Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równania różniczkowe liniowe wyższych rzędów o stałych współcz"

Transkrypt

1 Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016

2 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym n-tego rzędu o stałych współczynnikach nazywamy równanie a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), (1) gdzie a n 0. Jeśli q(x) 0, to równanie a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = 0 (2) nazywamy jednorodnym, w przeciwnym przypadku równanie nazywamy niejednorodnym. Zagadnieniem Cauchy ego dla równania (1) nazywamy problem wyznaczenia takiego rozwiązania y(x), które spełnia warunki początkowe y (x 0 ) = y (1) 0, y (x 0 ) = y (2) 0,..., y (n 1) (x 0 ) = y (n) 0.

3 Sprowadzenie do układu równań Stosując podstawienie u 1 = y, u 2 = y, u 3 = y,..., u n = y (n 1) równanie n-tego rzędu sprowadzamy do układu równań liniowych pierwszego rzędu u 1 = u 2, u 2 = u 3,. u n = 1 a n ( a n 1 u n a 1 u 2 a 0 u 1 + q(x)).

4 Sprowadzenie do układu równań cd Macierz tego układu ma postać A = , a n a 0 1 a n a 1 1 a n a a n a n 1 a jej wielomian charakterystyczny jest równy det (A λi) = ( 1) n ( λ n + 1 a n a n 1 λ n a n a 1 λ + 1 a n a 0 ).

5 Sprowadzenie do układu równań cd Zauważmy, że ) (λ n + 1 a an n 1 λ n a an 1 λ + 1 a an 0 = 0 Definicja Równanie a n λ n + a n 1 λ n a 1 λ + a 0 = 0. a n λ n + a n 1 λ n a 1 λ + a 0 = 0 nazywamy równaniem charakterystycznym równania różniczkowego (1). Równanie charakterystyczne otrzymujemy z równania różniczkowego (1) podstawiając λ k za y (k).

6 Sprowadzenie do układu równań cd Zauważmy, że ) (λ n + 1 a an n 1 λ n a an 1 λ + 1 a an 0 = 0 Definicja Równanie a n λ n + a n 1 λ n a 1 λ + a 0 = 0. a n λ n + a n 1 λ n a 1 λ + a 0 = 0 nazywamy równaniem charakterystycznym równania różniczkowego (1). Równanie charakterystyczne otrzymujemy z równania różniczkowego (1) podstawiając λ k za y (k).

7 Równanie jednorodne postać rozwiązania Twierdzenie Niech a n λ n + a n 1 λ n a 1 λ + a 0 = 0, gdzie a n 0, będzie równaniem charakterystycznym równania różniczkowego. Załóżmy, że równanie charakterystyczne ma r pierwiastków rzeczywistych λ j o krotnościach algebraicznych n j (j = 1, 2,..., r) oraz 2s (r + 2s = n) pierwiastków zespolonych λ r+j = α r+j + iβ r+j, λ r+s+j = λ r+j = α r+j iβ r+j o krotnościach algebraicznych n r+s+j = n r+j dla j = 1, 2,..., s.

8 Twierdzenie cd Wprowadzenie Wówczas równanie jednorodne (2) ma rozwiązanie ogólne + y(x) = s e α r+j x j=1 gdzie C (j) m r e λ j x j=1 n r+j 1 m=0 n j 1 m=0 ( C (j) m x m + cos (β r+j x) C (r+j) m x m + sin (β r+j x) C m (r+s+j) x m), dla m = 0, 1,..., n j 1, j = 1, 2,..., r, C (r+j) m, C (r+s+j) dla m = 0, 1,..., n r+j 1, j = 1, 2,..., s, są dowolnymi stałymi rzeczywistymi. m

9 Równanie jednorodne postać rozwiązania cd Z twierdzenia 3 wynika, że rozwiązanie ogólne równania jednorodnego n-tego rzędu można zapisać w postaci y(x) = n C j y j (x), j=1 gdzie C j R, zaś liniowo niezależne funkcje y j (x) są rozwiązaniami szczególnymi tego równania (j = 1, 2,..., n). Definicja Układ n liniowo niezależnych funkcji y j (x) (j = 1, 2,..., n) będących rozwiązaniami równania jednorodnego (2) nazywamy fundamentalnym układem rozwiązań równania (2).

