczyć pole figur ograniczonych krzywymi: a) y = x2 4, y = 8 x 2 + 4, b) y = 2x x 2, x + y =. Zadanie O.3 Obliczyć długość krzywych: a) 9y 2 = 4x 3, x 3, b) lini łańcuchowej y = acosh x, a x a, a c) x = t 2, y = t t 3 /3, t 3. Zadanie D. Wykazać, że dla bardzo dużych x funkcja f(x) określona całką f(x) = x e t2 dt zachowuje się jak f(x) ex2 2x. Zadanie D.2 Obliczyć całkę π/2 π/2 cos 3 x. Zadanie D.3 Obliczyć pole figury leżącej w pierwszej ćwiartce i ograniczonej krzywymi y 2 = 4x, x 2 = 4y i x 2 + y 2 = 5. Zadanie D.4 Obliczyć długość krzywej logarytmicznej y = lnx w przedziale 3 x

14 Tydzień Zadanie O. Wykazać, że całka niewłaściwa ln x + x 2 istnieje. Następnie obliczyć tę całkę dzieląc obszar całkowania (, ) na dwa obszary (, ] i [, ), a następnie dokonując zamiany zmiennych t = /x w całce po jednym z tych obszarów. Zadanie O.2 Lemniskata Gerona jest zamkniętą krzywą płaską zadaną równaniem x 4 x 2 + y 2 =. Znaleźć pole powierzchni jednego liścia lemniskaty. Zadanie O.3 Dla jakich wartości parametrów p i q całka niewłaściwa (funkcja beta Eulera) istnieje? B(p, q) = x p ( x) q Zadanie D. Obliczyć całki niewłaściwe: x ( + x 2 ), 2 2 x. Zadanie D.2 Obliczyć całki niewłaściwe: xe x, e x sin x. 4

15 Tydzień Zadanie O2. Stosując kryterium d Alamberta zbadać zbieżność szeregu n= (n!) 2 (2n)!. Zadanie O2.2 Stosując kryterium Cauchy ego zbadać zbieżność szeregu (3arctg(n 2 + )/5) n. n= Zadanie O2.3 Stosując kryterium całkowe zbadać zbieżność szeregu n= 2 n 3 n. Zadanie O2.4 Zbadać zbieżność szeregu naprzemiennego (kryterium Leibnitza) n= ( ) n( 2n + 3n + ) n. Zadanie D2. Stosując kryterium d Alamberta zbadać zbieżność szeregu n= (2n)! (n!) 2 e n. Zadanie D2.2 Stosując kryterium Cauchy ego zbadać zbieżność szeregu n= ( n ) n 2 2 n. n + 5

16 Zadanie D2.3 Stosując kryterium całkowe zbadać zbieżność szeregu ln ( n + ). n n n= Zadanie D2.4 Zbadać zbieżność szeregu naprzemiennego (kryterium Leibnitza) n= ( ) n n n. 6

17 Tydzień Zadanie O3. Znaleźć ogólne rozwiązanie równania różniczkowego pierwszego rzędu o rozdzielonych zmiennych ( + x 2 ) dy y 2 =. Zadanie O3.2 Znaleźć ogólne rozwiązanie równania liniowego, niejednorodnego x dy = x + y, a następnie wyznaczyć stałą całkowania z warunku początkowego y(x = ) = 2. Zadanie O3.3 Rozwiązać równania różniczkowe a) dy = (x + y)2, b) (x + y) dy + x y =. Zadanie D3. Znaleźć ogólne rozwiązanie równania różniczkowego liniowego niejednorodnego pierwszego rzędu dy + 2y + x =. 2 + x 2 Zadanie D3.2 Rozwiązać równanie różniczkowe dy y sin x = tgx2 2. Zadanie D3.3 Znaleźć ogólne rozwiązanie równania (4x 2y + 3) dy = y 2x. 7