10 Równanie jednorodne postać rozwiązania cd Z twierdzenia 3 wynika, że rozwiązanie ogólne równania jednorodnego n-tego rzędu można zapisać w postaci y(x) = n C j y j (x), j=1 gdzie C j R, zaś liniowo niezależne funkcje y j (x) są rozwiązaniami szczególnymi tego równania (j = 1, 2,..., n). Definicja Układ n liniowo niezależnych funkcji y j (x) (j = 1, 2,..., n) będących rozwiązaniami równania jednorodnego (2) nazywamy fundamentalnym układem rozwiązań równania (2).

11 Równanie jednorodne drugiego rzędu W rozważanym przypadku równanie różniczkowe jednorodne o stałych współczynnikach ma postać ay + by + cy = 0, (3) gdzie a 0, a jego równanie charakterystyczne postać aλ 2 + bλ + c = 0. (4)

12 Równanie jednorodne drugiego rzędu cd 1 Jeśli równanie charakterystyczne ma dwa różne pierwiastki rzeczywiste λ 1, λ 2, to równanie różniczkowe ma rozwiązanie ogólne y(x) = C 1 e λ 1x + C 2 e λ 2x. 2 Jeśli równanie charakterystyczne ma jeden pierwiastek podwójny λ = λ 1 = λ 2, to równanie różniczkowe ma rozwiązanie ogólne y(x) = e λx (C 1 + C 2 x). 3 Jeśli równanie charakterystyczne ma dwa różne pierwiastki zespolone λ 1 = α + iβ, λ 2 = α iβ, to równanie różniczkowe ma rozwiązanie ogólne y(x) = e αx (C 1 cos (βx) + C 2 sin (βx)).

13 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego 3y + 5y 2y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y 6y + 13y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 2.

14 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego 3y + 5y 2y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y 6y + 13y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 2.

15 Równanie jednorodne trzeciego rzędu Rozpatrujemy równanie ay + by + cy + dy = 0, (5) gdzie a 0, którego równanie charakterystyczne jest postaci aλ 3 + bλ 2 + cλ + d = 0. (6) Równanie (6) ma jeden pierwiastek rzeczywisty λ o krotności algebraicznej 3. Wówczas równanie (5) ma rozwiązanie ogólne y(x) = e λx ( C 1 + C 2 x + C 3 x 2).

16 Równanie jednorodne trzeciego rzędu Rozpatrujemy równanie ay + by + cy + dy = 0, (5) gdzie a 0, którego równanie charakterystyczne jest postaci aλ 3 + bλ 2 + cλ + d = 0. (6) Równanie (6) ma jeden pierwiastek rzeczywisty λ o krotności algebraicznej 3. Wówczas równanie (5) ma rozwiązanie ogólne y(x) = e λx ( C 1 + C 2 x + C 3 x 2).

17 Równanie jednorodne trzeciego rzędu cd Równanie (6) ma pierwiastek rzeczywisty λ 1 o krotności algebraicznej n 1 = 1 i pierwiastek rzeczywisty λ 2 o krotności algebraicznej n 2 = 2. W tym przypadku równanie (5) ma rozwiązanie ogólne y(x) = C 1 e λ 1x + e λ 2x (C 2 + C 3 x). Równanie (6) ma trzy różne pierwiastki rzeczywiste λ 1, λ 2, λ 3. Równanie różniczkowe (5) ma wówczas rozwiązanie ogólne y(x) = C 1 e λ 1x + C 2 e λ 2x + C 3 e λ 3x. Równanie (6) ma jeden pierwiastek rzeczywisty λ i dwa sprzężone pierwiastki zespolone µ = α + iβ, µ = α iβ. Równanie różniczkowe (5) ma w tym przypadku rozwiązanie ogólne postaci y(x) = C 1 e λx + e αx (C 2 cos (βx) + C 3 sin (βx)).