18 Tydzień Zadanie O4. Znaleźć ogólne rozwiązanie równania y + 4y = sin(3x). Zadanie O4.2 Znaleźć ogólne rozwiązać równania y + 2y + 5y = x 2 + x +. Zadanie O4.3 Sprawdzić, czy pochodne 2 f x y i 2 f y x są równe dla następujących funkcji a) f(x, y) = x y + y x, b) f(x, y) = (sin x) ln y. Zadanie D4. Znaleźć ogólne rozwiązanie równania y + 3y + 2y = 2x +. Zadanie D4.2 Znaleźć rozwiązanie równania y 4 + y 3 y =. Zadanie D4.3 Wykazać, że funkcja u = ln(e x + e y ) spe lnia równanie u x + u y =. 8

19 Tydzień Zadanie O5. Wykazać, że funkcja f(x, y) = x 2 y 2 x 2 y 2 + (x y) 2 ma granice iterowane lim x lim y f(x, y) i lim y lim y f(x, y), ale nie ma granicy podwójnej w zerze. Zadanie O5.2 Zbadać ekstrema funkcji a) f(x, y) = 2x 2 + 3xy + y 2 2x y 2, b) f(x, y) = x 2 6xy + y 3 + 3x + 6y. Zadanie O5.3 Zamienić kolejność całkowania w całce 2 2x x 2 2 x dy f(x, y). Zadanie O5.4 Wykazać, że x 2 +y 2 <a 2 dy x 2 + y 2 = 2 3 πa3. 9

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

PORTFOLIO Próbki tekstu składanego systemem L A TEX

PORTFOLIO Próbki tekstu składanego systemem L A TEX PORTFOLIO Próbki tekstu składanego systemem L A TEX Autor: Spis treści Wstęp. Wprowadzenie...................................... Warunki korzystania z usługi............................ Przykładowe próbki

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

6 Układy równań różniczkowych. Równania wyższych rzędów.

6 Układy równań różniczkowych. Równania wyższych rzędów. Układy równań. Równania wyższych rzędów. 6 1 6 Układy równań różniczkowych. Równania wyższych rzędów. 6.1 Podstawowe pojęcia dla układów równań różniczkowych zwyczajnych Definicja. Układem n równań różniczkowych

Bardziej szczegółowo

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i .

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i . POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i. To książka dla wszystkich maturzystów, zdających nową maturę z matematyki na poziomie podstawowym i rozszerzonym. Jasne

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 3.

PLAN WYNIKOWY (zakres rozszerzony) klasa 3. PLAN WYNIKOWY (zakres rozszerzony) klasa. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina Kurczaba,

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

Kurs matematyki dla chemików

Kurs matematyki dla chemików Kurs matematyki dla chemików nr 136 Joanna Ger Kurs matematyki dla chemików Wydanie piąte poprawione Wydawnictwo Uniwersytetu Śląskiego Katowice 2012 Redaktor serii: Matematyka Tomawsz Dłotko Recenzenci

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą Klasa LO Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą ZBIÓR I PODZBIOR DZIAŁANIA NA ZBIORACH I W ZBIORACH Przykładowe zadania: potrafi określić rodzaj liczby (N, C, W, NW, R) ) Ze zbioru

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami.

1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami. Polecam korzystanie również z poniższych podręczników. 1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami. 2. Izydor Dziubiński, Lucjan Siewierski Matematyka dla wyższych

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza matematyczna Lista zadań Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Lista Korzystając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: + ; (b) + ; (c) sin; (d) arcctg;

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 2.

PLAN WYNIKOWY (zakres rozszerzony) klasa 2. PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Teoria liczb. x 3 + 3y 3 + 9z 3 9xyz = 0. x 2 + 3y 2 = 1998x.

Teoria liczb. x 3 + 3y 3 + 9z 3 9xyz = 0. x 2 + 3y 2 = 1998x. Teoria liczb grupa starsza poniedziałek, 27 września 2004 Równania teorioliczbowe.. Rozwiazać w liczbach całkowitych x, y, z. x 3 + 3y 3 + 9z 3 9xyz = 0. 2. Rozwiazać w liczbach całkowitych dodatnich x,

Bardziej szczegółowo

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1

Bardziej szczegółowo

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi: PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki, wydawnictwo Nowa Era)

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Zbiór zadań z matematyki zakres rozszerzony

Zbiór zadań z matematyki zakres rozszerzony Autorzy: R. Kusztelak J. Stańdo K. Szumigaj Zbiór zadań z matematyki zakres rozszerzony Recenzenci: T. Ratusiński J. Guncaga Książka przygotowana w ramach projektu E-matura, współfinansowanego przez Unię

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń:

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń: 1. Funkcja liniowa Tematyka: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej. Własności funkcji liniowej Znaczenie współczynników we wzorze funkcji liniowej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

Wprowadzenie do programu MATHCAD

Wprowadzenie do programu MATHCAD Wprowadzenie do programu MATHCAD Zaletami programu MathCad, w porównaniu do innych programów służących do obliczeń matematycznych, takich jak Matlab, Mathematica, są proste i intuicyjne zasady pracy z

Bardziej szczegółowo

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy Projekt pt. Wyższe kwalifikacje lepszy start zawodowy realizowany przez Zespół Szkół Ponadgimnazjalnych im. Jana Kochanowskiego w Garbatce-Letnisku w ramach Programu Operacyjnego Kapitał Ludzki Priorytet

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa Wymagania z matematyki, poziom rozszerzony nowa podstawa programowa Nauczyciel matematyki: mgr Izabela Stachowiak Wilk Zbiór liczb rzeczywistych i jego podzbiory odróżnia zdanie logiczne od innych wypowiedzi

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI YMAGANIA EDUACYJNE Z MATEMATYI opisie uwzględniono klasyfikację umiejętności na odpowiednie poziomy wymagań : onieczne ( ) ocena dopuszczająca, odstawowe ( ) ocena dostateczna, ozszerzone ( ) ocena dobra,

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

XXXVII KORESPONDENCYJNY KURS Z MATEMATYKI

XXXVII KORESPONDENCYJNY KURS Z MATEMATYKI XXXVII KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1- poziom podstawowy październik 007r. 1. Pan Kowalski wpłacił pewną sumę na lokatę oprocentowaną w wysokości 8% w skali roku, przy czym odsetki

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy i rozszerzony do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu

Bardziej szczegółowo

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1.

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Prace klasowe

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

Konkurs matematyczny im. Samuela Chróścikowskiego

Konkurs matematyczny im. Samuela Chróścikowskiego Konkurs matematyczny im. Samuela Chróścikowskiego Państwowa Wyższa Szkoła Zawodowa w Chełmie 13 marzec 2008 Imię i nazwisko:... Szkoła:... Wyrażam zgodę na przetwarzanie moich danych osobowych w zakresie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni

Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni Drogi Czytelniku W tej książce pragnę nauczyć Cię matematyki. W prosty i przyjazny sposób wytłumaczę Ci teorię i przećwiczymy ją na

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza maemayczna Lisa zadań Opracowanie: dr Marian Gewer, doc. Zbigniew Skoczylas Lisa. Korzysając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: d) + ; b) arccg; e) +) ; c) 4+3

Bardziej szczegółowo

Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III

Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III 249 - Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_249 Zmień rolę na... Włącz tryb edycji Osoby

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

XXXVI KORESPONDENCYJNY KURS Z MATEMATYKI

XXXVI KORESPONDENCYJNY KURS Z MATEMATYKI XXXVI KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 - poziom podstawowy październik 2006r. 1. Różnica pewnej liczby trzycyfrowej i liczby otrzymanej za pomocą tych samych cyfr zapisanych w odwrotnej

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

1. Co to jest GeoGebra? Ekstremum.

1. Co to jest GeoGebra? Ekstremum. Pomoc, GeoGebra 3.0 Autorzy Markus Hohenwarter, markus@geogebra.org Judith Preiner, judith@geogebra.org GeoGebra Online Strona: www.geogebra.org Pomocy szukaj: http://www.geogebra.org/help/search.html

Bardziej szczegółowo

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego MATEMATYKA Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego Internetowy kurs dla kandydatów na Politechnikę Łódzką Repetytorium dla studentów I roku Politechniki Łódzkiej Skrypt niniejszy zawiera wiadomości

Bardziej szczegółowo

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące Informator o egzaminie eksternistycznym od 007 roku MATEMATYKA Liceum ogólnokształcące Warszawa 007 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi w

Bardziej szczegółowo