18 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego y 3y 2y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y + y 4y + 6y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 0, y (0) = 1.

19 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego y 3y 2y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y + y 4y + 6y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 0, y (0) = 1.

20 Równanie niejednorodne a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie q(x) 0, rozwiązujemy metodą uzmienniania stałych, a w szczególnych przypadkach metodą przewidywania.

21 Stosując podstawienie u 1 = y, u 2 = y, u 3 = y,..., u n = y (n 1) sprowadziliśmy równanie n-tego rzędu do układu równań liniowych [ T u = Au + q(x), gdzie q(x) = q(x)]. Rozwiązanie ogólne układu jednorodnego możemy zapisać w postaci u(x) = n C j y j (x), j=1 czyli w postaci u 1 (x) y 11 (x) y 12 (x) y 1n (x) u 2 (x). = C y 21 (x) 1. + C y 22 (x) C y 2n (x) n.. u n (x) y n1 (x) y n2 (x) y nn (x)

22 cd Przy rozwiązywaniu równania niejednorodnego n-tego rzędu metodą uzmienniania stałych C 1, C 2,..., C n, układ równań względem pochodnych stałych ma postać C 1 (x)y 1(x) + C 2 (x)y 2(x) + + C n(x)y n (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + + C n(x)y n(x) = 0,. C 1 (n 1) (x)y 1 (x) + C 2 (n 1) (x)y 2 (x) + + C n(x)y n (n 1) (x) = q(x) a n, (7)

23 Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.

24 Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.

25 Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.

26 Równanie niejednorodne trzeciego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania trzeciego rzędu ay + by + cy + dy = q(x), gdzie a 0, C 1 (x)y 1(x) + C 2 (x)y 2(x) + C 3 (x)y 3(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y 3 (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y q(x) 3 (x) = a. Rozwiążemy równanie y 2y y + 2y = x.

27 Równanie niejednorodne trzeciego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania trzeciego rzędu ay + by + cy + dy = q(x), gdzie a 0, C 1 (x)y 1(x) + C 2 (x)y 2(x) + C 3 (x)y 3(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y 3 (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y q(x) 3 (x) = a. Rozwiążemy równanie y 2y y + 2y = x.

28 postaci rozwiązania szczególnego równania liniowego niejednorodnego n-tego rzędu a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie n > 1, jest uogólnieniem metody przewidywania postaci rozwiązania równania niejednorodnego pierwszego rzędu. Analogicznie jak w przypadku układów równań różniczkowych korzystamy z twierdzenia o postaci rozwiązania ogólnego równania niejednorodnego. Twierdzenie Rozwiązanie ogólne równania niejednorodnego jest sumą rozwiązania ogólnego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego.

29 postaci rozwiązania szczególnego równania liniowego niejednorodnego n-tego rzędu a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie n > 1, jest uogólnieniem metody przewidywania postaci rozwiązania równania niejednorodnego pierwszego rzędu. Analogicznie jak w przypadku układów równań różniczkowych korzystamy z twierdzenia o postaci rozwiązania ogólnego równania niejednorodnego. Twierdzenie Rozwiązanie ogólne równania niejednorodnego jest sumą rozwiązania ogólnego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego.

30 cd Funkcja q(x) jest wielomianem stopnia m. 1 Jeśli 0 nie jest pierwiastkiem wielomianu charakterystycznego, to jednym z rozwiązań szczególnych równania niejednorodnego jest wielomian w m (x) stopnia m. 2 Jeśli 0 jest pierwiastkiem krotności k wielomianu charakterystycznego, to jednym z rozwiązań szczególnych równania niejednorodnego jest wielomian w m+k (x) = x k w m (x) stopnia m + k Oczywiście przyjmując k = 0 otrzymujemy przypadek rozważany w punkcie

31 y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.

32 y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.

33 y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.

34 cd Funkcja q(x) jest kombinacją liniową funkcji sin (ωx) i cos (ωx), gdzie ω R. 1 Jeśli iω nie jest pierwiastkiem wielomianu charakterystycznego, to rozwiązaniem szczególnym jest funkcja postaci a sin (ωx) + b cos (ωx). 2 Jeśli iω jest pierwiastkiem krotności k wielomianu charakterystycznego, rozwiązaniem szczególnym jest funkcja postaci ax k sin (ωx) + bx k cos (ωx).

35 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y = sin x + 2 cos x. Rozwiążemy równanie y + 2y + y = 2 cos x + sin x.

36 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y = sin x + 2 cos x. Rozwiążemy równanie y + 2y + y = 2 cos x + sin x.

37 cd Funkcja q(x) jest postaci αe ωx. 1 Jeśli ω nie jest pierwiastkiem wielomianu charakterystycznego, to jednym z rozwiązań szczególnych jest funkcja g(x) = ae ωx. 2 Jeśli ω jest pierwiastkiem krotności k wielomianu charakterystycznego, to jednym z rozwiązań szczególnych jest funkcja g(x) = ax k e ωx. 2 2 Przyjmując k = 0 otrzymujemy przypadek rozważany w punkcie 1.

38 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y + 3y = 4e 2x. Wyznaczymy rozwiązanie ogólne równania y + 2y 4y 8y = e 2x.

39 y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y + 3y = 4e 2x. Wyznaczymy rozwiązanie ogólne równania y + 2y 4y 8y = e 2x.

40 cd Jeśli funkcja q(x) jest sumą lub iloczynem omówionych powyżej funkcji, to rozwiązania szczególnego poszukujemy również w postaci sumy lub iloczynu odpowiednich funkcji.

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

1 Równanie różniczkowe pierwszego rzędu

1 Równanie różniczkowe pierwszego rzędu 1 Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład 1. Znaleźć krzywą dla której

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

1. Równanie różniczkowe pierwszego rzędu

1. Równanie różniczkowe pierwszego rzędu 1. Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład. Znaleźć krzywą dla której

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta.

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Rozwiązywanie równań sześciennych - wzory Cardana Każde równanie sześcienne można sprowadzić

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Elementy logiki. Zdania proste i złożone

Elementy logiki. Zdania proste i złożone Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Reakcja Bielousowa-Żabotyńskiego

Reakcja Bielousowa-Żabotyńskiego Reakcja Bielousowa-Żabotyńskiego 1 Kryteria pomocne przy badaniu stabilności punktów stacjonarnych Często badamy układy dynamiczne w pobliżu punktów stacjonarnych. Rozważamy wtedy ich postać zlinearyzowaną:

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. Równania różniczkowe cząstkowe pierwszego rzędu 11 1 11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. 11.1 Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

OPRACOWANIE MONIKA KASIELSKA

OPRACOWANIE MONIKA KASIELSKA KONSPEKT LEKCJI MATEMATYKI DIAGNOZA UMIEJĘTNOŚCI ZGODNYCH ZE STANDARDAMI WYMAGAŃ MATURALNYCH PRZEDMIOT : Matematyka KLASA: III TEMAT: Rozwiązywanie problemów poprzez stosowanie algorytmów. STANDARDY WYMAGAŃ

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii

Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii Pochodne Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 MOTYWACJA Rozpatrzmy gładką funkcję np. y x = x 2 w okolicach punktu (1,1) x 0 = 1, y 0 = f x 0 = 1 powiększmy wykres wokół (x 0, f(x 0

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. IMIE I NAZWISKO WIELOMIANY SUMA PUNKTÓW: 125 ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. ZADANIE 2 (5 PKT)

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo